ArticlePDF Available

Insulation Performance Comparison of Curtain Wall Systems with Existing Pipe Frames and Truss-Shaped Insulation Frames

MDPI
Energies
Authors:

Abstract and Figures

The purpose of this study was to compare insulation performance between a base case that applied the existing steel pipe frame and an alternative case that reduced thermal bridging by applying a truss-shaped insulation frame (TIF) to a back frame type curtain wall. Insulation performance was compared by obtaining the effective U-factor and the lowest indoor surface temperature through a three-dimensional steady-state heat transfer simulation. In addition, mock-up tests were performed to compare the U-factors of the base case and alternative case. The simulation results showed that the effective U-factor of the alternative case was 36% lower than in the base case, a significant heat loss reduction. The lowest indoor surface temperature of the alternative case was 0.5 °C higher than in the base case, showing that the surface condensation risk also decreased. In the mock-up test results, the alternative case U-factor was 33% lower than in the base case, confirming the associated large heat loss reduction. For the base case, both the effective U-factor by simulation and the U-factor by the mock-up test were much higher than the design U-factor according to the Korean Design Standard, which neglects thermal bridging, indicating a significantly increased heat loss caused by this factor. For the alternative case, however, both U-factors were similar to the design U-factor.
Content may be subject to copyright.
Energies2021,14,4682.https://doi.org/10.3390/en14154682www.mdpi.com/journal/energies
Article
InsulationPerformanceComparisonofCurtainWallSystems
withExistingPipeFramesandTrussShapedInsulationFrames
BoHyeChoiandSeungYeongSong*
DepartmentofArchitectural&UrbanSystemsEngineering,EwhaWomansUniversity,52Ewhayeodaegil,
Seodaemungu,Seoul03760,Korea;bhchoi@ewha.ac.kr
*Correspondence:archssy@ewha.ac.kr;Tel.:+82232773913
Abstract:Thepurposeofthisstudywastocompareinsulationperformancebetweenabasecase
thatappliedtheexistingsteelpipeframeandanalternativecasethatreducedthermalbridgingby
applyingatrussshapedinsulationframe(TIF)toabackframetypecurtainwall.Insulationperfor
mancewascomparedbyobtainingtheeffectiveUfactorandthelowestindoorsurfacetemperature
throughathreedimensionalsteadystateheattransfersimulation.Inaddition,mockuptestswere
performedtocomparetheUfactorsofthebasecaseandalternativecase.Thesimulationresults
showedthattheeffectiveUfactorofthealternativecasewas36%lowerthaninthebasecase,a
significantheatlossreduction.Thelowestindoorsurfacetemperatureofthealternativecasewas
0.5°Chigherthaninthebasecase,showingthatthesurfacecondensationriskalsodecreased.In
themockuptestresults,thealternativecaseUfactorwas33%lowerthaninthebasecase,confirm
ingtheassociatedlargeheatlossreduction.Forthebasecase,boththeeffectiveUfactorbysimula
tionandtheUfactorbythemockuptestweremuchhigherthanthedesignUfactoraccordingto
theKoreanDesignStandard,whichneglectsthermalbridging,indicatingasignificantlyincreased
heatlosscausedbythisfactor.Forthealternativecase,however,bothUfactorsweresimilartothe
designUfactor.
Keywords:thermalinsulation;thermalbridge;curtainwall;trussshapedinsulationframe
1.Introduction
1.1.BackgroundandObjective
Reducinggreenhousegas(GHG)emissionsisaglobalissue,andtheinternational
communityhasmadeeffortstoreduceGHGemissionsatthegloballevel.TheParis
Agreementsignedin2015dealtwithmeasurestoreduceGHGemissionsafter2020,and
theSouthKoreangovernmentalsoestablishedandannouncedthe“Revisionofthebasic
roadmapforachievingthenationalgreenhousegasreductiontargetin2030[1]”byre
flectingtheParisAgreement.Inthecaseofthebuildingsector,whichrepresents22%of
GHGemissionsfromSouthKoreaasof2017,areductiontargetof32.7%comparedtothe
expectedGHGemissionsby2030wasset.Inaddition,thereinforcementofbuildingper
mitstandardsfornewbuildings,improvementoftheenergyperformanceoftheexisting
buildings,improvementofequipmentefficiency,andexpansionofthedistributionofre
newableenergysystemswerepresentedasthemainmeasurestoreduceGHGemissions.
Accordingly,zeroenergybuildingcertificationhasbecomemandatoryfornewpublic
buildingswithatotalfloorareaof1000m
2
orlargersince2020,andthecertificationwill
bemandatoryforallnewbuildingswithatotalfloorareaof500m
2
orlargerafter2030
[2].
Thermalinsulationofthebuildingenvelopeisaveryimportantelementforzeroen
ergybuildings.Thebuildingenvelopethatrequiresthermalinsulationcanbemainlyclas
sifiedintotheexternalwall,roofandfloor.Sincetheexternalwallgenerallyrepresents
Citation:Choi,B.H.;Song,S.Y.
InsulationPerformanceComparison
ofCurtainWallSystemswith
ExistingPipeFramesandTruss
ShapedInsulationFrames.Energies
2021,14,4682.https://doi.org/
10.3390/en14154682
AcademicEditors:MonicaSiroux
andFrancescoNocera
Received:25May2021
Accepted:26July2021
Published:2August2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Energies2021,14,46822of17
thelargestareainbuildings,theinsulationperformanceoftheexternalwallisparticularly
important.Eventhoughtherearesomedifferencesdependingontheconstruction
method,mostexternalwallshavethermalbridgesinwhichinsulationispartiallydiscon
tinued.Thethermalbridgebecomesapaththroughwhichheatistransferredbetweenthe
indoorandoutdoorspace,therebyreducinginsulationperformanceandcausingmany
problems,suchasenergylossandcondensation.Inthecaseofthecurtainwall,inpartic
ular,theriskofthermalbridgeoccurrenceishigherthanthatoftheconcretewall,because
metalmaterialswithhighthermalconductivityareappliedandmanyjointsareinevitably
requiredbetweenvariouscomponents[3].Therefore,althoughthecurtainwallsatisfies
thedesignUfactor(assumingonedimensionalheattransferandnotconsideringthein
fluenceofthethermalbridge)requiredbytheDesignStandardforEnergyEfficientBuild
ings[4],itsactualUfactorishighlylikelytobelargerthanthedesignUfactor.
