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Abstract

Visualizing big and complex multivariate data is challenging. To address
this challenge, we propose flexible visual analytics (FVA) with the aim to miti-
gate visual complexity and interaction complexity challenges in visual analytics,
while maintaining the strengths of multiple perspectives on the studied data. At
the heart of our proposed approach are transitions that fluidly transform data
between user-relevant views to offer various perspectives and insights into the
data. While smooth display transitions have been already proposed, there has
not yet been an interdisciplinary discussion to systematically conceptualize and
formalize these ideas. As a call to further action, we argue that future research
is necessary to develop a conceptual framework for flexible visual analytics. We
discuss preliminary ideas for prioritizing multi-aspect visual representations and
multi-aspect transitions between them, and consider the display user for whom
such depictions are produced and made available for visual analytics. With
this contribution we aim to further facilitate visual analytics on complex data
sets for varying data exploration tasks and purposes based on different user
characteristics and data use contexts.
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1. Introduction

Analyzing multi-faceted big data is challenging [1, 2]. To support compre-
hensive understanding of this kind of data, different views and perspectives must
be made available to the user during the visual data exploration and analysis.

A common example for multivariate data offering multiple perspectives is
spatio-temporal data. Such data consist of a set of entities and measured at-
tributes that have been observed at different points in time and at different
locations in space. From a visualization perspective, widely-used visualization
approaches exist to display a single aspect of such data. Three examples are
shown in Figure 1. A spiral may visualize cyclic temporal patterns [3], a choro-
pleth map can show spatial areal relationships [4], and a node-link diagram
may expose the structural connections between data entities [5]. When mul-
tiple perspectives on the same data set are depicted in different views, under-
standing of the interplay of these different data characteristics may be hindered.
However, once multiple data aspects are channeled into separate and distinct
views, understanding the interplay of these aspects becomes a non-trivial task.
Mechanisms like view coordination [6], brushing & linking [7], or dynamically
embedded visual links [8] are frequently deployed to enable users to develop an
overall understanding of patterns and relationships existing in the data shown
in separate views.

One alternative to linked views [9] is to integrate multiple data characteristics
into one single visualization. An example is shown in Figure 2, where data
entities (white dots) and their structural connections (gray lines) are embedded
within selected geographic regions of a perspective 3D map display [10]. For
each time step in the data, there is a map layer stacked along the vertical axis.
Additionally, blue and red spikes between the layers indicate where data entities
start or cease to exist across time. While this visual representation integrates
time, space, and structural connections, it is also rather complex and requires
some training to decipher and some interaction to explore.

Typically, integrating a large number of data characteristics into a single
visual representation is not feasible, because the resulting image would be vi-
sually too dense and thus too difficult to interpret. On the other hand, with
many separate single-aspect views, the user needs to visually integrate findings
made in one view with patterns of different data characteristics shown in other

(a) Time spiral. (b) Choropleth map. (c) Node-link diagram.

Figure 1: Visualizing time, space, and structural connections in separate views.
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Figure 2: Time, space, and structural connections integrated in a single visual representation.

views. In summary, both integration and separation of data characteristics may
require considerable cognitive and perceptual load or view interaction effort by
the user. In short, separate linked data views and integrated multivariate views
have their strength and weaknesses. For this, we propose flexible visual analyt-
ics to combine the strengths of both data visualization approaches, as we discuss
next.

2. Flexible Visual Analytics

We introduce an alternative approach situated at the interface of integra-
tion and separation, which we call flexible visual analytics (FVA). Our working
definition of the term is as follows:

“Flexible visual analytics is an approach to support the comprehen-
sive visual exploration and analysis of multi-faceted data via several
smoothly integrated elastic multivariate views.”

The goal of FVA is to mitigate the challenges associated with visual com-
plexity and interaction complexity in visual analytics, while maintaining the
strengths of multiple perspectives on the studied data. Essentially, FVA is
based on the effective blending of different data views. The main ingredient
of FVA are thus transitions that are designed to smoothly transform one view
into other data views. Conceptually, transitions are a visual and computational
means to transform between different data views, such as visual encodings, vi-
sualization techniques, view types, parameterizations, data query results, or the
results of different analytical computations. Transitions may reduce interaction
complexity and allow users to fluidly and seamlessly study different perspectives
of the data. The start and end points of transitions are user selected views that
highlight a particularly relevant or interesting perspective on the data based
on a user’s task or interest. These prioritized views are designed with maximal
expressiveness for that chosen data perspective, while other data characteristics
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are compressed or omitted. The prioritized views are assumed to be balanced
in terms of their visual complexity.

