ArticlePDF Available

La erupción no será transmitida: características, impactos y asistencia durante el ciclo eruptivo 2018-2019 del volcán Peteroa, Argentina /// The eruption will not be broadcasted: characteristics, impacts and assistance during the 2018-2019 Peteroa volcano eruptive cycle, Argentina

Authors:

Abstract and Figures

(English version below)>> El volcán Peteroa se emplaza en el sur de la provincia de Mendoza, en el límite argentino-chileno, y es uno de los sistemas volcánicos más activos de los Andes del Sur. A pesar de su recurrente actividad eruptiva, existe escasa documentación sobre las consecuencias de estos eventos en las personas y el medioambiente. Un nuevo ciclo eruptivo, que inició en octubre de 2018 y duró aproximadamente 6 meses, ofreció una renovada oportunidad para indagar sobre este tópico postergado. A partir de una estrategia metodológica mixta, que combina herramientas de las ciencias sociales (i.e. entrevistas y cuestionarios) y naturales (i.e. análisis de lixiviados y aguas, datos meteorológicos, observaciones de campo e imágenes satelitales), caracterizamos el ciclo eruptivo y evaluamos el impacto de la caída de ceniza en el ambiente, en las comunidades que habitan en las cercanías del volcán y en sus actividades. Complementariamente, analizamos la gestión de la crisis volcánica desde el propio testimonio de los afectados. Los resultados demuestran que, a pesar del poco espesor de ceniza depositada, los impactos asociados no fueron nulos. A su vez, existieron falencias durante la gestión de la crisis, especialmente vinculadas a la comunicación, el manejo de la información y la asistencia. A raíz de esto, realizamos un análisis cualitativo con el objetivo de proyectar y discutir potenciales escenarios y una serie de recomendaciones que, esperamos, contribuyan a guiar futuros estudios y planes de gestión del riesgo volcánico. ---------------------------------------------------------------------------------------------- Peteroa volcano is located in the south of Mendoza province, on the Argentine-Chilean border, and is one of the most active volcanic systems in the Southern Andes. Despite its recurrent eruptive activity, there is little documentation on the consequences of these events on the people and the environment. A new eruptive cycle, which began in October 2018 and lasted approximately 6 months, offered a renewed opportunity to investigate this postponed topic. By developing a mixed methodological strategy, which combines tools from social sciences (i.e. in-person interviews and questionnaires) and natural sciences (i.e. leachate and water analysis, meteorological data, field observations and satellite images), we characterize the eruptive cycle and evaluate the impact of ash fallout on the environment, the communities that live in the vicinity of the volcano as well as in their activities. In addition, we analyse the management of the volcanic crisis by recovering the testimony of those affected. Our findings show that, despite the low thickness of ash deposits, the associated impacts were not negligible and there were shortcomings during the crisis management, especially related to communication, information management and assistance. Consequently, we carry out a qualitative analysis to project and discuss potential scenarios and provide a series of recommendations that, hopefully, will help guide future studies and volcanic risk management strategies.
Content may be subject to copyright.
A preview of the PDF is not available
... En el invierno subsiguiente a la erupción, entrevistamos a 20 puesteros en las invernadas (Fig. 3b). Para esto, utilizamos el cuestionario presentado en Forte et al. (2022), el cual combina respuestas abiertas y cerradas. Esta información se articuló con datos cualitativos producto de observaciones y entrevistas en profundidad realizadas en la zona afectada antes y luego de la erupción. ...
... No obstante, este es un cambio poco perdurable en el tiempo y no significativamente tóxico para el consumo humano o animal. Para un mayor detalle sobre estos resultados, se sugiere la lectura de Forte et al. (2022). Asimismo, las entrevistas realizadas nos permitieron entender la gestión de la crisis desde la perspectiva de la comunidad expuesta. ...
... Las flechas y líneas punteadas de colores indican las principales rutas de tránsito de los puesteros, entre las zonas de invernada y veranada. Modificado deForte et al. (2022). ...