Thebackframetypecurtainwall,inwhichexteriorfinishmaterialsareinstalledafter
theinstallationofgridtypeorstraighttypeframesonthebuildingstructureasshownin
Figure1[5,6],hasbeenwidelyappliedasexternalwallsinvarioustypesofbuildingsdue
toitssimpleinstallationandlowcost.Ingeneral,framesaremadeofpaintedorgalva
nizedrectangularsteelpipesandfixedtothebuildingstructureusingfasteners(primary
connectors).Exteriorfinishmaterialssuchasmetalorstonearefixedtotheframesusing
brackets(secondaryconnectors).Insulationisinstalledbetweenframes(seeFigure1c)or
betweentheframeandexteriorfinishmaterial.
(a)(b)
(c)
Figure1.Configurationandexampleofbackframetypecurtainwall:(a)configuration[5,6];(b)
exampleofabackframe;(c)exampleofinsulationinstallation.
Kim,S.S.etal.[7]reportedthattheinsulationperformanceofmetalmaterialswith
highthermalconductivityisamajorelementthatdeterminestheinsulationperformance
Energies2021,14,46823of17
oftheentirecurtainwallastheinsulationperformanceofthevisionparts,suchaswin
dows,inthecurtainwallisreinforced.Song,J.H.etal.[8]dividedthebackframetype
curtainwallintopaneltypeandsheettypewallsdependingontheexteriorfinishmateri
alsandinsulationinstallationmethod,andevaluatedtheinsulationperformanceofeach
type.Theyreportedthatthejointsbetweenmetalpanelsandthesecondaryconnectorsact
asthermalbridgesforthepaneltype,inwhichmetalpanelscontaininginsulationare
fixedtoframes,andtheframesthemselvesalsobecomethermalbridgesforthesheettype,
inwhichmetalsheetsarefixedtoframesandinsulationisinstalledbetweenframes.Brent
Griffithetal.[9]evaluatedthethermalperformanceofacurtainwallthroughexperiments
andsimulationbyvaryingthespacingandmaterialofbolts.Theyreportedthatthespac
ingofboltsaffectedthethermalperformanceofthecurtainwall,andthatthethermal
performancewasreducedwhenthespacingwasnarroworsteelboltswereusedinstead
ofstainlesssteelbolts.Park,H.Y.etal.[10]evaluatedtheimpactsofmajormaterialson
theUfactorofthecurtainwall.TheycomparedtheUfactorbetweenthecaseinwhich
theinfluenceofscrewsthatplayedastructuralrolewasincludedandthecaseinwhich
theinfluencewasexcluded,andreportedthatthethermalbridgemustbeconsideredfirst
toimprovetheinsulationperformanceofthecurtainwall.TheodorosG.etal.[11]ana
lyzedtheeffectoffastenersthatareusedtofixexteriormaterialsandinsulationonthe
insulationperformanceofexternalwall,andreportedthatmeasurestoreducethethermal
bridgearerequired.Oh,J.M.etal.[12]replacedaluminummoldingonthesideofmetal
panelsthatareusedasexteriormaterialsinthecurtainwallwithplasticmolding,and
reportedthattheinsertionofathermalbreakerintotheexistingaluminumbracketsignif
icantlydecreasesthethermalbridgingeffectatjointsbetweenpanels.
Asintheresearchresultsabove,metalmaterialsthatareinstalledintheinsulation
layerinthecurtainwallarehighlylikelytobecomethermalbridges.Thesteelpipeframe
installedinthebackframetypecurtainwallasshowninFigure1calsobecomesathermal
bridgethatpenetratestheinsulationlayer,anditbecomesamajorfactorthatreducesthe
insulationperformanceoftheentirecurtainwall.Toresolvethisproblem,Shin,D.I.[13]
proposedatrussshapedinsulationframe(TIF)composedofgalvanizedsteelplates,stain
lesssteelwires,andinsulation,andanalyzedtheimprovementeffectofinsulationperfor
mance(refertoSection2fordetailsonTIF).Later,Song,J.H.etal.[14,15]testedthestruc
turaldeflectionandmovement,airleakage,waterpenetration,fireresistanceandthermal
resistancefortheexternalwallsystemtowhichtheTIFproposedbyShin,D.I.[13]was
applied,andreportedthatitsatisfiedtheperformancecriteriarequiredbybuildingcodes
andimprovedinsulationperformancethroughareductioninthethermalbridgingeffect.
Inthisstudy,athreedimensionalheattransferanalysismodelof1minsizewassetup
tocalculatetheheatingandcoolingenergydemand,andthelinearthermaltransmittance
ofthethermalbridgeontheverticalmemberwascalculated.
ItappearsthattheTIFhashighpotentialforimprovinginsulationperformanceby
reducingthethermalbridgingeffectwhenappliedtothebackframetypecurtainwall.Its
applicationrangeisexpectedtobewideasitisalsoapplicabletoexteriorinsulationand
finishsystemsofconcretewallsandnewconstructionaswellasremodeling.SincetheTIF
systemisintheearlystagesofapplication,itsperformanceevaluation,verificationand
sufficientdataarerequiredundervariousbuildingconditions.Therefore,inthisstudy,
insulationperformancewascomparedbetweencasesthatappliedtheexistingsteelpipe
frameandTIF,byreflectingtheactualmoduledimensionsandmembersofthebackframe
typecurtainwallforofficebuildings.Foranoverallinsulationperformancecomparison
oftheentirecurtainwallsystem,theeffectiveUfactorthatintegratestheeffectsoflinear
andpointthermalbridgeelementswasderived,andtheimprovementsoninsulationper
formancethroughapplicationofTIFwasanalyzedandverified.