FVA, according to our definition, has been used in the literature before, how-
ever, as we contend, without fundamental conceptualization in its own right. For
example, Yuan et al. blend parallel coordinates and scatter plots [11]. Their
approach smoothly pushes two parallel axes apart to make space for embed-
ding scattered data points. Flexibly blending time series plots with parallel
coordinates is possible as well [12]. Tominski et al. blend 2D and 3D repre-
sentations of movement trajectories [13]. Starting from a 2D overview of the
entire movement data the user can smoothly transition to a 3D view that re-
veals details about individual movement trajectories. Schulz and Hadlak study
transitions in the design space of implicit tree representations [14]. This allows
visualization designers to explore new potentially useful designs for particular
data analysis tasks. Brosz et al. developed an approach for transforming visual
representations via skeleton-based image deformations [15]. Being pixel-based,
the approach can be applied to any visualization, but is oblivious to its geomet-
ric model and the underlying data facets. Previous work also studied morphing
between visualization techniques for educational purposes [16]. In the context
of digital humanities, the PolyCube approach utilizes space-time cube trans-
formations to switch between different perspectives on complex cultural data
collections [17].

All these examples have in common that they involve smooth transitions
between views that focus on different aspects of the studied data within a given
application context or part of a visualization system innovation. For several
years, smooth animated transitions have been a topic of research in visualization,
for example, for data graphics [18], data navigation [19], or data aggregation [20].
Several approaches have been developed to enhance animated transitions, for
example, by bundling trajectories [21], by grouping [22], or via a grammar
for authoring [23]. A design space for animated transitions has recently been
published [24].

Our goal for this paper and future similar research is to review, build upon,
and extend transition research in a way that transitions are not only possible
for elementary visualizations or charts, but for complex, multivariate visual
depictions of big and complex data. Eventually, FVA’s aim is to be able to
systematically transition between several different views, and not only between
two simple visual representations. Such a research endeavor can also be informed
by research on animated transitions for user interfaces, which arguably, are
already more complex than basic charts [25, 26, 27].

Smooth transitions are well known for animated data graphics such as the
popular Gapminder project [28]. Yet, for this current definition of FVA, we do
not consider views that change along a time line, but what cartographers have
called re-expression or non-temporal animation that is using any numeric data
dimension other than time [29]. Nonetheless, research on animation is certainly
related to what we discuss here.

While past and current animation research and authoring systems contain
smooth transitions between static scenes out of the box, there are many open

4Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof



research issues: From a conceptual perspective, we do not have a clear under-
standing of the requirements and principles of FVA, specifically for complex
multivariate views. What does the design space look like? It is further unclear
which data dimensions or facets can be combined with which visual mappings.
Are there general principles that can help us find such suitable combinations?
We are also lacking a thorough understanding of how much integration, separa-
tion, and transitioning is appropriate in the context of a specific data domain,
application type, and visualization user. Where is the sweet spot satisfying
those contextual requirements; does such an optimal solution even exist?

In light of these open issues, we do see the need for developing a systematic
view of FVA in order to gain a better understanding of the potentials and
limitations of augmenting visual data analysis by means of transitions between
discrete visual states. Such a systematic view would allow us to comparatively
evaluate different approaches, match them to tasks and contexts, and identify
the potential for not yet existing techniques to be developed in the future.

We thus aim to position this contribution as a call to action for more research
on FVA. We propose some conceptual considerations that identify key aspects
of FVA in terms of views and transitions between them. Moreover, we discuss
implications of FVA from the perspective of human perception and cognition.
Finally, we identify open research questions to spark further research in the
context of FVA contributing to the overall goal of making big and complex
multivariate data analysis not only a fluid and seamless, but also a fruitful
experience with less cognitive load and fewer required interactions.

3. A Technical Perspective on FVA

As indicated earlier, FVA builds upon the idea of (i) relevant views and (ii)
smooth transitions between these views. Next, we focus our discussion on the
technical aspects involved in FVA.

