Article

Электронная структура и диффузия натрия в Na-=SUB=-4-x-=/SUB=-K-=SUB=-x-=/SUB=-Mg(MoO_4)-=SUB=-3-=/SUB=-

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The electronic structure and sodium diffusion in Na4-xKxMg(MoO4)3 with an alluadite structure have been investigated by ab initio methods. It was found that this molybdate is an insulator with a band gap of 3.5 eV for x = 0.25. The most probable positions of potassium in the sodium sublattice have been determined, and the preferred pathways for sodium migration have been established. It has been shown that the barriers to sodium diffusion in Na4-xKxMg(MoO4)3 significantly depend on the composition, position of potassium, and migration path. The introduction of potassium leads to a significant decrease in the barriers to both one-dimensional (1D) and two-dimensional (2D) sodium diffusion. However, the presence of potassium in 1D channels can hinder the rapid migration of sodium, and a sharp increase in conductivity occurs only at high temperatures due to the order-disorder transition.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Sluggish kinetics of the multielectron transfer process is still a bottleneck for efficient oxygen evolution reaction (OER) activity, and the reduction of reaction overpotential is crucial to boost reaction kinetics. Herein, a correlation between the OER overpotential and the cobalt‐based electrode composition in a “Microparticles‐in‐Spider Web” (MSW) superstructure electrode is revealed. The overpotential is dramatically decreased first and then slightly increased with the continuous increase ratio of Co/Co3O4 in the cobalt‐based composite electrode, corresponding to the dynamic change of electrochemically active surface area and charge‐transfer resistance with the electrode composition. As a proof‐of‐concept, the optimized electrode displays a low overpotential of 260 mV at 10.0 mA cm⁻² in alkaline conditions with a long‐time stability. This electrochemical performance is comparable and even superior to the most currently reported Co‐based OER electrocatalysts. The remarkable electrocatalytic activity is attributed to the optimization of the electrochemically active sites and electron transfer in the MSW superstructure. Theoretical calculations identify that the metallic Co and Co3O4 surface catalytic sites play a vital role in improving electron transport and reaction Gibbs free energies for reducing overpotential, respectively. A general way of boosting OER kinetics via optimizing the electrode configurations to mitigate reaction overpotential is offered in this study.
Article
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
  • Y Tang
  • J Deng
  • W Li
  • O I Malyi
  • Y Zhang
  • X Zhou
  • S Pan
  • J Wei
  • Y Cai
  • Z Chen
  • X Chen
Y. Tang, J. Deng, W. Li, O.I. Malyi, Y. Zhang, X. Zhou, S. Pan, J. Wei, Y. Cai, Z. Chen, X. Chen. Adv. Mater. 29, 33, 1701828 (2017).
  • Y Tang
  • Y Zhang
  • O I Malyi
  • N Bucher
  • H Xia
  • S Xi
  • Z Zhu
  • Z Lv
  • W Li
  • J Wei
  • M Srinivasan
  • A Borgna
  • M Antonietti
  • Y Du
  • X Chen
Y. Tang, Y. Zhang, O.I. Malyi, N. Bucher, H. Xia, S. Xi, Z. Zhu, Z. Lv, W. Li, J. Wei, M. Srinivasan, A. Borgna, M. Antonietti, Y. Du, X. Chen. Adv. Mater. 30, 33, 1802200 (2018).
  • Y Zhang
  • O I Malyi
  • Y Tang
  • J Wei
  • Z Zhu
  • H Xia
  • W Li
  • J Guo
  • X Zhou
  • Z Chen
  • C Persson
  • X Chen
Y. Zhang, O.I. Malyi, Y. Tang, J. Wei, Z. Zhu, H. Xia, W. Li, J. Guo, X. Zhou, Z. Chen, C. Persson, X. Chen. Angew. Chem. Int. Ed. 56, 47, 14847 (2017).