Energies2021,14,46824of17
1.2.MethodsandProcedures
AninvestigationintotheTIF,whichwasdevelopedtoreducethethermalbridging
effectcausedbytheexistingsteelpipeframe,wasperformed.UsingPhysibelTriscosoft
ware,threedimensionalsteadystateheattransfersimulationswereperformedtocom
paretheinsulationperformancebetweenthebasecasethatappliedthesteelpipeframe
andthealternativecasethatappliedtheTIF.Themoduledimensionsappliedtoactual
officebuildingswereapplied,andmodelingwasperformedincludingthermalbridgeel
ementssuchasverticalandhorizontalframesandmetalfasteners.Windowswereex
cludedfromthemodelingrangebecauseseparateframesareinstalledandthereisno
significantdifferencebetweenthebasecaseandalternativecase.Theinsulationperfor
manceofthealternativecasewascomparedwiththatofthebasecasebasedontheheat
lossthroughtheentireanalysisareaandtheresultingeffectiveUfactoraswellasthe
lowestindoorsurfacetemperatureandtheresultingtemperaturedifferenceratio(TDR).
Inaddition,mockupsofthebasecaseandalternativecaseweremanufacturedforthe
sameanalysisarea,andtheUfactortestwasconductedinaccordancewithKoreanStand
ard(KS)F2278[16]toverifytheinsulationperformanceofthealternativecase.Figure2
showsthemethodologicaloutlineofthisstudy.
Figure2.Methodologyoutlineofthestudy.
2.OverviewofTrussShapedInsulationFrame
TheTIFwasdevelopedtoreducethethermalbridgingeffectcausedbythevertical
framethatactsasthestructuralframeforfixingexteriorfinishmaterialsincurtainwall
systemsorexteriorinsulationandfinishsystemsofconcretewalls[13].AsshowninFig
ure3,theTIFconsistsoftopandbottomplateswhicharemanufacturedbyprocessing
galvanizedsteelplates,stainlesssteelwiresthatconnectthetopandbottomplatesina
trussshape,andinsulationthatfillstheemptyspaceinsideframes.Thetopplatehasat
bolthole,andthebottomplatehasboltholes.Thismakesiteasytofixtheframetothe
buildingstructureandexteriormaterialstotheframe,andenablesdryconstructionwith
outadditionalwelding.Insidetheframe,inorganicinsulationisfilledtosecurefirere
sistanceandinsulationperformance.Sinceinsulationisinstalledcontinuously,asshown
inFigure4b,itispossibletoreducethethermalbridgingeffectthatinevitablyoccurswhen
theexistingsteelpipeframeisapplied.
Energies2021,14,46825of17
Figure3.Configurationofthetrussshapedinsulationframe(TIF).
(a)(b)
Figure4.InstallationexampleoftheTIFandinsulation:(a)installationoftheTIF;(b)installationof
insulationbetweentheTIFs.
3.SetupoftheBaseCaseandAlternativeCase
Thebuildingtypewassettoanofficebuildingforwhichtherearemanycasesof
applyingcurtainwallsystems,andtheexteriorfinishmaterialwassettothecommonly
usedaluminumsheet.Recently,inKorea,thefiresafetystandards[17]havebeen
strengthenedsignificantly,andnonflammablebuildingmaterialsarestronglyrecom
mendedforbuildingswiththreeormorefloors.Accordingly,glasswool,whichprovides
fireresistanceandinsulationperformance,wasappliedtotheTIF.Inaddition,mineral
woolwasinstalledintheinterlayerfirepartitionbetweentheinsulationandfloorslab
basedontheactualdesigndrawing.ThedesignUfactor(UfactorintheDesignStandard
thatassumesonedimensionalheattransferanddoesnotconsiderthethermalbridging
effect)ofthecurtainwallsystemwassettolessthan0.150W/m2K,whichistherequired
UfactorforSeouldeterminedbytheDesignStandard[4].Seoulcorrespondstozone4in
theclimatezoneclassificationofASHRAEStandard90.1[18].ThedesignUfactorthat
reflectedtheactualthicknessofeachcomponentofthecurtainwallsystemwas0.145
W/m2K.
Forthebasecase,rectangularsteelpipeframeswithcrosssectionaldimensionsof
125mm×75mmand100mm×50mmareinstalledverticallyandhorizontally,respec
tively,andtwolayersofglasswoolwithatotalthicknessof220mmareinsertedbetween
frames.Ontheoutdoorsideoftheframe,arectangularsteelpipetrackwithcrosssec
tionaldimensionsof50mm×50mmisinstalledtofixtheexteriorfinishmaterial,andthe
aluminumsheetwithathicknessof4mmisinstalledforanexteriorfinishmaterial.There
areaircavitiesbetweenthegypsumboard(aninteriorfinishmaterial)andtheglasswool,
andbetweenthealuminumsheet(anexteriorfinishmaterial)andtheglasswool.
Forthealternativecase,theinteriorandexteriorfinishmaterials,aswellasthetrack
forfixingtheexteriormaterial,arethesameasthoseofthebasecase,andTIFsofthesame
size(125mm×75mm)areinstalledat1mintervalsinsteadofverticalrectangularsteel
pipeframes.Asinthebasecase,twolayersofglasswoolwithatotalthicknessof220mm
areinstalledbetweenTIFs.OntheindoorsideoftheTIFs,anLshapedstainlesssteeltrack
Energies2021,14,46826of17
isinstalledhorizontally.TheLshapedstainlesssteeltracksupportsinsulationaswiththe
horizontalrectangularsteelpipeframeofthebasecase.SincetheLshapedstainlesssteel
trackcanbeathermalbridgeasitisconnectedtotheTIFsandinstalledinsidetheinsula
tionlayer,aTshapedpolyamideinsulationcapisappliedtooneendoftheLshaped
stainlesssteeltrack,asshowninFigure5.
Figure5.LshapedstainlesssteeltrackwithpolyamideTcap.
