Knowledge-extraction methods are applied to ML-based predictors to attain explainable representations of their operation when the lack of interpretable results constitutes a problem. Several algorithms have been proposed for knowledge extraction, mostly focusing on the extraction of either lists or trees of rules. Yet, most of them only support supervised learning – and, in particular, classification – tasks. Iter is among the few rule-extraction methods capable of extracting symbolic rules out of sub-symbolic regressors. However, its performance – here intended as the interpretability of the rules it extracts – easily degrades as the complexity of the regression task at hand increases.