Chapter

Exploring and Exploiting Deep Ocean Space

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Jules Verne’s life was framed by the second phase of the British Industrial Revolution. In his nineteenth-century world, a transition to steam occurred. It was a time of rapid technological developments and explorations of every corner of the Earth’s surface. Then the world population clock ticked slowly and was well below 1.3 billion. Today, more than 7.8 billion people live in the fourth phase of that revolution, and the world population clock is ticking faster and faster. To solve our urgent demand for resources, we will shortly exploit the unknown treasure troves of deep ocean space. However, only some 15% of the ocean floor is mapped in detail, and less than 0.0001% of the deep-sea is explored. Since the 1990s a transition to global operational oceanography is occurring, with advanced monitoring systems, new technology like Argo floats, gliders and state-of-the-art ocean modelling. A new wave of ocean exploration is urgently needed, as is an adaptation of the prevailing international legislation, to keep up with the coming sustainable exploitation of ocean space. Blue resources discussed in this chapter are: fisheries, bioprospecting and deep-sea mining. In a low-carbon society, citizens should be aware of and be involved in this through ocean literacy.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... One of the most striking results of the rapid growth of bioprospecting operations at sea is the unprecedented number of marine species that have suddenly entered the global economy as promising sources of economic value. While fishing trawlers continue to traverse the liquid frontiers in search of traditional commercial targets such as salmons, tuna and swordfish, new types of ships navigate around the world on a technoscientific hunt for living organisms such as copepods, sponges, extremophilic bacteria and archaea (Stel 2021;Hosseini 2022;Laakman et al. 2020). ...
Article
Full-text available
The article follows the ongoing transformation of genomic science into an industry – dedicated to the systematic extraction, abstraction and manipulation of genetic material – and considers the new types of oceanic exploration that genomic research both presupposes and fosters. We argue that emergent practices of ocean bioprospecting are sparking new ways of thinking, living and exploiting marine ecosystems as «genomic mines». We chart the recent history of genomic bioprospecting operations in the global ocean – focusing on the Sorcerer II expedition (2004-2006) and the Tara Oceans project (2009-2013) – and recount the rise of the «ocean genome» as an object of knowledge and a target of extractivist practices. Finally, we theorize the peculiar global mobility of bioprospecting vessels as constituting a practice of social construction of the ocean: a peculiar form of scientific navigation, which is already engendering new social uses of marine biodiversity, new strategies of capital accumulation, as well as innovative representations of ocean ecosystems.
... Another tool used for the designation of VMEs is habitat suitability modeling. Obtaining images or bycatch samples of VME indicator taxa may confirm their presence, but the proportion of the seafloor that has been observed or sampled to date is <0.001% (Stel, 2021). Habitat Suitability Modelling (HSM, aka Ecological Niche Modeling) is one way to fill in the gaps and provide an objective prediction of where VMEs may exist in the unexplored regions of the world's oceans. ...
Conference Paper
Under UNGA resolution 61/105, management of fisheries in areas beyond national jurisdiction requires identification of vulnerable marine ecosystems (VMEs). Criteria to designate a VME include uniqueness, functional significance, fragility, structural complexity, and certain life history traits. Currently the only quantitative way to assess VME locations is to use fisheries trawl bycatch data. Besides potentially destroying the VME in gathering these data and method caveats, the threshold for designating a VME from trawls varies among FAO regions. Imagery data from scientific surveys is a less destructive approach, however there currently is not a framework for designating VMEs from images. Thus, the goal of this project was to bring together a large international team to establish first pass consensus guidelines across regions for designating VMEs from images. An initial assessment showed a lack of consistency between FAO regions regarding what is considered a VME species. Another challenge was determining how many images were needed. In certain cases, from a single image, experts agreed that the site should be designated a VME, most often in areas of scleractinian reefs, dense octocoral beds, multiple VME species present together, and chemosynthetic ecosystems. In cases where VME taxa were present but a VME designation could not be made easily from a single image, other factors were considered, with a specific focus on density. We compiled natural density data for indicator taxa from images from 3 oceans to assess whether there was a similar threshold among scientists. Densities varied considerably by taxon, but were not correlated to depth. The mean density of all megafaunal taxa in an image was ~2.5 individuals per m2, but for most individual taxa, densities higher than 1 individual per m2 were rare. In terms of VME designation, values as low as 0.1 colonies per m2 for octocorals and antipatharians were commonly considered to be a VME, with higher values for sponges. These findings are discussed in light of current fisheries management practices and cobalt-rich Mn crust mining.