... Particularmente, en el caso del Complejo volcánico Planchón-Peteroa (provincia de Mendoza) se han desarrollado estudios orientados a aspectos generales de la actividad volcánica histórica y actual (Tormey et al. 1989, Haller et al. 1994, Sruoga 2008, Haller y Coscarella 2011, Haller y Risso 2011, al estudio geofísico del volcán (Casas et al. 2014, Casas et al. 2018, Casas et al. 2019, Casas et al. 2020), investigaciones sobre la geología estructural (Vigide et al. 2020) y trabajos geoquímicos de distinta índole (Lemus Hernández 2010, Sanci et al. 2010, Lamberti et al. 2020. Sin embargo, aún continúa siendo bajo el nivel de conocimiento adquirido sobre este volcán, en especial en cuanto a su peligrosidad, teniendo en cuenta que es uno de los volcanes con más actividad de la Argentina (Haller et al. 1994, Naranjo et al. 1999, Naranjo y Haller 2002, Sruoga et al. 2004, Sruoga 2008, Elissondo y Villegas 2011, Haller y Risso 2011, Elissondo et al. 2016, Romero et al. 2020, Forte et al. 2022, y cercano geográficamente a áreas altamente pobladas del centro y oeste del país. ...
... Entre los años 2016 y 2018 se detectó un aumento en los pulsos sísmicos, atribuido al fracturamiento de roca y movimiento de fluidos en el interior del edificio (OVDAS-SERNAGEOMIN 2018). Estos eventos precedieron a un nuevo período eruptivo, que comenzó en diciembre de 2018 y decayó hacia mediados de abril de 2019 (Romero et al. 2020), aunque algunos autores lo extienden al menos hasta mayo de 2019 (Forte et al. 2022). Este ciclo se caracterizó principalmente por explosiones freatomagmáticas con emisiones de gas y tefra, en columnas eruptivas que llegaron a los 2 km de altura, acompañadas por una alta y persistente actividad sísmica (OAVV-SEGEMAR 2019, OV-DAS-SERNAGEOMIN 2019). ...
... Entre estas vertientes se destaca la denominada Agua de Fierro o del Hierro (Fig. 4d) por la coloración ocre del lecho, la cual presenta temperaturas que no superan los 10 °C (Sanci et al. 2010). Como flujos de escorrentía se reconocen dos cascadas al O del valle ubicadas hacia el SO y el NO (Figs. 3 y 4e), que se originan por el derretimiento de glaciares perennes en los que se intercalan depósitos de cenizas generadas durante las erupciones del volcán Peteroa (Trombotto Liaudat et al. 2014), por lo que se generan cursos cargados de mucho material en suspensión (Forte et al. 2022). Dichas cascadas desarrollan escorrentías, que en conjunto con el drenaje de las termas, terminan uniéndose dentro del valle previo a la salida y conformando el arroyo de los Baños (Fig. 3). ...
Article
Full-text available
El presente trabajo fue desarrollado en el Complejo Volcánico Planchón-Peteroa en la provincia de Mendoza, Argentina. Su objetivo es analizar y describir los principales procesos geoquímicos que se desarrollan y controlan la composición de las aguas pertenecientes al sistema hídrico del complejo volcánico. Dichas aguas fueron clasificadas a partir de sus composiciones y características fisicoquímicas en cuatro grupos: aguas termales sulfato-cloruradas ácidas, pertenecientes a las lagunas cratéricas; aguas termales sulfatadas neutras; aguas termales bicarbonatadas neutras; y aguas de escorrentía frías y ácidas a levemente ácidas. Los principales procesos que se reconocen en las aguas descriptas son la interacción de las mismas con gases ácidos y calientes provenientes desde el sistema magmático-hidrotermal, la precipitación de minerales secundarios como sulfatos y carbonatos de calcio, la interacción agua-roca, en particular con las evaporitas de la formación Auquilco, y la interacción de las aguas con las cenizas emitidas desde el volcán Peteroa durante períodos de actividad eruptiva. La presencia o combinación de algunos de estos procesos definen la composición geoquímica en cada grupo de agua.
