ArticlePDF AvailableLiterature Review

The Critical Importance of Molecular Biomarkers and Imaging in the Study of Electrohypersensitivity. A Scientific Consensus International Report

Authors:
  • Secrets of Champions Foundation
  • Association for the Research and Treatment Against Cancer. France

Abstract and Figures

Clinical research aiming at objectively identifying and characterizing diseases via clinical observations and biological and radiological findings is a critical initial research step when establishing objective diagnostic criteria and treatments. Failure to first define such diagnostic criteria may lead research on pathogenesis and etiology to serious confounding biases and erroneous medical interpretations. This is particularly the case for electrohypersensitivity (EHS) and more particularly for the so-called “provocation tests”, which do not investigate the causal origin of EHS but rather the EHS-associated particular environmental intolerance state with hypersensitivity to man-made electromagnetic fields (EMF). However, because those tests depend on multiple EMF-associated physical and biological parameters and have been conducted in patients without having first defined EHS objectively and/or endpoints adequately, they cannot presently be considered to be valid pathogenesis research methodologies. Consequently, the negative results obtained by these tests do not preclude a role of EMF exposure as a symptomatic trigger in EHS patients. Moreover, there is no proof that EHS symptoms or EHS itself are caused by psychosomatic or nocebo effects. This international consensus report pleads for the acknowledgement of EHS as a distinct neuropathological disorder and for its inclusion in the WHO International Classification of Diseases.
Content may be subject to copyright.
A preview of the PDF is not available
... Thus, the nature of harm remains unknown; obfuscation of evidence makes it unknowable. In respect of confounding around whether EMR causes EHS, Belpomme et al (2021) explain that early provocation research in EMR sensitive respondents failed to establish this as a causal link. In their molecular science paper, they argue that as public health research it delayed biomedical endeavours to clinically establish EHS as a pathological condition. ...
... Alarm is palpable in Belpomme et al's (2021) naming of EHS as, "an intriguing nascent environmental pathology with worldwide high-risk public health implications in our increasingly electromagnetically polluted world, due in particular to the widespread deployment of wireless technologies". In calling for, "close collaboration between clinicians, epidemiologists and biologists-and also biophysicists and biochemists" to investigate this phenomenon, they fail however, to include medical anthropologists. ...
... If Belpomme et al (2021) urge that the consequence of saturating the stratosphere with EMR will be "a global plague" of EHS, studies shows this as an invisible but threatening canopy. Two studies refer, in Skeppsbron in Stockholm, Sweden, and in Colombia, SC, USA. ...
Article
Full-text available
https://maisonsaine.ca/article?id=100323 On 31st January 2022, writes André Fauteux (2022), Justin Trudeau, the Canadian Prime Minister responded to truckers’ peaceful protest against Covid-19 vaccinations in Ottawa by stating; "...the concerns expressed by a few people on Parliament Hill right now are not new, not surprising, are being heard, but [they] are a continuation of what we have unfortunately seen in misinformation and misinformation online - conspiracy theorists about microchips and God knows what else goes with tinfoil hats”. Within two days Frank Clegg, the former President of Microsoft Canada, wrote Trudeau and asked him to clarify to whom he referred as '‘tinfoil hats''. Clegg stressed that his remark was unacceptable if he was ‘ridiculing people’ who wore tinfoil hats to protect themselves from pulsed electromagnetic radiation (EMR) because they suffered from electrohypersensitivity (EHS).
... The cause and scientific basis of this syndrome are widely debated [3][4][5][6][7]. The relationship between exposure to electromagnetic fields and patients' symptoms has not yet been formally and reproducibly demonstrated in provocative studies [8][9][10]. ...