  • Y Zhang
  • Y Tang
  • J Deng
  • W R Leow
  • H Xia
  • Z Zhu
  • Z Lv
  • J Wei
  • W Li
  • C Persson
  • O I Malyi
  • M Antonietti
  • X Chen
Y. Zhang, Y. Tang, J. Deng, W.R. Leow, H. Xia, Z. Zhu, Z. Lv, J. Wei, W. Li, C. Persson, O.I. Malyi, M. Antonietti, X. Chen. ACS Mater. Lett. 1, 5, 519 (2019).
  • P Zhang
  • K Yang
  • L Song
  • H.-J Feng
  • J Gao
P. Zhang, K. Yang, L. Song, H.-J. Feng, J. Gao. J. Alloys Compd. 783, 409 (2019).
  • R Essehli
  • I Belharouak
  • H Ben Yahia
  • K Maher
  • A Abouimrane
  • B Orayech
  • S Calder
  • X L Zhou
  • Z Zhou
R. Essehli, I. Belharouak, H. Ben Yahia, K. Maher, A. Abouimrane, B. Orayech, S. Calder, X.L. Zhou, Z. Zhou, Y.-K. Sun. Dalt. Trans. 44, 17, 7881 (2015).
  • W Huang
  • B Li
  • M F Saleem
  • X Wu
  • J Li
  • J Lin
  • D Xia
  • W Chu
W. Huang, B. Li, M.F. Saleem, X. Wu, J. Li, J. Lin, D. Xia, W. Chu, Z. Wu. Chem. Eur. J. 21, 2, 851 (2015).
  • D Dwibedi
  • R Gond
  • P Barpanda
D. Dwibedi, R. Gond, P. Barpanda. Chem. Mater. 31, 18, 7501 (2019).
  • H Ben Yahia
  • M Shikano
H. Ben Yahia, M. Shikano. Z. Naturforsch. B 74, 9, 677 (2019).
  • E Benhsina
  • L Hermouche
  • A Assani
  • M Saadi
  • N Labjar
  • S El Hajjaji
  • A Lahmar
  • L El Ammari
E. Benhsina, L. Hermouche, A. Assani, M. Saadi, N. Labjar, S. El Hajjaji, A. Lahmar, L. El Ammari. J. Mater. Sci. 56, 3, 2163 (2021).
  • J Gao
  • P Zhao
  • K Feng
J. Gao, P. Zhao, K. Feng. Chem. Mater. 29, 3, 940 (2017).
  • Ю А Великодный
  • В К Трунов
Ю.А. Великодный, В.К. Трунов. Изв. АН СССР. Неорган. материалы 10, 7, 1290 (1974).
  • A A Savina
  • S F Solodovnikov
  • D A Belov
  • Z A Solodovnikova
  • S Y Stefanovich
  • B I Lazoryak
  • E G Khaikina
A.A. Savina, S.F. Solodovnikov, D.A. Belov, Z.A. Solodovnikova, S.Y. Stefanovich, B.I. Lazoryak, E.G. Khaikina. New J. Chem. 41, 13, 5450 (2017).
  • S F Solodovnikov
  • Z A Solodovnikova
  • E S Zolotova
  • V N Yudin
  • O A Gulyaeva
  • Y L Tushinova
  • B M Kuchumov
S.F. Solodovnikov, Z.A. Solodovnikova, E.S. Zolotova, V.N. Yudin, O.A. Gulyaeva, Y.L. Tushinova, B.M. Kuchumov. J. Solid State Chem. 253, September, 121 (2017).
  • N I Medvedeva
  • A L Buzlukov
  • A V Skachkov
  • A A Savina
  • V A Morozov
  • Y V Baklanova
  • I E Animitsa
  • E G Khaikina
  • T A Denisova
  • S F Solodovnikov
N.I. Medvedeva, A.L. Buzlukov, A. V. Skachkov, A.A. Savina, V.A. Morozov, Y. V. Baklanova, I.E. Animitsa, E.G. Khaikina, T.A. Denisova, S.F. Solodovnikov. J. Phys. Chem. C 123, 8, 4729 (2019).