Article
Full-text available
Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species’ co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.
Article
Full-text available
The Atlantic Meridional Overturning Circulation (AMOC)—one of Earth’s major ocean circulation systems—redistributes heat on our planet and has a major impact on climate. Here, we compare a variety of published proxy records to reconstruct the evolution of the AMOC since about ad 400. A fairly consistent picture of the AMOC emerges: after a long and relatively stable period, there was an initial weakening starting in the nineteenth century, followed by a second, more rapid, decline in the mid-twentieth century, leading to the weakest state of the AMOC occurring in recent decades. The Atlantic Meridional Overturning Circulation (AMOC) is currently distinctly weaker than it has been for the last millennium, according to a synthesis of proxy records derived from a range of techniques.
Article
Full-text available
Humans interact with the oceans in diverse and profound ways. The scope, magnitude, footprint and ultimate cumulative impacts of human activities can threaten ocean ecosystems and have changed over time, resulting in new challenges and threats to marine ecosystems. A fundamental gap in understanding how humanity is affecting the oceans is our limited knowledge about the pace of change in cumulative impact on ocean ecosystems from expanding human activities – and the patterns, locations and drivers of most significant change. To help address this, we combined high resolution, annual data on the intensity of 14 human stressors and their impact on 21 marine ecosystems over 11 years (2003–2013) to assess pace of change in cumulative impacts on global oceans, where and how much that pace differs across the ocean, and which stressors and their impacts contribute most to those changes. We found that most of the ocean (59%) is experiencing significantly increasing cumulative impact, in particular due to climate change but also from fishing, land-based pollution and shipping. Nearly all countries saw increases in cumulative impacts in their coastal waters, as did all ecosystems, with coral reefs, seagrasses and mangroves at most risk. Mitigation of stressors most contributing to increases in overall cumulative impacts is urgently needed to sustain healthy oceans.
Article
Full-text available
Who owns ocean biodiversity? This is an increasingly relevant question, given the legal uncertainties associated with the use of genetic resources from areas beyond national jurisdiction, which cover half of the Earth’s surface. We accessed 38 million records of genetic sequences associated with patents and created a database of 12,998 sequences extracted from 862 marine species. We identified >1600 sequences from 91 species associated with deep-sea and hydrothermal vent systems, reflecting commercial interest in organisms from remote ocean areas, as well as a capacity to collect and use the genes of such species. A single corporation registered 47% of all marine sequences included in gene patents, exceeding the combined share of 220 other companies (37%). Universities and their commercialization partners registered 12%. Actors located or headquartered in 10 countries registered 98% of all patent sequences, and 165 countries were unrepresented. Our findings highlight the importance of inclusive participation by all states in international negotiations and the urgency of clarifying the legal regime around access and benefit sharing of marine genetic resources. We identify a need for greater transparency regarding species provenance, transfer of patent ownership, and activities of corporations with a disproportionate influence over the patenting of marine biodiversity. We suggest that identifying these key actors is a critical step toward encouraging innovation, fostering greater equity, and promoting better ocean stewardship.
Article
Full-text available
The Atlantic meridional overturning circulation (AMOC)-a system of ocean currents in the North Atlantic-has a major impact on climate, yet its evolution during the industrial era is poorly known owing to a lack of direct current measurements. Here we provide evidence for a weakening of the AMOC by about 3 ± 1 sverdrups (around 15 per cent) since the mid-twentieth century. This weakening is revealed by a characteristic spatial and seasonal sea-surface temperature 'fingerprint'-consisting of a pattern of cooling in the subpolar Atlantic Ocean and warming in the Gulf Stream region-and is calibrated through an ensemble of model simulations from the CMIP5 project. We find this fingerprint both in a high-resolution climate model in response to increasing atmospheric carbon dioxide concentrations, and in the temperature trends observed since the late nineteenth century. The pattern can be explained by a slowdown in the AMOC and reduced northward heat transport, as well as an associated northward shift of the Gulf Stream. Comparisons with recent direct measurements from the RAPID project and several other studies provide a consistent depiction of record-low AMOC values in recent years.