Article
Full-text available
Background: The vast majority of electrohypersensitive (EHS) patients present headaches on contact with an electromagnetic source. Clinical features suggest that the headaches of these patients could be a variant of the migraine disease and could be treated as such. We aimed to assess the prevalence of migraine disease in EHS patients using a validated questionnaire. Methods: Patients with EHS defined according to WHO criteria were contacted through EHS patient support associations. They were required to answer a self-questionnaire including clinical data and the extended French version of the ID Migraine questionnaire (ef-ID Migraine) to screen for the migraine disease. Migraine prevalence and its 95% confidence interval (CI) were reported. Patients' characteristics, symptoms (rheumatology, digestive, cognitive, respiratory, cardiac, mood, cutaneous, headache, perception, genital, tinnitus and tiredness) and impact on daily life were compared between migraineur and non-migraineur patients. Results: A total of 293 patients were included (97% women, mean age 57 ± 12 years). Migraine was diagnosed in 65% (N = 191; 95% CI: 60-71%) with the ef-ID Migraine. The migraine diagnosis was accompanied by nausea/vomiting in 50% of cases, photophobia in 69% or visual disturbances in 38%. All of the 12 symptoms assessed were of higher intensity in migraineurs than in non-migraineurs. The symptoms prevented social life in 88% of migraineurs and 75% of non-migraineurs (p < 0.01). Conclusions: Our work encourages us to consider the headaches of these patients as a possible variant of the migraine disease and, possibly, to manage them according to the current recommendations.
... Instead, psychological problems have been postulated to cause the manifestation of the symptoms. However, most investigations have inherent methodological limitations that make the results difficult to evaluate or even erroneous, see discussion in [29]. ...
... Continuation of examining EHS with provocation studies is futile because such studies generate highly unreliable subjective data, and not the necessary evidence of objective biomarker/bioeffects data. Only research using molecular level examinations of physiology might prove, or disprove, the existence of a causality link between EHS and RF-EMF exposures [14,38,39]. ...
Article
Full-text available
Electromagnetic hypersensitivity (EHS), known also as an idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) or a microwave sickness, is not considered by the World Health Organization (WHO) as being caused by the exposures to electromagnetic fields (EMF). EHS is not recognized as a disease anywhere in the world. Some studies have roughly estimated that 1–10% of the population might experience some form of EHS. However, because of the lack of diagnostic criteria for EHS, these estimates might be either under- or over-estimates. Because the vast majority of human population is exposed to EMF, the possibility of developing EHS from the EMF is a substantial public health issue that should be dealt with globally, even if the individual risk of developing EHS might be small. The WHO recognizes that the symptoms experienced by the EHS persons might be severe and might significantly hamper everyday life. However, after a broad analysis of international and national documents, there seems to be currently no effort to develop health policies for the dealing with EHS, no matter what causes it. National governments, follow the opinions of the WHO and the EMF safety standards setting organizations, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers – International Committee on Electromagnetic Safety (IEEE-ICES), are not developing any practical health policy advisories for self-declared EHS sufferers. However, symptoms experienced by the self-declared EHS persons affect their well-being and, according to the Constitution of the WHO, are a health problem. Hence, independently of what causes EHS symptoms, this admitted well-being-impairment should be dealt with globally by developing an uniform health policy. Furthermore, WHO, ICNIRP and IEEE-ICES should be advocating and supporting research that would generate a reliable scientific evidence on what are the possible cause(s) of EHS. Without such research there is not possible to develop diagnostic methods as well as any possible mitigation approaches. There is an urgent need for the WHO to advocate for the national governments to urgently develop a comprehensive and common EHS health policy.
... In conclusion, EHS is an emerging but neglected pandemic of environmental hypersensitivity with a clinical presentation of autonomic nervous system dysregulation. This disease has not yet been unanimously recognized, probably because there is no single valid biological marker to demonstrate its presence [25]. More studies are urgently warranted to tackle the pathogenesis of EHS. ...
Article
Full-text available
We hypothesized that prolonged or cumulative exposure to indoor air dampness microbiota in moisture-damaged buildings and daily exposure to wireless telecommunication devices would potentiate the risk of electromagnetic hypersensitivity (EHS), which is poorly defined. We performed a nested comparative analysis within an age- and sex-matched study of females who were exposed to dampness microbiota with self-reported complaints compatible with EHS (n=11). Their levels of autoantibodies towards 13 different autoantigens were measured. EHS presented as multiple chemical sensitivity, profound fatigue, memory disturbances in all subjects (11/11), and cognitive impairment in the majority (9/11). When comparing the patients to controls, no difference was detected between the levels of the following autoantibodies: angiotensin II type 1 receptor (AGTR1), endothelin receptor type A (ETAR), adrenergic receptors α1AR, α2AR, β1AR, β2AR and cholinergic muscarinic receptors m1AChR, m2AChR, m3AChR and m5AChR. In contrast, IgG levels towards m4AChR and fibroblast growth factor receptor 3 (FGFR3), and IgM autoantibodies against glycosylated moieties of heparan and heparan sulphate (TS-HDS) were significantly decreased in the study cohort, p=0.008; p=0.032, p<0.001, respectively. This is the first report demonstrating an imbalance in the nervous system autoantibodies in patients with EHS. The clinical significance of these altered responses remains to be clarified.