... The Southern Volcanic Zone (33-46°S) is an active volcanic region of the Andes Cordillera that shows a high historic eruptive frequency (Naranjo and Stern, 2004;Stern, 2004). The fallout of volcanic ash in the Science of the Total Environment 853 (2022) 158389 past 60 years has produced significant environmental and socioeconomic impacts in areas located downwind of the volcanoes (e.g., Durant et al., 2012;Wilson et al., , 2013Forte et al., 2022), including burial of farmland under dune deposits and abrasion of vegetation and contamination of feed and water supplies (Wilson et al., 2013). Eruptions may also impact animals and human health including disease outbreaks after ingestion (e.g., starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion blindness), food insecurity, and violence (Rubin et al., 1994;Inbar et al., 1995;Cuthbertson et al., 2020). ...
Article
Andean volcanic rocks typically have low to moderate arsenic (As) concentrations. However, elevated levels of As in groundwaters of southern South America have been reported as a consequence of weathering of volcanic glass. This study discusses the abundance, speciation and dispersion of As species in fresh volcanic ash from highly explosive (Volcanic Explosivity Index: 4-5) Patagonian eruptions, as well as the potential of As release to aqueous reservoirs. Synchrotron-based X-ray absorption and micro-focused X-ray photoelectron spectroscopies were used to evaluate As solid speciation. Batch experiments at different pH conditions were performed with the aim of understanding the controls on As release to aqueous reservoirs. Bulk chemical and mineralogical characterizations were performed by inductively coupled plasma optical emission spectroscopy, X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy. Finally, to understand how As-bearing phases are spatially distributed after eruptions, simulations of volcanic ash emission, transport and deposition were performed.Results indicate that the concentration, speciation, and mobility of As in fresh Patagonian volcanic ash depend on the silica content of source magmas. Although the main As host in volcanic ash is Al-silicate glass, this phase is stable at neutral pH characteristic of most aqueous reservoirs. Higher contributions of As to water are associated with the more mobile As species that concentrate onto the surface of Al-silicate glass. Atmospheric dispersion simulations revealed that primary fallout of As-bearing ash has affected large areas in Patagonia, but also reached the Chaco-Pampean plain, where the presence of As-rich groundwater has been widely documented.
Conference Paper
Full-text available
Las erupciones volcánicas generalmente suelen estar precedidas por señales de “intranquilidad” (unrest) que pueden ser detectadas por redes de monitoreo instrumental. Algunas de esas señales, tales como sismos, aumento de la desgasificación o cambios en los sistemas hidrotermales, pueden ser detectadas por las comunidades locales u observadores En América Latina, durante la última década, Argentina junto con Bolivia, eran los únicos dos países con volcanes activos en su territorio que no contaban con observatorios volcanológicos permanentes. Esto adquiere particular relevancia si se considera que Argentina se encuentra entre los 10 primeros países con más volcanes activos en el mundo. El presente trabajo busca mostrar los avances realizados en materia de monitoreo volcánico en la República Argentina, desde el inicio de las actividades durante el año 2017, del Observatorio Argentino de Vigilancia Volcánica (OAVV) del Servicio Geológico Minero Argentino (SEGEMAR), el cual se encuentra dedicado al estudio y monitoreo de los volcanes cuya actividad pueda afectar al territorio argentino, y encargado de la generación y emisión de alertas técnicas sobre actividad volcánica de forma oficial dentro de la República Argentina. A la fecha, el OAVV es el observatorio volcanológico más joven de América Latina Palabras clave: observatorio volcanológico, gestión del riesgo, alerta temprana.