Article
Full-text available
This study reports plastic debris pollution in the deep-sea based on the information from a recently developed database. The Global Oceanographic Data Center (GODAC) of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) launched the Deep-sea Debris Database for public use in March 2017. The database archives photographs and videos of debris that have been collected since 1983 by deep-sea submersibles and remotely operated vehicles. From the 5010 dives in the database, 3425 man-made debris items were counted. More than 33% of the debris was macro-plastic, of which 89% was single-use products, and these ratios increased to 52% and 92%, respectively, in areas deeper than 6000 m. The deepest record was a plastic bag at 10898 m in the Mariana Trench. Deep-sea organisms were observed in the 17% of plastic debris images, which include entanglement of plastic bags on chemosynthetic cold seep communities. Quantitative density analysis for the subset data in the western North Pacific showed plastic density ranging from 17 to 335 items km⁻² at depths of 1092–5977 m. The data show that, in addition to resource exploitation and industrial development, the influence of land-based human activities has reached the deepest parts of the ocean in areas more than 1000 km from the mainland. Establishment of international frameworks on monitoring of deep-sea plastic pollution as an Essential Ocean Variable and a data sharing protocol are the keys to delivering scientific outcomes that are useful for the effective management of plastic pollution and the conservation of deep-sea ecosystems.
Article
Full-text available
More than half the fish in the sea As the human population has grown in recent decades, our dependence on ocean-supplied protein has rapidly increased. Kroodsma et al. took advantage of the automatic identification system installed on all industrial fishing vessels to map and quantify fishing efforts across the world (see the Perspective by Poloczanska). More than half of the world's oceans are subject to industrial-scale harvest, spanning an area four times that covered by terrestrial agriculture. Furthermore, fishing efforts seem not to depend on economic or environmental drivers, but rather social and political schedules. Thus, more active measures will likely be needed to ensure sustainable use of ocean resources. Science , this issue p. 904 ; see also p. 864
Article
Full-text available
Despite many of years of mapping effort, only a small fraction of the world ocean’s seafloor has been sampled for depth, greatly limiting our ability to explore and understand critical ocean and seafloor processes. Recognizing this poor state of our knowledge of ocean depths and the critical role such knowledge plays in understanding and maintaining our planet, GEBCO and the Nippon Foundation have joined forces to establish the Nippon Foundation GEBCO Seabed 2030 Project, an international effort with the objective of facilitating the complete mapping of the world ocean by 2030. The Seabed 2030 Project will establish globally distributed regional data assembly and coordination centers (RDACCs) that will identify existing data from their assigned regions that are not currently in publicly available databases and seek to make these data available. They will develop protocols for data collection (including resolution goals) and common software and other tools to assemble and attribute appropriate metadata as they assimilate regional grids using standardized techniques. A Global Data Assembly and Coordination Center (GDACC) will integrate the regional grids into a global grid and distribute to users world-wide. The GDACC will also act as the central focal point for the coordination of common data standards and processing tools as well as the outreach coordinator for Seabed 2030 efforts. The GDACC and RDACCs will collaborate with existing data centers and bathymetric compilation efforts. Finally, the Nippon Foundation GEBCO Seabed 2030 Project will encourage and help coordinate and track new survey efforts and facilitate the development of new and innovative technologies that can increase the efficiency of seafloor mapping and thus make the ambitious goals of Seabed 2030 more likely to be achieved.
Article
Full-text available
Rising demand for minerals and metals, including for use in the technology sector, has led to a resurgence of interest in exploration of mineral resources located on the seabed. Such resources, whether seafloor massive (polymetallic) sulfides around hydrothermal vents, cobalt-rich crusts on the flanks of seamounts or fields of manganese (polymetallic) nodules on the abyssal plains, cannot be considered in isolation of the distinctive, in some cases unique, assemblages of marine species associated with the same habitats and structures. In addition to mineral deposits, there is interest in extracting methane from gas hydrates on continental slopes and rises. Many of the regions identified for future seabed mining are already recognised as vulnerable marine ecosystems. Since its inception in 1982, the International Seabed Authority (ISA), charged with regulating human activities on the deep-sea floor beyond the continental shelf, has issued 27 contracts for mineral exploration, encompassing a combined area of more than 1.4 million km2, and continues to develop rules for commercial mining. At the same time, some seabed mining operations are already taking place within continental shelf areas of nation states, generally at relatively shallow depths, and with others at advanced stages of planning. The first commercial enterprise, expected to target mineral-rich sulfides in deeper waters, at depths between 1,500 and 2,000 metres on the continental shelf of Papua New Guinea, is scheduled to begin early in 2019. In this review, we explore three broad aspects relating to the exploration and exploitation of seabed mineral resources: (1) the current state of development of such activities in areas both within and beyond national jurisdictions, (2) possible environmental impacts both close to and more distant from mining activities and (3) the uncertainties and gaps in scientific knowledge and understanding which render baseline and impact assessments particularly difficult for the deep sea. We also consider whether there are alternative approaches to the management of existing mineral reserves and resources, which may reduce incentives for seabed mining.