... Iron-rich NPs in SN, LC and cerebellar children's tissues potentially represent a severe risk; they can generate heat under an alternating magnetic field and/or magnetic field gradients, making possible particle displacement/rotation and localized heating through microwave absorption [106][107][108][109][110]. Children are extensively exposed to low frequency electric and magnetic fields (EMFs) of various frequencies and wireless networks Wi-Fi involving at least one Wi-Fi antenna using a 2.4 GHz band [147][148][149]. High-voltage power lines, transformer buildings, domestic appliances e.g., hair dryers, electric shavers, induction cookers plus compact fluorescent lamps, inductive charging systems for electric cars and security or anti-theft devices ought to be included for possible future risk analysis as clearly stated by Gajsek et al. in their Electromagnetic Field (EMF) Exposure Assessment in Europe [148]. ...
Article
Full-text available
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, ɑ synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Article
Much of the controversy over the cause of electrohypersensitivity (EHS) lies in the absence of recognized clinical and biological criteria for a widely accepted diagnosis. However, there are presently sufficient data for EHS to be acknowledged as a distinctly well-defined and objectively characterized neurologic pathological disorder. Because we have shown that 1) EHS is frequently associated with multiple chemical sensitivity (MCS) in EHS patients, and 2) that both individualized disorders share a common pathophysiological mechanism for symptom occurrence; it appears that EHS and MCS can be identified as a unique neurologic syndrome, regardless its causal origin. In this overview we distinguish the etiology of EHS itself from the environmental causes that trigger pathophysiological changes and clinical symptoms after EHS has occurred. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to explain the genesis of EHS and its presentation. We as well refute the erroneous concept that EHS could be reduced to a vague and unproven “functional impairment”. To the contrary, we show here there are objective pathophysiological changes and health effects induced by electromagnetic field (EMF) exposure in EHS patients and most of all in healthy subjects, meaning that excessive non-thermal anthropogenic EMFs are strongly noxious for health. In this overview and medical assessment we focus on the effects of extremely low frequencies, wireless communications radiofrequencies and microwaves EMF. We discuss how to better define and characterize EHS. Taken into consideration the WHO proposed causality criteria, we show that EHS is in fact causally associated with increased exposure to man-made EMF, and in some cases to marketed environmental chemicals. We therefore appeal to all governments and international health institutions, particularly the WHO, to urgently consider the growing EHS-associated pandemic plague, and to acknowledge EHS as a new real EMF causally-related pathology.
Article
Full-text available
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low‐intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague–Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham‐control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8‐hydroxydeoxyguanosine (8‐OHdG), and total oxidant‐antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low‐intensity MWR caused a significant increase in MDA, 8‐OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole‐body exposure to 1800 and 2100 MHz low‐intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant‐antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. © 2020 Bioelectromagnetics Society Keywords: microwave radiation; liver; DNA damage; 8‐OHdG; MDA
Article
Full-text available
We investigated whether cellular phone use was associated with increased risk of tumors using a meta-analysis of case-control studies. PubMed and EMBASE were searched from inception to July 2018. The primary outcome was the risk of tumors by cellular phone use, which was measured by pooling each odds ratio (OR) and its 95% confidence interval (CI). In a meta-analysis of 46 case-control studies, compared with never or rarely having used a cellular phone, regular use was not associated with tumor risk in the random-effects meta-analysis. However, in the subgroup meta-analysis by research group, there was a statistically significant positive association (harmful effect) in the Hardell et al. studies (OR, 1.15-95% CI, 1.00 to 1.33-n = 10), a statistically significant negative association (beneficial effect) in the INTERPHONE-related studies (case-control studies from 13 countries coordinated by the International Agency for Research on Cancer (IARC); (OR, 0.81-95% CI, 0.75 to 0.89-n = 9), and no statistically significant association in other research groups' studies. Further, cellular phone use with cumulative call time more than 1000 h statistically significantly increased the risk of tumors. This comprehensive meta-analysis of case-control studies found evidence that linked cellular phone use to increased tumor risk.