  • A L Buzlukov
  • N I Medvedeva
  • Y V Baklanova
  • A V Skachkov
  • A A Savina
  • I E Animitsa
  • Т А Denisova
  • E G Khaikina
A.L. Buzlukov, N.I. Medvedeva, Y.V. Baklanova, A.V. Skachkov, A.A. Savina, I.E. Animitsa, Т.А. Denisova, E.G. Khaikina. Solid State Ionics 351, August, 115328 (2020).
  • A L Buzlukov
  • N I Medvedeva
  • D V Suetin
  • A V Serdtsev
  • Y V Baklanova
  • S F Solodovnikov
  • A P Tyutyunnik
  • T А Denisova
  • O A Gulyaeva
A.L. Buzlukov, N.I. Medvedeva, D.V. Suetin, A.V. Serdtsev, Y.V. Baklanova, S.F. Solodovnikov, A.P. Tyutyunnik, T.А. Denisova, O.A. Gulyaeva. J. Solid State Chem. 293, 121800 (2021).
  • A V Serdtsev
  • S F Solodovnikov
A.V. Serdtsev, S.F. Solodovnikov, N.I. Medvedeva. Mater. Today Commun. 22, 100825 (2020).
  • A V Serdtsev
  • N I Medvedeva
A.V. Serdtsev, N.I. Medvedeva. J. Alloys Compd. 2, 151667 (2019).
  • I Ennajeh
  • S Georges
  • Y Ben
  • A Smida
  • M F Guesmi
  • H Zid
I. Ennajeh, S. Georges, Y. Ben Smida, A. Guesmi, M.F. Zid, H. Boughazala. RSC Adv. 5, 49, 38918 (2015).
  • P Barpanda
  • G Oyama
  • S Nishimura
  • S.-C Chung
  • A Yamada
P. Barpanda, G. Oyama, S. Nishimura, S.-C. Chung, A. Yamada. Nature Commun. 5, 1, 4358 (2014).
  • L L Wong
  • H M Chen
  • S Adams
L.L. Wong, H.M. Chen, S. Adams. Phys. Chem. Chem. Phys. 17, 14, 9186 (2015).
  • G Kresse
G. Kresse, J. Furthmüller. Comput. Mater. Sci. 6, 1, 15 (1996).
  • G Kresse
  • J Hafner
G. Kresse, J. Hafner. Phys. Rev. B 49, 20, 14251 (1994).
  • G Kresse
  • D Joubert
G. Kresse, D. Joubert. Phys. Rev. B 59, 3, 1758 (1999).
  • H J Monkhorst
  • J D Pack
H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 12, 5188 (1976).
  • P E Blöchl
  • O Jepsen
  • O K Andersen
P.E. Blöchl, O. Jepsen, O.K. Andersen. Phys. Rev. B 49, 23, 16223 (1994).
  • H M Petrilli
  • P E Blöchl
  • P Blaha
  • K Schwarz
H.M. Petrilli, P.E. Blöchl, P. Blaha, K. Schwarz. Phys. Rev. B 57, 23, 14690 (1998).
Classical and Quantum Dynamics in Condensed Phase Simulations / Под ред
  • H Jonsson
  • G Mills
  • K W Jacobsen
H. Jonsson, G. Mills, K.W. Jacobsen. В сб.: Classical and Quantum Dynamics in Condensed Phase Simulations / Под ред. B.J. Berne, G. Ciccotti, D.F. Coker. World Scientific, Singapore (1998). С. 385.
  • T J Richardson
T.J. Richardson. J. Power Sources. 119-121, 262 (2003).
  • P B Moore
P.B. Moore. Am. Mineral. 56, 11-12, 1955 (1971).
Василевская Физика твердого тела
  • Т Н Редактор
Редактор Т.Н. Василевская Физика твердого тела, 2021, том 63, вып. 10