Article
Full-text available
Argentina is a country that presents a complex situation regarding volcanic risk, where a total of 38 volcanoes are considered active. Although Argentina has no major cities close to these volcanoes, the continuous increase in economic activity and infrastructure near the Andean Codillera will increase exposure to volcano hazards in the future. Further, volcanic activity on the border between Argentina and Chile poses a unique challenge in relation to volcano monitoring and the management of volcanic emergencies. Additionally, due to atmospheric circulation patterns in the region (from West to East), Argentina is exposed to ashfall and ash dispersion from frequent explosive eruptions from Chilean volcanoes. Considering this, the Servicio Geológico Minero Argentino (SEGEMAR) decided to create and implement a Volcanic Threat Assessment Program, which includes the creation of the the first permanent volcano observatory for the country, the Observatorio Argentino de Vigilancia Volcánica (OAVV). Previously the Decepcion Island volcano observatory was created as a collaboration between the Instituto Antártico Argentino (IAA) and the Museo Nacional de Ciencias Naturales (MNCN) from the Consejo Superior de Investigaciones Científicas (CSIC). Argentina es un país que presenta una compleja situación con respecto al riesgo volcánico, donde un total de 38 volcanes son considerados activos. Aunque Argentina no tiene ciudades importantes cerca de estos volcanes, el continuo incremento de la actividad económica y la infraestructura cerca de la Cordillera de los Andes, generará en el futuro un aumento en la exposición a estos peligros. Además, la actividad volcánica en la frontera entre Argentina y Chile constituye un desafío único en relación con el monitoreo de volcanes y la gestión de emergencias volcánicas. Adicionalmente, debido a los patrones de circulación atmosférica en la región (desde el oeste hacia el este), Argentina está expuesta a la caída y dispersión de cenizas de las frecuentes erupciones explosivas de volcanes chilenos. Teniendo esto en cuenta, el Servicio Geológico Minero Argentino (SEGEMAR) decidió crear e implementar un programa de evaluación de amenazas volcánicas, que incluye, la creación del primer observatorio permanente de volcanes para el país, el Observatorio Argentino de Vigilancia Volcánica (OAVV). Previamente, el Observatorio Volcanológico de la Isla Decepción fue creado como una colaboración entre el Instituto Antártico Argentino (IAA) y el Museo Nacional de Ciencias Naturales (MNCN) del Consejo Superior de Investigaciones Científicas de España (CSIC).
Article
Full-text available
En el presente trabajo realizamos un recorrido sobre la caracterización de la ruralidad y lo campesino en América Latina, en contextos colonial/modernos, con la intención de situar la vida rural periférica de puesteros/as dedicados a la labor caprina y su movilización trashumante/nómade, por la vasta espacialidad que les es propia. Buscamos de esa manera reflejar las discusiones recientes respecto del cruce entre Estado, sujeto campesino y capitalismo. A partir de un trabajo de registración y reflexión en Malargüe (Mendoza, Argentina) argumentamos que el desplazamiento que comunidades campesinas e indígenas realizan en contextos de apropiación de territorios rurales, constituye una forma de existencia abigarrada, producida y reproducida en condiciones de inconclusión, un modo-de-vida-campesino que se moviliza a contrapelo de su extinción.
Article
Full-text available
El presente trabajo fue desarrollado en el Complejo volcánico Copahue-Caviahue en la provincia de Neuquén, Argentina. El objetivo principal es analizar el proceso de dilución de las aguas ácidas del sistema volcánico hídrico por el ingreso al mismo de las aguas de deshielo y la posterior precipitación de hidroxisulfatos de hierro y aluminio, schwertmannita y basaluminita, respectivamente, cuando se alcanzan ciertos valores de pH. Estos minerales son típicamente encontrados en ambientes de alta acidez, ya sea vincu-lados a volcanes activos o a drenaje ácido de minas o rocas. Para ambos minerales, han sido previamente definidas constantes de solubilidad, pero en ambientes específicamente de drenaje ácido de minas. Sin embargo, dadas las características que presentan estos sistemas naturales, las constantes pueden variar significativamente según el pH, las condiciones redox y las concentraciones iónicas del sistema analizado. En este trabajo, se definieron, por primera vez constantes de solubilidad para ambientes vinculados a un volcán activo (volcán Copahue). Para ello se obtuvo un log(Kps) para la schwertmannnita de 17.7 ± 1.29 y de 21.40 ± 2.04 para la basaluminita, utilizando la variación de las actividades de hierro (III) y aluminio, respectivamente, en función del pH. A su vez, a partir del promedio del producto de la actividad iónica en función del pH, se obtuvieron log(Kps) para la schwertmannita de 17.64 ± 3.42 y de 23.95 ± 1.26 para la basaluminita.