4.ThreeDimensionalSteadyStateHeatTransferSimulation
4.1.OverviewofSimulation
4.1.1.SimulationModel
Thesimulationareaisthenonvisionpartsofthecurtainwallsystem,anditwas
modeledinthreedimensions,includingtheplenum,ceiling,andfloorslabtowhichthe
frameisfixed.Inthecurtainwallsystem,detailedconditions,suchasspacingofvertical
andhorizontalframeandthelocationofmetalfasteners,mayvarydependingonthe
buildingsituation,butconditionsthataregenerallyappliedtoofficebuildingswereused
inthisstudy.Allelementsthatcanbethermalbridges,suchasframesandmetalfasteners,
wereincludedformodeling,andthinmembraneswithnegligibleinfluenceonheattrans
fer,suchasvaporbarriers,wereexcludedfrommodelinginaccordancewithISO10211
[19].
Inthreedimensionalmodelingthelocationofcutoffplaneswassetbyreferringto
ISO10211[19],andthelocationofcutoffplanesinthexaxisdirectionwassettobethe
middlepointbetweentheverticalframesasshowninFigure6.Thelocationofcutoff
planesintheyaxisdirectionwassettobethepointatleast1mfromtheinteriorfinishing
surfaceofthewall.Thelocationofcutoffplanesinthezaxisdirectionwassettothe
middlepointofthealuminumsheet,whichwasatleast1mfromthefinishingsurfaceof
thefloorandtheceiling.
Thethreedimensionalmodelsofthebasecaseandalternativecasemodeledthrough
theaboveprocesshadthesamesize(1000mm,1850mm,and4000mminthex,y,and
zaxisdirections,respectively).Inaddition,thetwomodelshadthesameoutdoorand
indoorsurfaceareassothattheevaluationresultscouldbecompared.Figures7and8
showthehorizontalandverticalsectionsofthebasecaseandalternativecase.Figure9
showsthethreedimensionalgeometricmodelsofthebasecaseandalternativecase.
Energies2021,14,46827of17
Figure6.Locationofcutoffplanesforsimulation.
(a)
(b)
Figure7.Horizontalsectionsofthesimulationmodels:(a)basecase;(b)alternativecase.
(a)
Energies2021,14,46828of17
(b)
Figure8.Verticalsectionsofthesimulationmodels:(a)basecase;(b)alternativecase.
(a)(b)
Figure9.ThreedimensionalgeometricmodelsinPhysibelTrisco:(a)basecase;(b)alternativecase.
4.1.2.SimulationMethod
Theinsulationperformanceofthebaseandalternativecaseswasevaluatedthrough
threedimensionalsteadystateheattransfersimulation.PhysibelTrisco14.0wwasused
astheheattransfersimulationsoftware.PhysibelTriscoiscommercialandmultipurpose
Energies2021,14,46829of17
heattransfersimulationsoftwaremadebyPhysibel,whichenablescalculationsprecisely
forthecomplexbuildingelements[20].
Intheheattransfersimulation,boundaryconditionswereappliedinaccordancewith
theDesignStandardforEnergyEfficientBuildings[4]andmaterialpropertiesinaccord
ancewiththeGuidetoDesignStandardforEnergyEfficientBuildings[21]andISO10077
2[22].Theoutdoortemperatureintheboundaryconditionsisthedesignoutdoortemper
atureofSeoulforheatingequipmentcapacitycalculation.Theheattransferintheaircav
itywascalculatedusingtheequivalentthermalconductivity,whichwasobtainedaccord
ingtotheconvectiveandradiativeheattransfercoefficients,aircavitygeometry,andheat
flowdirection.Tables1and2showtheboundaryconditionsandmaterialpropertiesfor
thesimulation,respectively.
Table1.Boundaryconditionsforsimulation.
BoundaryTemperature(°C)SurfaceHeatTransferCoefficient(W
/
m2K)
Outdoor−11.323.26
Indoor209.09
Table2.Materialpropertiesforsimulation.
MaterialThermalConduc
tivity(W/mK)MaterialThermalConduc
tivity(W/mK)
Concrete1.6Steel44
Cementmortar1.4Galvanizedsteel53
Gypsumboard0.18Stainlesssteel15
Glasswool0.034Polyamide 0.25
Mineralwool0.036Siliconesealant0.35
Aluminumsheet200‐
4.1.3.EvaluationIndicesofInsulationPerformance
Theinsulationperformanceofthealternativecasewascomparedwiththatofthe
basecasebasedontheheatlossthroughtheentireanalysisareaandtheresultingeffective
UfactoraswellasthelowestindoorsurfacetemperatureandtheresultingTDR.Equa
tions(1)and(2)representcalculationformulasfortheeffectiveUfactorandTDR,respec
tively.TDRisthecondensationpreventionperformanceindexdeterminedbytheDesign
StandardforPreventingCondensation[23]inSouthKorea.AlowerTDRvalueismore
favorableforpreventingsurfacecondensation,andthevalueisobtainedbyrounding
downthethirddecimalplace.
Uef
f
𝑞
𝐴󰇛𝑇𝑖𝑇𝑜󰇜
(1)
whereUeff:effectiveUfactor(W/m2K),q:heatloss(W),A:outdoorsurfacearea(m2),Ti:
indoortemperature(K),To:outdoortemperature(K).
TDR 𝑇𝑖 𝑇𝑠𝑖
𝑇𝑖 𝑇𝑜 (2)
whereTi:indoortemperature(°C),Tsi:indoorsurfacetemperature(°C),To:outdoortem
perature(°C).
Energies2021,14,468210of17
4.2.SimulationResults
Table3showstheevaluationresultsofinsulationperformanceofthebasecaseand
alternativecasebysimulation.Forthebasecaseinwhichtherectangularsteelpipeframe
wasapplied,theheatlosswas33.1WandtheresultingeffectiveUfactorwasfoundtobe
0.264W/m
2
K.ForthealternativecasethatappliedTIF,however,theheatlosswas21.1W
andtheresultingeffectiveUfactorwasreducedby36%comparedtothebasecaseasit
was0.169W/m
2
K,indicatingasignificantreductioninheatlossbydecreasingthethermal
bridgingeffect.
Forthebasecase,thelowestindoorsurfacetemperaturewas17.7°C,andtheresult
ingTDRwas0.07.Forthealternativecase,thelowestindoorsurfacetemperaturewas18.2
°C,whichwas0.5°Chigherthanthatofthebasecase,andtheresultingTDRwas0.05,
indicatingthatthesurfacecondensationriskwasalsoreduced.Thelowestindoorsurface
temperatureoccurredonthesurfaceadjacenttothefastenerinstalledtofixthevertical
membertothestructureforboththebaseandalternativecase.Thisisduetothedropin
surfacetemperatureinneighboringareasaroundthemetalfasteners.
