Article

Using High Effective Risk of Adult–Senior Duo in Multigenerational Homes to Prioritize COVID-19 Vaccination

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Universal vaccination on an urgent basis is a way of controlling COVID-19 infections and deaths. Vaccine shortage and practical deployment rates on the field necessitate prioritization. The global strategy has been to prioritize those with high personal risk due to their age or comorbidities, and those who constitute the essential workforce of the society. Rather than a systematic age-based rolldown, assigning the next priority requires a local strategy based on vaccine availability, effectiveness of the specific vaccines, population size as well as its age demographics and the scenario of how the pandemic is likely to develop. The adult (2060 yrs) - senior (over 60 yrs) duo from a multigenera-tional home presents a high-risk demographic. The estimated ‘effective age' of an adult living with a grandparent who is not vaccinated may be up to 40 years higher. The proposed model suggests that strategically vaccinating the adults from multigeneration-al homes in India may be effective in saving the lives of around 70,000 to 200,000 seniors, under the different epidemiological scenarios possible with or without strict lockdowns.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Agent based models have provided useful insights, at the level of full cities, into mitigation methods and the effectiveness of non-pharmaceutical interventions [12]. Related references which model COVID-19 in India are [10,11,[13][14][15][16][17][18][19][20][21][22][22][23][24][25][26][27][28][29][30][31][32][33][34][35]. These models are very largely compartmental models of varying degrees of complexity [36]. ...
Article
Full-text available
Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. Here, we use a 9-component, age-stratified, contact-structured epidemiological compartmental model, which we call the INDSCI-SIM model, to analyse the first wave of COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to daily reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions (NPIs), an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05—0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 35% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.
Preprint
Full-text available
The data-driven targeting of COVID-19 vaccination programs is a major determinant of the ongoing toll of COVID-19. Targeting of access to, outreach about and incentives for vaccination can reduce total deaths by 20-50 percent relative to a first-come-first-served allocation. This piece performs a systematic review of the modeling literature on the relative benefits of targeting different groups for vaccination and evaluates the broader scholarly evidence -- including analyses of real-world challenges around implementation, equity, and other ethical considerations -- to guide vaccination targeting strategies. Three-quarters of the modeling studies reviewed concluded that the most effective way to save lives, reduce hospitalizations and mitigate the ongoing toll of COVID-19 is to target vaccination program resources to high-risk people directly rather than reducing transmission by targeting low-risk people. There is compelling evidence that defining vulnerability based on a combination of age, occupation, underlying medical conditions and geographic location is more effective than targeting based on age alone. Incorporating measures of economic vulnerability into the prioritization scheme not only reduces mortality but also improves equity. The data-driven targeting of COVID-19 vaccination program resources benefits everyone by efficiently mitigating the worst effects of the pandemic until the threat of COVID-19 has passed.
Preprint
Full-text available
Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. The INDSCI-SIM model is a 9-component, age-stratified, contact-structured compartmental model for COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions, an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient across the country. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05 - 0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 40% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.
Article
Full-text available
Early reports suggest the fatality rate from COVID-19 varies greatly across countries, but non-random testing and incomplete vital registration systems render it impossible to directly estimate the infection fatality rate (IFR) in many low- and middle-income countries. To fill this gap, we estimate the adjustments required to extrapolate estimates of the IFR from high-income to lower-income regions. Accounting for differences in the distribution of age, sex and relevant comorbidities yields substantial differences in the predicted IFR across 21 world regions, ranging from 0.11% in Western Sub-Saharan Africa to 1.07% for high-income Asia Pacific. However, these predictions must be treated as lower bounds in low- and middle-income countries as they are grounded in fatality rates from countries with advanced health systems. To adjust for health system capacity, we incorporate regional differences in the relative odds of infection fatality from childhood respiratory syncytial virus. This adjustment greatly diminishes but does not entirely erase the demography-based advantage predicted in the lowest income settings, with regional estimates of the predicted COVID-19 IFR ranging from 0.37% in Western Sub-Saharan Africa to 1.45% for Eastern Europe.