3.1. Relevant Multivariate Views

We first need to clarify what we mean by relevant multivariate views and
what they are supposed to show. In the first place, the data attributes A are
of interest. The data attributes may be embedded in a temporal T and spatial
S frame of reference. Moreover, structural relations R may exist between data
entities. The different data aspects A, T , S, and R lead to several common
data classes [30]: multivariate data (A), time-oriented data (T → A), spatio-
temporal data (T × S → A), or dynamic graphs (T → R). One can imagine
further data aspects of interest such as uncertainty [31] or set affiliation [32].

Multivariate data offer several analysis opportunities. For example, they
may be analyzed with respect to outliers, correlations, or clusters. For spatio-
temporal data, the analyst may want to study how data values develop over time
or where certain values are located in space. For a dynamic graph, one may
ask which of its parts form stable communities over time. More generally, many
data facets imply that there are many questions one may ask about the data,
which in turn lead to a more complex data exploration and analysis process [1].
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Figure 3: Prioritized views (red, green, blue) communicate data aspects (A, T , S, R) at
different levels of detail (++, +, −).

In light of this multitude of issues, it is a truism that there is no one optimal
view that will suffice. As a starting point for FVA, we propose relevant, that is,
prioritized views that emphasize one or two selected aspects of the data while
potentially hinting at or omitting other aspects of the data.

The visualization literature is quite clear about the fact that particular types
of data require dedicated visual representations [33, 30]. Yet, designing visual
representations for multiple aspects of high-dimensional and multivariate data
remains challenging.

One example of a prioritized multi-aspect visualization is described by Dübel
et al. [34], who balance the visualization of terrain, collected geo-spatial data,
and their uncertainty. When the terrain is prioritized, it is rendered using
sophisticated lighting algorithms, whereas the geo-spatial data are represented
only in an aggregated fashion. On the other hand, when the geo-spatial data
are prioritized, they are shown in full detail, while the terrain is visualized only
by means of contours. As this example illustrates, the prioritization can be
implemented by varying the data’s degree of abstraction (e.g., aggregated vs.
exact values) and the degree of visual abstraction (e.g., detailed relief shading
vs. contours only).

In the context of visual analytics, one may also consider approximate, heuris-
tic data analysis methods in contrast to exact and precise computational steps.
Prioritization may also be achieved by changing the amount of data items
through selective sampling or changing data components through dimension-
ality reduction. Although selected questions of multi-aspect views have already
been studied [1, 2], no comprehensive design-space for prioritizing data aspects
in visual analytics has been described in the literature.

Prioritized views as described before form the basis for FVA. An individual
view can be characterized conceptually as illustrated in Figure 3. The different
aspects (A, T , S, R) a view might contain are depicted as vertical axes. For
each of the aspects, we define a continuum of the level of detail from full detail
(++), to reduced detail (+), to omitted (−). Full detail is provided for aspects
that are prioritized, reduced detail is sufficient to provide context, omitted data
aspects are not included in the visualization. In order to be able to develop a
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comprehensive understanding of the data, an analyst would need a whole set
of views, each with a different prioritization of the relevant data aspects and
dimensions. The figure shows the characteristics of three hypothetical views
as polylines in red, green, and blue. The red line corresponds to a view that
emphasizes the temporal dependencies of the data, but does neither include
space nor structural relations (e.g., a spiral display). The green line stands for a
view that focuses on the relations, but shows space and data attributes only to a
lower degree, leaving out time completely (e.g., a node-link diagram overlaid on
a 3D globe). Finally, the blue view emphasizes the spatial aspect and includes
aggregated data attributes, but does not convey aspects of time and relations
(e.g., a choropleth map). A challenge for FVA is to systematically research and
find concrete views that are suitable for different applications and use contexts.
The set of views should comprehensively accommodate all data aspects, but
also strive to be minimal to reduce cognitive load.

3.2. Smooth Multivariate Transitions

Conceptually, FVA is about flexibly transitioning between relevant multi-
variate views. In a sense, FVA is a kind of navigation between views, where
transitions exist to make the navigation smooth rather than abrupt. Robert
Spence argues [35] (p. 938):

“If change has to occur it is immensely helpful, as far as minimizing
the cognitive load associated with the maintenance of a good inter-
nal model is concerned, if the external representation can change
smoothly.”