Article
Full-text available
Ultrasonic cerebral tomosphygmography (UCTS), also known as “encephaloscan”, is an ultrasound-based pulsatile echoencephalography for both functional and anatomical brain imaging investigations. Compared to classical imaging, UCTS makes it possible to locate precisely the spontaneous brain tissue pulsations that occur naturally in temporal lobes. Scientific publications have recently validated the scientific interest of UCTS technique but clinical use and industrial development of this ancient brain imaging technique has been stopped notably in France, not for scientific or technical reasons but due to a lack of financing support. UCTS should be fundamentally distinguished from transcranial Doppler ultrasonography (TDU), which, although it also uses pulsed ultrasounds, aims at studying the velocity of blood flow (hemodynamics) in the cerebral arteries by using Doppler effect, especially in the middle cerebral artery of both hemispheres. Instead, UCTS has the technical advantage of measuring and locating spontaneous brain tissue pulsations in temporal lobes. Recent scientific work has shown the possibility to make an objective diagnosis of electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS) by using UCTS, in conjunction with TDU investigation and the detection of several biomarkers in the peripheral blood and urine of the patients. In this paper, we independently confirm the clinical interest of using UCTS for the diagnosis of EHS and MCS. Moreover, it has been shown that repetitive use of UCTS in EHS and/or MCS patients can contribute to the objective assessment of their therapeutic follow-up. Since classical CT scan and MRI are usually not contributive for the diagnosis and are poorly tolerated by these patients, UCTS should therefore be considered as one of the best imaging technique to be used for the diagnosis of these new disorders and the follow-up of patients.
Article
Full-text available
Background Electromagnetic hypersensitivity (EHS) is a condition defined by the attribution of non-specific symptoms to electromagnetic fields (EMF) of anthropogenic origin. Despite its repercussions on the lives of its sufferers, and its potential to become a significant public health issue, it remains of a contested nature. Different hypotheses have been proposed to explain the origin of symptoms experienced by self-declared EHS persons, which this article aims to review. Methods As EHS is a multi-dimensional problem, and its explanatory hypotheses have far-reaching implications, a broad view was adopted, not restricted to EHS literature but encompassing all relevant bodies of research on related topics. This could only be achieved through a narrative approach. Two strategies were used to identify pertinent references. Concerning EHS, a complete bibliography was extracted from a 2018 report from the French Agency for Food, Environmental and Occupational Health & Safety and updated with more recent studies. Concerning related topics, the appropriate databases were searched. Systematic reviews and expert reports were favored when available. Findings Three main explanatory hypotheses appear in the literature: (1) the electromagnetic hypothesis, attributing EHS to EMF exposure; (2) the cognitive hypothesis, assuming that EHS results from false beliefs in EMF harmfulness, promoting nocebo responses to perceived EMF exposure; (3) the attributive hypothesis, conceiving EHS as a coping strategy for pre-existing conditions. These hypotheses are successively assessed, considering both their strengths and limitations, by comparing their theoretical, experimental, and ecological value. Conclusion No hypothesis proves totally satisfying. Avenues of research are suggested to help decide between them and reach a better understanding of EHS.
Article
Full-text available
The effect of ELF-MF on human health is still controversial, particularly as regards long-term health effects like cancer. The literature does suggest, however, that they could be involved in the occurrence of brain tumors, although results concerning residential exposure are scarce. Our objective was to investigate the association between residential proximity to power lines and brain tumors among adults in France by using a geographical information system.CERENAT is a population-based case-control study carried out in France in 2004–2006. We used geographical data sources on power line location to create exposure scores based on distance between residence and power lines, and on the number of lines near residences. Conditional logistic regression for matched sets was used to estimate Odds Ratios (ORs) and 95% confidence intervals (95%CI).We found significant associations between cumulated duration living at <50 m to high voltage lines and: i) all brain tumors (OR 2.94; 95%CI 1.28–6.75); ii) glioma (OR 4.96; 95%CI 1.56–15.77). Further investigations are needed, particularly to improve the quality and availability of geographical and technical data on power lines.