Table3.Evaluationresultsofinsulationperformancebysimulation.
PerformanceIndexBaseCaseAlternativeCase
Temperaturedistribu
tion
Outdoor
surface
Indoor
surface
Outdoor
surface
Indoor
surface
Horizontalsection
(atmetalfasteners)
Horizontalsection
(atmetalfasteners)
q(W)33.121.1
U
eff
(W/m
2
K)0.2640.169
Thelowestindoor
surfacetemperature
(°C)
17.718.2
TDR0.070.05
Energies2021,14,468211of17
5.PerformanceVerificationthroughMockUpTest
5.1.OverviewofMockUpTest
5.1.1.MockUpModel
FortheUfactortestofthebasecaseandalternativecase,mockupsweremanufac
turedforthesameanalysisareaasthesimulation.TheUfactortestmethodforcurtain
wallsystemsisdealtwithinKSF2278[16].ThesizeofthetestspecimensspecifiedinKS
F2278is2m×2m.Accordingly,mockupsweremanufacturedbyincludingtwovertical
andhorizontalframes,aswellastheverticalandhorizontalmidpointsofthealuminum
sheet,anexteriorfinishingmaterial,asshowninFigures10–12.Themaximumthickness
oftheinsulationpanelsurroundingthetestspecimen(seeFigure11)installedinagov
ernmentcertifiedtestinglaboratory(KoreaLaboratoryAccreditationScheme)inSouth
Koreais400mm,andthemaximumallowedthicknessofthetestspecimensis350mm.
Sincethethicknessofthecurtainwallinsimulationmodelswas419mm,mockupswere
manufacturedbyexcludingtheaircavity(100mmthick)betweenthegypsumboardand
glasswoolaswellasthemetalstudinstalledinsidetheaircavityforfixingthegypsum
board.OwingtotheconstraintsofthetestmethodspecifiedbyKSF2278,thefloorstruc
turesandprimaryconnectorsincludedinthesimulationmodelswereexcludedforthe
mockups.Mockupswerepreparedbyincludingthinmembranesthatwereexcluded
fromthesimulationmodels,suchasvaporretarders.Exceptforthese,theconfiguration
ofthemockupswasthesameasthatofthesimulationmodels.Figures11and12show
thehorizontalandverticalsectionsofthemockupsforthebasecaseandalternativecase.
Figure10.Locationofcutoffplanesformockuptest.
(a)
Energies2021,14,468212of17
(b)
Figure11.Horizontalsectionsofmockups:(a)basecase;(b)alternativecase.
(a)
Energies2021,14,468213of17
(b)
Figure12.Verticalsectionsofmockups:(a)basecase;(b)alternativecase.
5.1.2.MockUpTestMethod
TheUfactortestdeviceconsistsofacoldboxcorrespondingtotheoutdoorenviron
mentandahotboxcorrespondingtotheindoorenvironment.Thereisaninsulationpanel
intowhichatestspecimenisinsertedbetweenthecoldandhotboxes,andthehotboxis
locatedinsidetheconstanttemperaturechamber.Figure13showsthemockupsinstalled
fortheUfactortest.Thegapbetweentheinsulationpanelandeachmockupwasfilled
withpolyurethanefoam.
InKSF2278,thesurfacethermalresistanceisfirstsetbymeasuringtheairtempera
tureinthecoldboxandhotboxandthesurfacetemperature(seeFigure14)ofthestand
ardinsulationboardinstalledinplaceofthetestspecimenundersteadystateconditions,
andthentheUfactorofthetestspecimenisobtainedbymeasuringtheairtemperature
inthecoldbox,hotbox,andconstanttemperaturechamberaswellastheamountsofheat
suppliedtothecoldandhotboxesundersteadystateconditions.TheUfactortestforthe
basecaseandalternativecasewasconductedinagovernmentcertifiedtestinglaboratory
inSouthKorea.Table4showstheboundaryconditionsappliedtothecoldandhotboxes.
Table4.Boundaryconditionsformockuptest.
BoundaryTemperature(°C)SurfaceThermalResistance(m2K/W)
Coldbox0±1.00.05±0.02
Hotbox20.0±1.00.11±0.02
Energies2021,14,468214of17
(a)
(b)
Figure13.Installationofmockup:(a)coldboxside;(b)hotboxside.
Figure14.Surfacetemperaturemeasurementpointsonthecoldboxandhotboxsidetopresetthe
surfacethermalresistance.
5.2.MockUpTestResults
TheUfactorbythemockuptestwasfoundtobe0.220W/m2Kforthebasecaseand
0.147W/m2Kforthealternativecase.SimilartotheeffectiveUfactorreductionlevelin
thesimulationresults,theUfactorofthealternativecasewasreducedby33%compared
tothatofthebasecase,confirmingthesignificantheatlossreductioneffectofthealterna
tivecase.
Forboththebasecaseandalternativecase,theUfactorbythemockuptestwas
foundtobeslightlylowerthantheeffectiveUfactorbysimulation.Thisresultcanbe
attributedtosomedifferencesinconfigurationbetweenthesimulationmodelsandmock
ups(refertoSection5.1.1).TheeffectiveUfactorreductiondegreeofthealternativecase
comparedtothebasecaseinthesimulationresults;however,itwasalmostthesameas
theUfactorreductiondegreeinthemockuptestresults.