Transitions may form bridges on different conceptual levels. They can link
views with different analytical abstractions, for example, between the results
of different time-series forecast methods [36]. However, transitions will more
commonly involve different visual representations, for example, between a 2D
and a corresponding 3D representation, or between a geographic projection
and a multi-dimensional projection. Note that transitions are not only for
communication-oriented purposes (e.g., storytelling, onboarding), but are also
supposed to be a vehicle for data exploration.

No matter the specifics of what is being connected by a transition, it leads
from one prioritized view to another one. From there, another view and yet
another view may be reached, forming a chain of connected views. Alternatively,
there may be a central view from which several other views can be reached, but
no lateral transitions are available between these other views. This would form
a star-shaped topology.

In general, transitions between views may thus form different topologies,
some are illustrated in Figure 4. However, we do not yet know the potential im-
pact that a particular topology may have on the analysis and on the generation
of insights involving complex data. More research is necessary to investigate
which specific types of topologies may be suitable under which circumstances.
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Figure 4: Transitions between views may form different topologies.

For the transition itself, we define two key requirements: A transition should
be (i) smooth and (ii) controllable. Smoothness is required to support users in
understanding how one visual representation transforms into another. Achieving
smoothness typically involves some form of interpolation. A transition should
also be controllable to allow users to reverse or replay it, or to watch it at a
different speed. An appropriate user interface can offer these operations.

An elementary transition is concerned with an atomic visual change. An
example would be to change the position of a single dot. A transition from one
visual representation to another typically involves a whole series of elementary
transitions. For example, collapsing a set of dots might involve the temporary
display of their convex hull, which is then folded into a single meta dot replacing
the original set.

From a conceptual perspective, a transition can be based on the underlying
data model or on the view’s graphical model. On the side of the data model, a
transition can involve data attributes, derived statistics, or parameters of any
step along the visual analytics pipeline. Transitions on the graphical side work
on a geometrical scene definition or the plain pixel array. Consequently, three
different strategies for implementing transitions exist:

1. Interpolate data model,

2. Interpolate geometry model, or

3. Interpolate pixel model.

The decision which strategy to use must be made depending on the intended
visual outcome for the transition. The reason is that different strategies can lead
to different outputs. Consider, for example, the illustration in Figure 5. Let’s
assume an analytical computation is parameterized with two different values
p = vT and p = vS to convey either temporal or spatial aspects of the data.
The two resulting views show the data as a black dot at different positions.
When interpolating the dot position (geometry model), the visual outcome is a
linear trajectory. On the other hand, when interpolating the parameter values
between vT and vS directly (data model), the trajectory of the dot might be
totally different, as indicated by the curve in our example. When interpolating
between images (pixel model), for example, by means of alpha-blending, no
trajectory appears at all. Therefore, the interpolation strategy to be employed
must be chosen carefully.

In our example, p is a numeric parameter that is suitable for interpolation
between vT and vS . However, what if a transition needs to convey the change
of a categorical parameter, for which no interpolation of the parameter value is
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Figure 5: Different visual outcome of interpolation in data space and visual space.

possible by definition. In such cases, graphical interpolation is the only choice
we have for a smooth transition. Yet, the intermediate views being created
during the transition do not have a corresponding state in the data/parameter
space. It is important to make viewers of such transitions aware of this fact.
How this can be done is an open research question.

The previous example was concerned only with an elementary transition
of a single dot. The situation gets more complex when considering transi-
tions between elaborate visual representations such as those mentioned earlier—
balancing the visualization of terrain, geo-spatial data, and their uncertainty.
While there are previous works on animated transition for data graphics, we do
not yet know how these translate to more complex multivariate views. Which
aspects need to be transitioned via interpolation in the data space, which as-
pects are safe to be transitioned in the visual space? How to best group and
stage individual atomic transitions to generate an overall comprehensible and
helpful view transition? The literature does not yet provide guidelines in this
regard, which calls for more research on FVA.

3.3. Examples

In this section, we discuss examples illustrating how smooth display tran-
sitions might connect different visual representations better. In doing so, we
also demonstrate that FVA is indeed a concept for multi-faceted data, including
attributes, time, space, and structural relationships.