Article
Full-text available
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Chapter
Full-text available
The notion of ocean space stands for a holistic, system science approach combined with 4D thinking from the ocean, and the processes within it, towards the land. It is in fact a social-ecological concept that deals with sustainability challenges which are the consequence of the complex interactions between human activities and the marine environment at all scales. Ocean space is a critical player in the Earth System, it’s central to climate regulation, the hydrological and carbon cycles and nutrient flows, it balances levels of atmospheric gases, it’s a source of raw materials, and a sink for anthropogenic pollutants. On a human scale, it is impressively large. On a planetary scale, however, it’s insignificant, although it’s an ancient feature of the Earth.Sustainability in ocean space is still an emerging issue. Since the early seventeenth century the Grotian notion of Mare Liberum, has dominated the unsustainable, use of ocean resources. Grotius, main challenge was to warrant freedom of navigation, trade, fisheries and whaling for the Dutch Republic. He was not at all interested in sustainability. In the 1960s Arvid Pardo introduced the principle of the ‘Common Heritage of Mankind’, which is incorporated in the present international Law of the Sea. It is an ethical and even today, controversial concept.In this paper the global sustainability framework of the United Nations Convention on the Law of the Sea, and regional European developments with regard to its shared Exclusive Economic Zone, are discussed. It is concluded that for sustainability in ocean space, a more up-to-date and integrated or holistic, approach is urgently needed.
Article
Full-text available
Two notions, Ocean Space and the Anthropocene, are discussed. The first is occasionally used in legal and governance literature, and in the media. The Anthropocene, however, is widely applied in the global change research community and the media. The notion of ocean space stands for a holistic, system science approach combined with 4D thinking from the ocean, and the processes within it, towards the land. Ocean space is in fact a social-ecological concept that deals with sustainability challenges which are the consequence of the complex interactions between humans and the marine environment on all scales. Ocean space is, on a human scale, impressively large. On a planetary scale, however, it is insignificant although it has been an ancient feature of the Earth for the last four billion years or so. Yet ocean space is a critical player in the Earth System; it is central to climate regulation, the hydrological and carbon cycles and nutrient flows, it balances levels of atmospheric gases, it is a source of raw materials vital for medical and other uses, and a sink for anthropogenic pollutants. The notion also encompasses issues such as exploration, adventure, science, resources, conservation, sustainability, etc., and should be an innovative and attractive outreach instrument for the media. Finally, it marks the fundamental change in ocean exploration in the twenty-first century in which ocean-observing systems, and fleets of robots, are routinely and continuously providing quality controlled data and information on the present and future states of ocean space. Advocates of the notion of the Anthropocene argue that this new epoch in geological time, commenced with the British industrial revolution. To date, the Anthropocene has already been subdivided into three stages. The first of these coincides with the beginning of the British industrial revolution around 1800. This transition quickly transformed a society which used natural energy sources into one that uses fossil fuels. The present high-energy society of more than seven billion people mostly with highly improved living standards and birth rates, and a global economy, is the consequence. The downside of this development comprises intensive resource and land use as well as large-scale pollution of the (marine) environment. The first stage of the Anthropocene ended abruptly after the Second World War when a new technology push occurred, leading to the second stage: 'the Great Acceleration' (1945-2015) followed by the third: 'Stewards of the Earth'. Here it is concluded that the notion of the Anthropocene reflects a hierarchical or individualistic perspective, often leading to a "business as usual" management style, and 'humanises' the geological time scale. The use of this notion is not supported. However, it is already very popular in the media. This again might lead to overestimating the role of humans in nature, and might facilitate an even more destructive attitude towards it, through the application of geo-engineering. The latter could be opening another Pandora's box. Instead we should move to a more sustainable future in which human activities are better fine tuned to the environment that we are part of. In this respect transition management is an interesting new paradigm.
Article
Full-text available
Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.
Article
Full-text available
Sustainability is a key concept in international, national and local policymaking for the coming decades. However, the concept is also highly normative, value loaded, and subject to many interpretations. Yet, the various definitions have in common that they emphasise the need to address human development and environmental imperatives simultaneously. As such, the issue of sustainable development requires an integrated approach. In this paper the interrelation between ocean space and human activities as well as the effect of human activities on the ocean, are discussed. The discussion focuses around the Exclusive Economic Zones (EEZ) for which countries by international law have a responsibility towards sustainable use of its resources. The application of the EEZ has dramatically changed the world map, making France the largest ocean state of the world. New concepts such as the SCENE model that builds on system's thinking and addresses ecological, economic and social-cultural aspects of complex societal issues in terms of stocks and flows as well as governance and transition management are discussed.