Article
Full-text available
Since 2009, we built up a database which presently includes more than 2000 electrohypersensitivity (EHS) and/or multiple chemical sensitivity (MCS) self-reported cases. This database shows that EHS is associated in 30% of the cases with MCS, and that MCS precedes the occurrence of EHS in 37% of these EHS/MCS-associated cases. EHS and MCS can be characterized clinically by a similar symptomatic picture, and biologically by low-grade inflammation and an autoimmune response involving autoantibodies against O-myelin. Moreover, 80% of the patients with EHS present with one, two, or three detectable oxidative stress biomarkers in their peripheral blood, meaning that overall these patients present with a true objective somatic disorder. Moreover, by using ultrasonic cerebral tomosphygmography and transcranial Doppler ultrasonography, we showed that cases have a defect in the middle cerebral artery hemodynamics, and we localized a tissue pulsometric index deficiency in the capsulo-thalamic area of the temporal lobes, suggesting the involvement of the limbic system and the thalamus. Altogether, these data strongly suggest that EHS is a neurologic pathological disorder which can be diagnosed, treated, and prevented. Because EHS is becoming a new insidious worldwide plague involving millions of people, we ask the World Health Organization (WHO) to include EHS as a neurologic disorder in the international classification of diseases.
Article
Full-text available
Background: Hypersensitivity to electromagnetic fields (EMF) is a controversial condition. While individuals with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) claim to experience health complaints upon EMF exposure, many experimental studies have found no convincing evidence for a physical relation. The aim of this systematic review was to evaluate methodological limitations in experimental studies on symptom development in IEI-EMF individuals that might have fostered false positive or false negative results. Furthermore, we compared the profiles of these limitations between studies with positive and negative results. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guided the methodological conduct and reporting. Eligible were blinded experimental studies that exposed individuals with IEI-EMF to different EMF exposure levels and queried the development of symptoms during or after each exposure trial. Strengths and limitations in design, conduct and analysis of individual studies were assessed using a customized rating tool. Results: Twenty-eight studies met the eligibility criteria and were included in this review. In many studies, both with positive and negative results, we identified methodological limitations that might have either fostered false or masked real effects of exposure. The most common limitations were related to the selection of study participants, the counterbalancing of the exposure sequence and the effectiveness of blinding. Many studies further lacked statistical power estimates. Methodically sound studies indicated that an effect of exposure is unlikely. Conclusion: Overall, the evidence points towards no effect of exposure. If physical effects exist, previous findings suggest that they must be very weak or affect only few individuals with IEI-EMF. Given the evidence that the nocebo effect or medical/mental disorders may explain the symptoms in many individuals with IEI-EMF, additional research is required to identify the various factors that may be important for developing IEI-EMF and for provoking the symptoms. We recommend the identification of subgroups and exploring IEI-EMF in the context of other idiopathic environmental intolerances. If further experimental studies are conducted, they should preferably be performed at the individual level. In particular, to increase the likelihood of detecting hypersensitive individuals, if they exist, we encourage researchers to achieve a high credibility of the results by minimizing sources of risk of bias and imprecision.
Article
Electromagnetic hypersensitivity (EHS), known in the past as “Microwave syndrome”, is a clinical syndrome characterized by the presence of a wide spectrum of non-specific multiple organ symptoms, typically including central nervous system symptoms, that occur following the patient's acute or chronic exposure to electromagnetic fields in the environment or in occupational settings. Numerous studies have shown biological effects at the cellular level of electromagnetic fields (EMF) at magnetic (ELF) and radio-frequency (RF) frequencies in extremely low intensities. Many of the mechanisms described for Multiple Chemical Sensitivity (MCS) apply with modification to EHS. Repeated exposures result in sensitization and consequent enhancement of response. Many hypersensitive patients appear to have impaired detoxification systems that become overloaded by excessive oxidative stress. EMF can induce changes in calcium signaling cascades, significant activation of free radical processes and overproduction of reactive oxygen species (ROS) in living cells as well as altered neurological and cognitive functions and disruption of the blood-brain barrier. Magnetite crystals absorbed from combustion air pollution could have an important role in brain effects of EMF. Autonomic nervous system effects of EMF could also be expressed as symptoms in the cardiovascular system. Other common effects of EMF include effects on skin, microvasculature, immune and hematologic systems. It is concluded that the mechanisms underlying the symptoms of EHS are biologically plausible and that many organic physiologic responses occur following EMF exposure. Patients can have neurologic, neuro-hormonal and neuro-psychiatric symptoms following exposure to EMF as a consequence of neural damage and over-sensitized neural responses. More relevant diagnostic tests for EHS should be developed. Exposure limits should be lowered to safeguard against biologic effects of EMF. Spread of local and global wireless networks should be decreased, and safer wired networks should be used instead of wireless, to protect susceptible members of the public. Public places should be made accessible for electrohypersensitive individuals.