An example with a simple fictional food stall data set shall illustrate options
for different prioritized views of the same data and how those views might be
chained using transitions. Table 1 shows the example data set with four different
food stalls. Each stall has a name, sells a type of food, is open at certain times,

Name (A) Type of food (A) Open (T ) Location (S) ...
Andy’s Snacks 09 am - 03 pm XA, YA ...
Beans Co. Coffee 07 am - 10 am XB , YB ...
Cypress Lunch 11 am - 01 pm XC , YC ...
Delight Coffee 07 am - 05 pm XD, YD ...
... ... ... ... ...

Table 1: Simple food stall data set to be visualised with different prioritized views in Figure 6.
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Figure 6: Four differently prioritized views of the food stall example data from Table 1. Left:
Attributes and time are shown in full detail, space is omitted. Middle top: Attributes in full
detail, time and space are omitted. Right: A map showing the location and type of the food
stalls but not their labels (attribute with reduced detail, time omitted). Middle bottom: Time
is fixed (reduced detail) and attributes shown, space omitted.

and is located somewhere. Figure 6 shows four different prioritized views. The
parallel coordinate plots at the bottom of each frame indicates which aspect
of the data is prioritized, shown with reduced detail, or omitted (as illustrated
earlier in Figure 3). The thick gray lines between the frames indicate options
for transitions. We hypothesise that to transition smoothly between prioritized
views it may be useful to stage the transition and to increase or decrease data
details along the axes of data aspects consecutively. For example, to go from
the time view (Figure 6, left) to the map view (Figure 6, right), one might first
collapse the timeline to a point (decrease details of time T from full to omitted,
as shown in Figure 6, middle top) and then move the points to their location
on the map (increase space S from omitted to full detail). The colors for food
stall type information are kept during the transition, while the name of the food
stall is removed (reduced detail for attributes A).

Our second example comes from previous work on combining the advan-
tages of node-link diagrams and matrix representations in a technique called
NodeTrix [37]. Node-link representations and matrices are visually quite differ-
ent, and therefore, a smooth transition between them requires several stages.
Figure 7 shows an example with five stages. Starting with a node-link repre-
sentation (1), the edges are bent (2), nodes are rearranged (3), and edges are
blended to become the cells (4) of the final matrix representation (5). Stages
(2) and (3) operate in the geometry space, whereas stage (4) is in pixel space.
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Figure 7: Smooth transition from a node-link representation to a matrix representation.
➞ IEEE. Reprinted, with permission, from [37].

This illustrates that transitions between complex visual representations might
require combining interpolation in different spaces.

Finally, Figure 8 shows screenshots from an exemplary transition between a
3D and a 2D categorical representation [17, 38]. The 3D view (left) clusters the
data points in eight time layers and uses a ’hull’ to show their flow over time.
The 2D view (right) uses color to encode time on a more fine-grained level.
The transition consists of several steps: First, the reference cube is broken up
to individual time layers and the new color coding is introduced. Then, in a
smooth animation, the layers are superimposed until the representation arrives
at the final 2D view.

Figure 8: Transition from a 3D categorical representation (left) to a 2D representation (right).
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4. A Human Perspective on FVA

From a human perspective, making sense of a visualization—be it in a more
data exploratory or in a more information communicative setting—requires the
interplay of different perceptual (e.g., visual search, object tracking, pattern de-
tection) and cognitive processes (e.g., build up a mental model, integrate insights
into an existing knowledge structure). These perceptual and cognitive processes
are bound to be more demanding and challenging for users, when they wish to
make sense of big and complex multivariate data. User studies show that ex-
tracting multivariate spatiotemporal patterns is more difficult in separated views
than in integrated ones [39, 17]. Prior empirical research suggests different con-
straints of the human information processing system that may explain this effect:
(1) split attention (especially with animated views) [40, 41], (2) inattentional
blindness [42], (3) change blindness [43, 44], (4) cognitive load [45, 46], and (5)
generally the lack of support for incremental construction of mental models,
missing gradual augmentation of users’ conceptual models [47, 48, 49].