Article
Full-text available
During explosive volcanic eruptions, large quantities of tephra can be dispersed and deposited over wide areas. Following deposition, subsequent aeolian remobilisation of ash can potentially exacerbate primary impacts on timescales of months to millennia. Recent ash remobilisation events (e.g., following eruptions of Cordón Caulle 2011, Chile, and Eyjafjallajökull 2010, Iceland) have highlighted this to be a recurring phenomenon with consequences for human health, economic sectors, and critical infrastructure. Consequently, scientists from observatories and Volcanic Ash Advisory Centres (VAACs), as well as researchers from fields including volcanology, aeolian processes and soil sciences, convened at the San Carlos de Bariloche headquarters of the Argentinian National Institute of Agricultural Technology to discuss the ‘state of the art’ for sampling remobilised deposits as well as monitoring, modelling and understanding ash remobilisation. In this article, we identify practices for field characterisation of deposits and active processes, including mapping, particle characterisation and sediment traps. Furthermore, since forecast models currently rely on poorly-constrained dust emission schemes, we call for laboratory and field measurements to better parameterise the flux of volcanic ash as a function of friction velocity. Whilst source area location and extent are currently the primary inputs for dispersion models, once emission schemes become more sophisticated and better constrained, other parameters will also become important (e.g., source material volume and properties, effective precipitation, type and distribution of vegetation cover, friction velocity). Thus, there is a need for systematic monitoring of wind-driven ash resuspension, including the development of a regularly-updated spatial database of resuspension source areas.
Article
Full-text available
Resuspension of pyroclastic deposits occurs under specific atmospheric and environmental conditions and typically prolongs and exacerbates the impact associated with the primary emplacement of tephra fallout and pyroclastic density current deposits. An accurate forecasting of the phenomenon, to support Volcanic Ash Advisory Centers (VAACs) and civil aviation management, depends on adapting volcanic ash transport and dispersion models to include specific ash emission schemes. Few studies have attempted to model the mechanisms of emission and transport of windblown volcanic ash, and a systematic study of observed cases has not been carried out yet. This manuscript combines numerical simulations along with a variety of observational data to examine the general features of ash resuspension events in northern Patagonia following the 2011 Cordón Caulle eruption (Chile). The associated outcomes provide new insights into the spatial distribution of sources, frequency of events, transport patterns, seasonal and diurnal variability, and spatio-temporal distribution of airborne ash. A novel modelling approach based on the coupling between Advanced Research core of the Weather Research and Forecasting (WRF-ARW) and FALL3D models is presented, with various model improvements that allow overcoming some limitations in previous ash resuspension studies. Outcomes show the importance of integrating source information based on field measurements (e.g., deposit grain size distribution and particle density). We provide evidence of a strong diurnal and seasonal variability associated with the ash resuspension activity in Patagonia. According to the modelled emission fluxes, ash resuspension activity was found to be significantly more intense during daytime hours. Satellite observations and numerical simulations strongly suggest that major emission sources of resuspended ash were distributed across distal areas (>100 km from the vent) of the Patagonian steppe, covered by a thin layer of fine ash. The importance of realistic soil moisture data to properly model the spatial distribution of emission sources is also highlighted.