Figure15showstheeffectiveUfactorsbysimulation,Ufactorsbythemockuptest,
anddesignUfactorsaccordingtotheDesignStandard[4],whichdoesnotconsiderthe
influenceofthethermalbridgeundertheassumptionofonedimensionalheattransfer,
forthebasecaseandalternativecase.Forthebasecase,boththeeffectiveUfactorby
simulationandtheUfactorbythemockuptestweremuchhigherthanthedesignU
factorof0.145W/m2K,indicatingasignificantincreaseinheatlossduetothethermal
Energies2021,14,468215of17
bridge.ThisissimilartotheresultsofSong,J.H.etal.[14,15],whichtestedforinsulation
performanceoftheTIFappliedexternalwallsystem.AlthoughitwasdesignedasaU
factorthatsatisfiestheDesignStandard,theactualinsulationperformanceintermsofthe
effectiveUfactorconsideringthethermalbridgeswerefoundtobemuchweaker.So,it
isnecessarytoimproveandsupplementthecurrentDesignStandardsothattheeffectof
thermalbridgescanbereflected.Forthealternativecase,however,bothwerefoundtobe
similartothedesignUfactor.
Figure15.Ufactorevaluationresults.
6.Conclusions
Thepurposeofthisstudyistocompareinsulationperformancebetweenthebase
case,whichappliedtherectangularsteelpipeframe,andthealternativecase,whichre
ducedthethermalbridgingeffectbyapplyingthetrussshapedinsulationframe(TIF),by
reflectingtheactualmoduledimensionsandmembersofthebackframetypecurtainwall
forofficebuildings.Theinsulationperformanceofthealternativecasewascomparedwith
thatofthebasecasebyobtainingtheheatlossandtheresultingeffectiveUfactoraswell
asthelowestindoorsurfacetemperatureandtheresultingtemperaturedifferenceratio
(TDR)throughthreedimensionalsteadystateheattransfersimulation.Inaddition,
mockuptestswereperformedtocomparetheUfactorsofthebasecaseandalternative
case.Furthermore,mockupsweremanufacturedfortestingUfactorsofthebasecaseand
alternativecase,andtheimprovementsoninsulationperformancethroughapplicationof
TIFwasverified.Themainresultsofthisstudyareasfollows.
(1) ThesimulationresultsshowedthattheeffectiveUfactorofthealternativecasewas
36%lowerthanthatofthebasecase,indicatingasignificantreductioninheatlossby
decreasingthethermalbridgingeffect.Thelowestindoorsurfacetemperatureofthe
alternativecasewas0.5°Chigherthanthatofthebasecase,showingthatthesurface
condensationriskwasalsoreduced.
(2) Inthemockuptestresults,theUfactorofthealternativecasewas33%lowerthan
thatofthebasecaseinasimilartothedegreeofreductionoftheeffectiveUfactorin
thesimulationresults,confirmingthelargeheatlossreductioneffectofthealterna
tivecase.
(3) Forthebasecase,boththeeffectiveUfactorbysimulationandtheUfactorbythe
mockuptestweremuchhigherthanthedesignUfactoraccordingtotheDesign
Standard,whichdoesnotconsidertheinfluenceofthethermalbridge,indicatinga
significantincreaseinheatlosscausedbythethermalbridge.Forthealternativecase,
however,bothwerefoundtobesimilartothedesignUfactor.
Energies2021,14,468216of17
Inthisstudy,amongtheinorganicinsulationmaterialswidelyusedintheKorean
insulationmarket,glasswoolwithhighinsulationperformancewasapplied,andforfur
therstudies,highperformanceinsulationmaterial,otherthanglasswool,thathavefire
resistanceandinsulationperformancewillbereviewed.Additionally,furtherresearch
willbeconductedtosupplementtheinsulationperformanceandconstructabilityofcur
tainwallsystemsthatappliedTIFbyimprovingtheinsulationperformanceofprimary
andsecondaryconnectorsforfixingframesandexteriorfinishmaterials,applyingsuch
exteriormaterialsasmetalpanelscontaininginsulationbesidestheexitingmetalsheetor
stone,andintroducingunitcurtainwallconstructionmethodsinadditiontotheexisting
stickcurtainwallconstructionmethod.
AuthorContributions:Methodology,software,validation,andwriting—originaldraftpreparation,
B.H.C.;projectadministration,fundingacquisition,writing—reviewandediting,andsupervision,
S.Y.S.Bothauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkwassupportedbyaKoreaInstituteofEnergyTechnologyEvaluationandPlan
ning(KETEP)grantfundedbytheKoreangovernment(MOTIE)(grantnumber20202020800360,
InnovativeEnergyRemodelingTotalTechnologiesfortheAgingPublicBuildings).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:TheauthorsarespeciallygratefultoD.I.Shinforprovidingthedetailsofcur
tainwallsystemsapplyingTIFandmakingmockups.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. JointMinistriesofKoreanGovernment.RevisionoftheBasicRoadmapforAchievingtheNationalGreenhouseGasReductionTarget
in2030;JointMinistriesofKoreanGovernment:Sejong,Korea,2018.
2. MinistryofLand,InfrastructureandTransport.PressRelease,ZeroEnergyBuilding,BeyondBuildingstoCities;KoreanMinistry
ofLand,InfrastructureandTransport:Sejong,Korea,2019.
3. Park,M.J.;Song,J.H.;Lim,J.H.;Song,S.Y.Analysisofneedsforbuildingenvelopeinsulationregulationsreflectingthe
thermalbridgingeffectsthroughsimilarregulationsreviewandcasestudy.J.Archit.Inst.KoreaPlan.Des.2015,31,303–312.
4. MinistryofLand,InfrastructureandTransport.DesignStandardforEnergyEfficientBuildings;NotificationNo.2017881;Korean
MinistryofLand,InfrastructureandTransport:Sejong,Korea,2017.
5. Song,J.H.;Lim,J.H.;Song,S.Y.Evaluationofalternativesforreducingthermalbridgesinmetalpanelcurtainwallsystems.
EnergyBuild.2016,127,138–158.
6. Song,J.H.;Park,M.J.;Lim,J.H.;Song,S.Y.Energy,condensationriskandconstructabilityevaluationofmetalexteriorcurtain
wallpanelsystemsforreducingheatlossthroughthermalbridges.J.Archit.Inst.KoreaPlan.Des.2015,31,283–293.
7. Kim,S.S.;Yim,H.C.EvaluationoftheThermalTransmittanceofCurtainwallsaccordingtoEN13947.J.Archit.Inst.Korea
Plan.Des.2012,28,401–408.