The FVA approach can mitigate some of these constraints by using tran-
sitions, the process in which one object (the unity of all data) is moved from
one visualization reference system to another visualization reference system and
thereby changes its appearance. To conceive a transition, the user needs to
understand (1) how the data object in one display (in one reference system)
relates to another perspective in the second reference system and (2) how the
data object transforms across the reference systems.

We argue that transitions have an augmenting function for data exploration,
visual search, cognitive processing, memory load, and knowledge building. Cog-
nitive load is offloaded to the visualization system and the visual complexity is
reduced by interaction. However, to fully exploit the transitions’ augmenting po-
tential, we have to take into account some cognitive and perceptual constraints
in their design.

4.1. Perceptual Constraints

One of the challenges of visual analytics is that the simultaneous presentation
of different data aspects (e.g., spatial and temporal dependencies) raises specific
problems. Using map-like representations to show developments in time leads
to occlusion of relevant information [50]. Other solutions have to be found for
the representation of spatio-temporal data. Animations could be one of these
possible solutions to show spatial and temporal information in one visualization.
Nevertheless, perceptual constraints have to be taken into account.

One of these constraints is change blindness and inattentional blindness [43].
Change blindness and inattentional blindness indicate severe limits of our vi-
sual attention that have consequences for how users will interact with visual
representations of multi-faceted data. Following transitions in visual analytics
requires tracking of multiple aspects on the screen simultaneously. Nevertheless,
recent research on multiple object tracking indicates that human perception is
better than previously assumed [51]. Rensink [43] formulated guidelines for
screen design (e.g., transitions should only consist of two reference systems and
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one object) that take change blindness and inattentional blindness into account.
These guidelines are also highly relevant when developing FVA.

4.2. Cognitive Constraints

Visualizations providing complex information require a high degree of at-
tention from the users. Cognitive load theory clarifies the cognitive processes
necessary for such activities [45, 46]. Originally, cognitive load theory has been
developed to model learning processes with educational systems. It distinguishes
between intrinsic and extrinsic cognitive load. Intrinsic cognitive load is related
to the complexity of the material as such, whereas extrinsic cognitive load de-
scribes the load resulting from the way the material is presented. Sweller et
al. [46] argue that intrinsic cognitive load is given, whereas extrinsic cognitive
load can be reduced by appropriate ways of design. They provide several pos-
sibilities how this can be achieved.

Sweller et al. also described several effects related to cognitive load, among
others the split-attention effect. This effect can be observed when two or more
elements belonging together are positioned in different areas of the screen. To
interpret such a visualization correctly, users have to integrate the presented
information in a meaningful way. This is difficult because users cannot observe
both objects simultaneously and therefore have to keep at least one of the ele-
ments in short-term memory. A possibility to overcome this problem is to reduce
the distance between elements and create a clear connection between elements
belonging together. Previous work on visualizing spatio-temporal data [52] and
supporting visual comparison [53] have successfully applied these suggestions.
Yet, the issue of split attention remains highly relevant for visual analytics, and
also very challenging and difficult to solve.

Another effect identified in the context of cognitive load theory is the tran-
sient information effect [54]. This effect occurs when information is only pre-
sented briefly, and people have to retain this information in working memory.
Strategies that might help to mitigate this effect are self-pacing or segmentation.
These strategies can be easily supported by visualization systems.

Animation has been put forth as a strategy for integrating elements of a
visualization into a coherent whole. In this sense, animation—as a core compo-
nent of FVA—can overcome the split-attention effect and help us to construct
relations between elements at various places on the screen. Animation has been
primarily suggested as an appropriate method to represent temporal informa-
tion, but other phenomena can also be represented in that way. Within the
visualization community, there is a controversial discussion about the use of an-
imation. Evaluation studies have yielded mixed results [55]. On the one hand,
animations have advantages for tasks related to temporal developments. It has
been argued that animations may convey very small changes in the data that
are easily missed when using other techniques, like small multiples [56, 47, 57].
In addition, it can be argued that an animation conveys a more holistic pic-
ture than other visualizations. On the other hand, animations that are not well
designed or inappropriately used can be confusing.
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There are several factors that influence the success of an animation [58].
Speed can be either too fast or too slow. The possibility to control the speed
of an animation is important for the users and helps them to understand the
visualization in more detail. There is some empirical evidence that interactivity
can help to support sensemaking processes [59]. In animations, users often get
overwhelmed by the sheer amount of data. Therefore, the possibility to filter
the data is especially important so that users can concentrate on the crucial
aspects of the visualization. Animations are also more advantageous for small
datasets than for large datasets.