Article
Full-text available
We investigate the timescales of the horizontal mass flux decay of wind remobilised volcanic particles in Argentina, associated with the tephra-fallout deposit produced by the 2011–2012 Cordón Caulle (Chile) eruption. Particle removal processes are controlled by complex interactions of meteorological conditions, surface properties and particle depletion with time. We find that ash remobilisation follows a two-phase exponential decay with specific timescales for the initial input of fresh ash (1–74 days) and the following soil stabilisation processes (3–52 months). The characteristic timescales as a function of particle size shows two minimum values, identified for sizes around 2 and 19–37 μm, suggesting that these size-range particles are remobilised more easily, due to the interaction between saltation and suspension-induced processes. We find that in volcanic regions, characterised by a sudden release and a subsequent depletion of particles, the availability of wind-erodible particles plays a major role due to compaction and removal of fine particles. We propose, therefore, a simple and reproducible empirical model to describe the mass flux decay of remobilised ash in a supply-limited environment. This methodology represents an innovative approach to link field measurements of multi-sized and supply-limited deposits with saltation erosion theory.
Article
Volcanism in Chile occurs in a variety of tectonic settings but mostly in the context of oceanic-continental plate collision, including 92 potentially active volcanoes. There have been more than 30 documented eruptions in the last few centuries. The Servicio Nacional de Geología y Minería (SERNAGEOMIN) is a statutory agency of the Government of Chile responsible for volcano monitoring and hazard assessments across the country. After the impacts derived from volcanic activity at the end of the 20th century, SERNAGEOMIN created the Volcano Hazards Program and the Observatorio Volcanológico de Los Andes del Sur (OVDAS). Despite this effort, most volcanoes in Chile remained unmonitored. In 2008, the aftermath of the eruption of Chaitén led to a nationwide program in order to improve eruption forecasting, development of early warning capabilities and our state of readiness for volcanic impacts through hazard assessments. In the last decade responses to volcanic crises have been indubitably successful providing technical advice before and during volcanic eruptions. El volcanismo en Chile ocurre en una amplia variedad de regímenes tectónicos, aunque principalmente en el contexto de la colisión de placas. Alrededor de 92 volcanes son considerados potencialmente activos y más de 30 presentan actividad histórica documentada en los últimos siglos. El Servicio Nacional de Geología y Minería (SERNAGEOMIN) es la agencia gubernamental responsable de la evaluación de peligros y monitoreo de la actividad volcánica en el país. Como consecuencia de los impactos derivados de las erupciones volcánicas ocurridas hacia finales del siglo pasado, SERNAGEOMIN creó el Programa de Riesgo Volcánico y el Observatorio Volcanológico de los Andes del Sur (OVDAS). No obstante, a pesar de este esfuerzo la mayoría de los volcanes en Chile se mantenían sin monitoreo. Luego de los impactos derivados de la erupción del volcán Chaitén en 2008, un nuevo programa nacional fue creado con el fin de fortalecer la vigilancia y la evaluación de los peligros volcánicos en el país. En la última década, la respuesta a crisis volcánicas ha sido exitosa, proporcionando apoyo técnico en forma previa y durante erupciones.