8. Song,J.H.;Park,S.H.;Park,M.J.;Lim,J.H.;Song,S.Y.Influenceofthermalbridgesontheinsulationperformanceofcurtain
wallpanelsystems.J.AsianArchit.Build.Eng.2015,14,741–748.
9. Brent,G.;Elizabeth,F.;Mehrangiz,Y.;Dariush,A.Thesignificanceofboltsinthethermalperformanceofcurtainwallframes
forglazedfacades.InProceedingsoftheASHRAEWinterMeeting,SanFrancisco,CA,USA,17–21January1998.
10. Park,H.Y.;Park,S.J.Astudyonthethermalperformancefactorsandeffectsofeachpartofcurtainwallframefordevelopment
ofcurtainwallframewiththermalconductivity1.0W/m2Korless.J.KoreanInst.Archit.Sustain.Environ.Build.Syst.2020,14,
484–496.
11. Theodoros,G.T.;Aikaterini,G.T.;Karolos,J.K.;Dimitrios,K.B.Thermalbridginganalysisoncladdingsystemsforbuilding
facades.EnergyBuild.2015,109,377–384.
12. Oh,J.M.;Song,J.H.;Lim,J.H.;Song,S.Y.Analysisofbuildingenergysavingspotentialformetalpanelcurtainwallbuilding
bydeducingthermalbridgesatjointsbetweenpanels.EnergyProcedia2016,96,696–709.
13. Shin,D.I.Developmentofthermalbreakerforthedryenvelopeandappliedcase.InProceedingsoftheAnnualConferenceof
AIK2017,Gyeongju,Korea,25–27October2017.
14. Song,J.H.;Lee,D.Y.;Shin,D.I.;Jun,H.D.;Park,C.Y.;Kim,S.K.EvaluationofbuildingenvelopePerformanceofadry
exteriorinsulationsystemusingtrussinsulationframe.J.Archit.Inst.KoreaStruct.Constr.2019,35,153–164.
Energies2021,14,468217of17
15. Song,J.H.;Park,C.Y.;Jeong,J.W.Energyperformanceevaluationforexteriorinsulationsystemconsistingoftrussformwire
framemullionfilledwithglasswool.Energies2020,13,4486–4504.
16. KSF2278.StandardTestMethodforThermalResistanceforWindowsandDoors;KoreanStandardAssociation:Chungcheongbuk
do,Korea,2017.
17. MinistryofLand,InfrastructureandTransport.EnforcementDecreeoftheBuildingAct;NotificationNo.31270;KoreanMinistry
ofLand,InfrastructureandTransport:Sejong,Korea,2021.
18. ASHRAEStandard90.1.EnergyStandardforBuildingsexceptLowRiseResidentialBuildings;AmericanSocietyofHeating,Refrig
eratingandAirConditioningEngineers:NewYork,NY,USA,2013.
19. ISO10211:2017.ThermalBridgesinBuildingConstruction—HeatFlowsandSurfaceTemperatures—DetailedCalculations;Interna
tionalStandardOrganization:Geneva,Switzerland,2017.
20. Physibel.TRISCOManualofVersion14.0w;Physibel:Maldegem,Belgium,2017.Availableonline:http://www.physibel.be(ac
cessedon7May2021)
21. KoreaEnergyAgency.GuidetoDesignStandardforEnergyEfficientBuildings;KoreaEnergyAgency:Ulsan,Korea,2020.
22. ISO100772:2017.ThermalPerformanceofWindow,DoorsandShutters—CalculationofThermalTransmittance—Part2:Numerical
MethodforFrames;InternationalStandardOrganization:Geneva,Switzerland,2017.
23. MinistryofLand,InfrastructureandTransport.DesignStandardforPreventingCondensationinApartmentBuildings;Notification
No.2016835;KoreanMinistryofLand,InfrastructureandTransport:Sejong,Korea,2016.
... In order to calculate the overall heat transfer coefficient (U) for our experimental system, we used the following equation (Equation (2)): here hi represents the convective heat transfer coefficient on the inside of the system, Li and Ki represent the thickness and thermal conductivity of the i-th layer, and h 0 represents the convective heat transfer coefficient on the outside of the system [23]. ...
... where TOS represents the time of occurrence of the maximum outdoor temperature and TIS represents the time of occurrence of the maximum indoor temperature [22][23][24][25]31]. ...
Article
Full-text available
The construction and building industry in the modern world heavily relies on advanced techniques and materials such as polymers. However, with the world’s population alarmingly increasing, contributing to the greenhouse effect, and severe weather conditions amplifying, it has become crucial to reduce the heat effects in both new and old buildings. To achieve this, 50–70% more energy is necessary, which highlights the importance of energy-efficient construction practices and materials. Consequently, a comprehensive study was conducted to evaluate the efficacy of Polyurethane in indoor environments and energy conservation. Current study was performed due to an innovative application of insulation materials as to reduce the heat and energy costs in construction works. Thermal conductivity at mean temperature 35 ◦C was found 0.0272 (W/m K) with maximum in burnt clay brick (1.43 W/m K) by using hotplate apparatus. Specific heat was also found less 0.85 (KJ/Kg K) at density 32 kg/m3 while results were at par in reinforcement cement concrete and burnt clay brick 0.91, 0.91 (KJ/Kg K) respectively. Similarly, heat transmittance values of different roof sections by using polyurethane insulation showing satisfaction the ECBC in Buildings deviating standard U-value 1.20% to 0.418 (W/m2 K) with its excellent performance. Polyurethane treatments have been found to exert a significant impact on the computation of thermal resistance and overall heat transfer coefficients. In contrast, noninsulated treatments yielded inconclusive results with little to no significance. This highlights the importance of insulation materials in energy-efficient construction practices. Energyconsumption in winter and summer also has shown the significant impact by using polyurethane application with cumulative saving of 60–62% electricity. Economic Benefit of polyurethane in RCC and Conventional buildings describes positive and highly significant impact in present study. Application of polyurethane in new and old buildings ultimate enhanced the better quality of life and living standards from people of applied countries and is strongly recommended for future prospects and endeavors as Eco-friendly and energy efficient for sustainable development.