Bach et al. [60] present a user study about animated transitions for dynamic
networks. Their research indicates that animations decrease the error rate of
study participants, but they may increase task completion time for some types
of tasks. They also mention that it is difficult to track several different changes
occurring in different areas of the screen.

Lowe [61] describes a model to clarify learning and interacting with anima-
tions, the animation processing model. This model distinguishes between five
different stages, going from more localized, detailed processing of information
to the more general level of mental model consolidation. One basic idea is
that decomposition of animations occurring in the first stage of the model is
time-consuming and increases cognitive load of the users. Therefore, designers
of animations should decompose them into meaningful units. These units are
presented to the users who can, at a later stage, easily integrate them into a
meaningful whole. In this way, the cognitive effort of users can be reduced con-
siderably. Lowe and Boucheix [62] present empirical evidence to support this
notion. Lowe also argues that animations are often animated static images. He
points out that, for example, methods of cueing adapted from static images
(e.g., arrows) often do not work in animations, and that different methods of
cueing should be adopted.

4.3. Recommendations

Several tentative recommendations can be derived from this brief overview of
the literature. User studies indicate that an integrated view is better than sepa-
rated views for the presentation of multivariate data [39, 17]. So, if the number
of data dimensions allows, an integrated view should be preferred. Transitions
between different views can help to overcome the split-attention effect [46, 57],
although these animations have to be designed carefully [58, 55]. To take change
blindness and inattentional blindness into account, Rensink formulated as a de-
sign guideline that a transition should only consist of two reference systems and
one object [43]. In general, the number of elements that are modified should be
kept as small as possible [60, 57]. Therefore, interactivity, especially the possi-
bility for filtering the data, is necessary [59]. In addition, users should be able
to control the speed of the animation [44, 55, 54]. Finally, segmentation and
decomposition of the animation into distinct units should be possible to reduce
cognitive load [42, 61, 54].
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5. Related Work

FVA as discussed in this paper has the goal of supporting users in making
sense of multiple visual representations of complex data. FVA shares this goal
with existing approaches from the literature.

We already mentioned visual linking as a related concept [8]. It is based
on drawing links between different visual representations. The key advantage
of visual linking is that relations between visual representations are made ex-
plicit. On the down side, visual linking requires additional visual resources for
drawing the links and non-trivial measures must be taken to prevent links from
occluding the visual representation [63]. Moreover, visual linking requires the
visual representations to be linked be visible at the same time. This works
for classic multi-view visualizations, but not for visual representations that are
dynamically embedded into parts of another visualization, as for example for
Responsive Matrix Cells [64].

FVA is also related to composite visualization as described by Javed and
Elmqvist [65]. Composite visualization is not a specific technique, but can
be understood as a generalization or a design space of coordinated multiple
views [9]. The composition can be juxtaposition, superposition, overloading,
and nesting. The design space is mainly focused on the spatial arrangement of
visual representations, which are shown simultaneously, but does not consider
the temporal arrangement, that is, the smooth transitioning of visual represen-
tations over time across a topology. It is interesting that Javed and Elmqvist
state in their paper: “However, it is possible to envision other ways to combine

two or more visualizations, for example using interaction or animation.” This
is exactly what we aim for with FVA.

The work by Chen et al. [66] further explores the design space of multi-view
visualization. They add to the notion of composition (frequency, diversity, cor-
relations of view types) the notion of configuration (position and size of views).
Based on hundreds of examples from the literature, numerous composition and
configuration patterns are analyzed, which are utilized for a recommendation
system for multi-view visualization. Yet, they also do not consider smooth
transitions between visual representations.

Finally, we mention animated storytelling via Data-GIF [67] as a related
approach to make data understandable. Data-GIF also utilize animated transi-
tions, yet these are pre-designed and do not support interactive control at all.
FVA is about the user taking control and traversing several multivariate views
to gain insight into complex multivariate big data.