Article
This paper introduces the first GIS-based volcanic hazard, vulnerability and risk assessment of Guallatiri volcano. Volcanic hazard assessment is based on the study of five key volcanic phenomena observed during Holocene eruptions of Guallatiri volcano: i) tephra transport, dispersal and deposition; ii) flooding by lahars; iii) lava flows; iv) pyroclastic density currents; and v) ballistic projectiles. A qualitative approach is considered, assuming a relative probability of occurrence for each scenario. Hazard maps are constructed via computer modelling based on field data and some volcanic analogues and relative probability values are assigned to each scenario (the lowest magnitude/intensity scenario has the highest probability value and vice versa). After summing them up through the raster calculator tool, the result corresponds to an integrated volcanic hazard map, that shows the areas likely to be adversely affected by different volcanic processes. Vulnerability was assessed through its social, physical and territorial components considered by dividing the study area into basic administrative units (rural entities), according to the 2017 Chilean Census. Social vulnerability is evaluated through density of people, education qualification, and dependence index. Physical vulnerability is evaluated through the number of houses, and territorial vulnerability, through a critical infrastructure cadaster. A vulnerability level is assigned according to the vulnerability indicator intervals using the quantile method. In order to evaluate the overall risk, the integrated hazard map and vulnerability assessments are aggregated through the arithmetic multiplication of the layers. Consequently, three thematic risk maps are obtained: social, physical and territorial. This analysis depicts that ash transport, dispersal and fallout, indeed has the greatest impact because it is more widely distributed. If a high magnitude eruption occurred during autumn, winter or spring/summer, ash cloud movements would be to the NW, E or SE, respectively reaching Chile, Peru, Bolivia, Argentina, Brazil, and Paraguay. For volcanic processes closest to the volcanic edifice, the higher risk areas would be located towards the N, NW, and SW of the volcano affecting areas up 13 km to the localities of Chungará Viejo, Ancuta, and Guallatiri. In the case of explosive events, areas prone to be affected by tephra deposition could be blanketed with layers up to 50 cm thick, while flooding by bulky lahars could extend for up to ∼19 km, and pyroclastic density currents up to ∼10 km, whereas for effusive events, lava flows would extend for up to ∼7 km. Consequently, the places identified here as those being at highest social risk are Nigramalla, Ancuta, and Guallatire. Due to its remoteness, this volcano and their hazards/vulnerability/risks have been underestimated so far. A future eruption will threaten these areas and the local economy mainly related to the tertiary (e.g., tourism), and primary (e.g., livestock) sectors.
Article
The resuspension of volcanic ash by wind is a significant source of hazard during and after volcanic eruptions. Parameterizing and modeling ash resuspension requires direct measurement of the minimum wind shear stress required to move particles, usually expressed as the threshold friction velocity U * th , a parameter that, for volcanic ash, has been measured only scarcely and always in the laboratory. Here, we report the first field measurements of U * th for volcanic ash, with a portable wind tunnel specifically developed, calibrated, and tested. Field measurements, performed on natural reworked ash deposits from Sakurajima (Japan) and Cordón Caulle (Chile) volcanoes, agree well with our laboratory determinations on ash from the same deposits, with values of U * th ranging from 0.13 to 0.38 m/s. Our results show that the median grain size of the deposit and particle shape have a stronger control on U * th than the local substratum nature and deposit texture.
Article
The Planchón-Peteroa Volcanic Complex (PPVC) is located in the Transitional Southern Volcanic Zone of the Andean Ridge. Structural control of the main NNE-striking El Fierro fault system (EFFS) over the volcanic activity has been commonly assumed, although a paucity of evidence remains. The aim of this paper is to explore the relationship between the local stress field, the superficial structural setting and the geothermal fluid flow paths related to the volcanic complex. To conduct the structural analysis, this work combines remote sensing determination of lineaments, recognition of fracture patterns, with the inversion of kinematic indicators on outcrop scale faults, to finally evaluate the role of the local stress field over the 2D slip and dilation tendencies of the recognized structures. Mesoscale morphostructural lineaments present three main directions: ∼E-W, ∼NE-SW, and ∼NW-SE. Major lineaments develop inflections, giving rise to left bends between the NW-SE to E-W along the strike, compartmentalized by ∼ NNE trending lineaments. Strike-slip fault solutions with an ENE-WSW to NE-SW oriented shortening axis were obtained from fault-slip data analysis. The inversion of fault kinematic indicators constrains a Quaternary to recent strike-slip regime, with a ∼ENE-WSW trending σ1, and a subvertical σ2. Under the defined local stress field, ∼NE-SW and ∼WNW-ESE oriented structures have high slip tendency, while those spanning from NE-SW to E-W are prone to dilate. Our analysis suggests that these transverse structures exert first-order controls on the location of Vergara Pass Hill, and Peñón River and Azufre River Valleys hydrothermal manifestations. It seems that intersection zones with submeridian structures, as EFFS, increase structural damage and facilitate hot fluid migration. Circulation would profit the most from ∼ENE-WSW and ∼NW-SE striking outcrop-scale faults and fractures associated with the damage zones.