Article
Full-text available
Heat loss and gain through opaque envelopes of buildings are major factors that affect the overall cooling and heating loads in buildings. The government has enforced regulations to strengthen the thermal transmittance requirement level as a major means of reducing greenhouse gas emissions in the building sector. In addition, the thermal bridge is considered to be one of the major factors in heating load of buildings. In this study, truss-form wire frame was developed in order to minimize thermal bridge of steel mullion in exterior insulation system. In the case of thermal transmittance test for specimen of 0.145 W/m2 K as design value, the value of the steel pipe was 0.190 W/m2 K and the value of the truss-form wire frame was 0.150 W/m2 K, respectively. This means the other is much smaller than the one in thermal bridge. For four cases, annual energy performance analysis was calculated using Passive House Planning Package (PHPP)—ideal condition without thermal bridge, steel pipe mullion without insulation in the rear side, steel pipe mullion with insulation in the rear side, and truss-form wire-frame mullion filled with glass wool. As results, the annual heating energy demands were 15.68 kWh/m2, 25.42 kWh/m2, 16.78 kWh/m2, and 16.09 kWh/m2, respectively.
Article
Full-text available
To achieve national greenhouse gas reduction in the building sector, heating and cooling energy in buildings should be reduced. The government has strengthened regulations on insulation performance for building energy savings. However, the building envelope has various thermal bridges. In particular, a metal panel curtain wall comprises a number of thermal bridges at joints between the panels and the fixing units, thus degrading the overall thermal performance. To reduce building energy, it is necessary to reduce thermal bridges in building envelopes. This study aims to analyze the energy saving potential achieved by reducing thermal bridges. For this, the insulation performance and building energy needs of the existing and alternative metal panel curtain wall were evaluated. The alternative metal panel curtain wall that uses plastic molds at joints between panels and the thermally-broken brackets was suggested to reduce heat loss through thermal bridges. As results, the effective U-value of the alternative metal panel curtain wall was reduced by 72% compared with the existing metal panel curtain wall. In addition, annual heating energy needs of the alternative metal panel curtain wall building was reduced by 26%, and annual total energy needs was reduced by 6% because annual cooling energy needs of it slightly increased compared with the existing metal panel curtain wall. In conclusion, the alternative metal panel curtain wall considerably influenced the savings in building energy needs by reducing thermal bridges.
Article
Building envelopes incorporate thermal bridges, through which heat is transferred in either two or three dimensions. These thermal bridges lead to undesirable heat transfer, thereby resulting in an overall reduction in the insulation performance. In this study, alternatives were proposed to reduce the linear and point thermal bridges found in steel truss metal panel curtain wall systems in which metal panels fabricated by covering six faces of insulation with metal are fixed to the truss. Three-dimensional heat transfer simulations and mock-up tests were conducted to evaluate the insulation performance of the alternatives. Also, life-cycle costs were analyzed to evaluate the economic feasibility of the selected alternative. The evaluation results showed that the alternative 2, in which the lengths of the aluminum molding at the sides of the metal panel were reduced and for which thermally broken brackets were used, was the most effective alternative. The mock-up test performed in winter showed that the alternative 2 largely reduced the heat loss through the thermal bridges and had better insulation performance. Assuming a lifetime of 40 years, the alternative 2 would reduce the life cycle costs by 10.9% relative to the existing case.
Article
Cladding systems have become an attractive solution in energy renovation of existing buildings since they combine multiple benefits. In such systems, the use of a metallic frame and brackets, which penetrates the thermal insulation layer, creates point thermal bridges that are usually neglected by thermal insulation regulations due to their calculation complexity and their supposed small magnitude in overall heat losses. The objective of this study is to perform a parametric analysis to quantify the magnitude of this thermal bridging effect. All necessary calculations are performed using a detailed 3-dimensional numerical analysis approach in order to overcome oversimplifications found in most thermal bridge estimation methods. Results of the analysis are applied in a refurbishment study of an existing office building in order to underline the significance of the problem under investigation, in practice. As it is shown, point thermal bridge effects in cladding systems can constitute a significant part of buildings’ thermal balance. Neglecting their presence can lead to significant underestimation of actual heat flows which can account for 5% to almost 20% of total heat flows through the building envelope, depending mostly on the thermal transmittance of the load bearing wall and the ventilation characteristics of the air cavity.
Article
Abstrct Thermal insulation plays a key role in saving energy consumed by buildings. To obtain a high level of insulation performance, repeated thermal bridges should be minimized. These bridges may cause a substantial heat loss through the building envelope. Recently, the application of curtain walls has been rapidly increasing. However, thermal bridges frequently occur in the non-vision panel system in which the insulation materials are installed because of the numerous metal members passing through the insulation layer. The aim of this study was to analyze the influence of thermal bridges on the insulation performance of curtain wall panels in terms of the energy performance and internal surface condensation risk. A three-dimensional steady state heat transfer simulation was performed for four types of panel systems: insulation-joined metal sheet, insulation-separated metal sheet, bracket-fixed metal panel and screw-fixed metal panel. The heat loss, effective U-value, lowest internal surface temperature and lowest temperature factor of each panel system with and without thermal bridges were calculated and compared.
Joint Ministries of Korean Government. Revision of the Basic Roadmap for Achieving the National Greenhouse Gas Reduction Target in 2030
Joint Ministries of Korean Government. Revision of the Basic Roadmap for Achieving the National Greenhouse Gas Reduction Target in 2030; Joint Ministries of Korean Government: Sejong, Korea, 2018.
Infrastructure and Transport. Press Release, Zero Energy Building, Beyond Buildings to Cities; Korean Ministry of Land
  • Ministry
  • Land
Ministry of Land, Infrastructure and Transport. Press Release, Zero Energy Building, Beyond Buildings to Cities; Korean Ministry of Land, Infrastructure and Transport: Sejong, Korea, 2019.
Infrastructure and Transport. Design Standard for Energy-Efficient Buildings; Notification No. 2017-881; Korean Ministry of Land
  • Ministry
  • Land
Ministry of Land, Infrastructure and Transport. Design Standard for Energy-Efficient Buildings; Notification No. 2017-881; Korean Ministry of Land, Infrastructure and Transport: Sejong, Korea, 2017.