It can be concluded that (1) researchers studying the space of possible ap-
proaches to combining multiple views did not investigate flexible transitions
among these approaches; (2) there are examples of the use of animated transi-
tions but there has been no systematic general consideration of the essence of
this approach; (3) the current state of research on flexible transitions does not
allow valid comparisons with other approaches and creation of design guidelines
for choosing a suitable approach for given data, tasks, and users.
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6. Future Work and Conclusion

We have proposed flexible visual analytics (FVA) with the aim to mitigate
visual complexity and interaction complexity challenges in visual analytics. The
overall goal of our FVA approach is to make the exploration and the analysis
of big and complex multivariate data a fluid and seamless process. With our
work we neither propose a new approach competing with existing ones nor do
we propose a specific design or software implementation. Our contribution is
that we make the first attempt of systematic consideration of flexible display
transitions as a general approach.

The evolving conceptual foundations of FVA offer multiple further research
avenues to make FVA a useful asset in the visual analytics toolbox. Below we
open several research avenues that future work might wish to address.

Prioritized multivariate views. For FVA to work, we need not only one or two
prioritized data views as has been suggested before, but potentially series of
displays of varied lengths for different tasks and contexts, to convey all rele-
vant data views. Therefore, aggregating and generalizing previous literature
and knowledge on multi-faceted visual analytics would be a first step for future
work. A design methodology should be devised describing the necessary steps
to consider for integrating across, and prioritizing different views in data ex-
ploration and visual analytics tasks. Inspiration for such a design methodology
can be drawn from Munzner’s nested model of visualization design [68]. Ideally,
guidelines can describe how certain data views can be emphasized visually, what
combinations of views work well, in which sequence, and where the limits of dis-
play prioritization might lie. Based on a systematic design methodology and
depiction guidelines, concrete exemplars of prioritized multivariate views should
be designed to form a basis for the investigation of multivariate transitions.

Multivariate transitions. More conceptual and methodological research is nec-
essary to investigate how complex multivariate views in visual analytics can be
transformed into one another. From a top-down perspective, we need to under-
stand which aspects can be transformed from one to the other in a semantically
meaningful way. Based on that, one may ask how individual transitions can be
combined to form a topology of transitions that might allow for the analyst to
cycle through any chosen view or series of views of the data usefully and timely.
Are transitions between all possible combinations of data aspects feasible or
necessary? Are there particularly compatible combinations of aspects that may
serve as a generic backbone for a transition topology? What are the properties
of different topologies, and how do these affect the type of knowledge generation
with FVA?

From a bottom up perspective, it is necessary to investigate how multivari-
ate transitions can be implemented. Extending existing literature on animated
transitions [26, 27, 24] strategies need to be developed for transitions between
complex multivariate displays. Conceptually, we need to ask how and where
transitions need to be executed—in the data model, in the geometry model,
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or in the pixel model? How can atomic transitions be integrated to form ba-
sic composite transitions that are information rich and meaningful but do not
overwhelm the analyst? This begs the question of how to communicate the
meaningfulness of intermediate states of transitions?

Human factors of FVA. The design of flexible visualizations poses many user
challenges. Human perception and cognition follow empirically established evi-
dences that have to be taken into account in early stages of the design process.
Cognitive load theory or empirical findings related to change blindness and
inattentional blindness must inform future FVA investigations. Prior research
on animations can serve as a useful stepping stone, but there are still open
questions on how to design animations to support effective and efficient sense
making. How can we educate users to use FVA, and which level of complexity
might be still graspable? How can we aggregate data into meaningful semantic
hierarchies to guide users understanding of FVA views and transitions? Which
kinds of interaction mechanisms might serve users to effectively and efficiently
use FVA?

In summary, we proposed the key idea of flexible visual analytics (FVA)
based on user, task, and context-relevant, multivariate data views and one or
more smooth transitions between them. We further considered the human di-
mension for developing meaningful and useful FVA approaches. With this re-
port, we aim to put the flexible, integrated, and seamless FVA approach for
visually exploring and analyzing multi-faceted data on the visual analytics re-
search agenda. It remains to be seen how the identified research questions will
lead to the development of respective solutions, empirically evaluated with ac-
tual users, that improve the visual data analysis experience when working with
big and complex multivariate data.
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