Article
Full-text available
Covering more than half the planet, the deep ocean sequesters atmospheric CO2 and recycles major nutrients; is predicted to hold millions of yet-to-be-described species; and stores mind-boggling quantities of untapped energy resources, precious metals, and minerals (1). It is an immense, remote biome, critical to the health of the planet and human well-being. The deep ocean (defined here as below a typical continental shelf break, >200 m) faces mounting challenges as technological advances—including robotics, imaging, and structural engineering—greatly improve access. We recommend a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration.
Article
Full-text available
Deep-sea hydrothermal-vent ecosystems have stimulated decades of scientific research and hold promise of mineral and genetic resources that also serve societal needs. Some endemic taxa thrive only in vent environments, and vent-associated organisms are adapted to a variety of natural disturbances, from tidal variations to earthquakes and volcanic eruptions. In this paper, physicochemical and biological impacts of a range of human activities at vents are considered. Mining is currently the only anthropogenic activity projected to have a major impact on vent ecosystems, albeit at a local scale, based on our current understanding of ecological responses to disturbance. Natural recovery from a single mining event depends on immigration and larval recruitment and colonization; understanding processes and dynamics influencing life-history stages may be key to effective minimization and mitigation of mining impacts. Cumulative impacts on benthic communities of several mining projects in a single region, without proper management, include possible species extinctions and shifts in community structure and function.
Article
Full-text available
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters.
Article
Full-text available
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Article
Full-text available
Numerous studies along the northern Mediterranean borderland have documented the use of shellfish by Neanderthals but none of these finds are prior to Marine Isotopic Stage 3 (MIS 3). In this paper we present evidence that gathering and consumption of mollusks can now be traced back to the lowest level of the archaeological sequence at Bajondillo Cave (Málaga, Spain), dated during the MIS 6. The paper describes the taxonomical and taphonomical features of the mollusk assemblages from this level Bj(19) and briefly touches upon those retrieved in levels Bj(18) (MIS 5) and Bj(17) (MIS 4), evidencing a continuity of the shellfishing activity that reaches to MIS 3. This evidence is substantiated on 29 datings through radiocarbon, thermoluminescence and U series methods. Obtained dates and paleoenvironmental records from the cave include isotopic, pollen, lithostratigraphic and sedimentological analyses and they are fully coherent with paleoclimate conditions expected for the different stages. We conclude that described use of shellfish resources by Neanderthals (H. neanderthalensis) in Southern Spain started ∼150 ka and were almost contemporaneous to Pinnacle Point (South Africa), when shellfishing is first documented in archaic modern humans.
Article
Biogeochemical-Argo (BGC-Argo) is a network of profiling floats carrying sensors that enable observation of as many as six essential biogeochemical and bio-optical variables: oxygen, nitrate, pH, chlorophyll a, suspended particles, and downwelling irradiance. This sensor network represents today's most promising strategy for collecting temporally and vertically resolved observations of biogeochemical properties throughout the ocean. All data are freely available within 24 hours of transmission. These data fill large gaps in ocean-observing systems and support three ambitions: gaining a better understanding of biogeochemical processes (e.g., the biological carbon pump and air–sea CO 2 exchanges) and evaluating ongoing changes resulting from increasing anthropogenic pressure (e.g., acidification and deoxygenation); managing the ocean (e.g., improving the global carbon budget and developing sustainable fisheries); and carrying out exploration for potential discoveries. The BGC-Argo network has already delivered extensive high-quality global data sets that have resulted in unique scientific outcomes from regional to global scales. With the proposed expansion of BGC-Argo in the near future, this network has the potential to become a pivotal observation system that links satellite and ship-based observations in a transformative manner. Expected final online publication date for the Annual Review of Marine Science, Volume 12 is January 3, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Colonisation of Sahul 70-60 thousand years ago (kya) represents the first great maritime migration undertaken by anatomically modern humans in one of the final phases of the Out of Africa dispersal. Visual connectivity network analyses, agent-based simulations and ocean current modelling reveal that modern humans could follow numerous northern and southern migration pathways into Sahul. Our results support a southern route out of Africa through South Asia with entry into ISEA through the Banda Arc, culminating in an early colonisation of Sahul on the northwest shelf. Our results show multiple colonisation events through other entry points were also probable, and raise interesting possibilities for complex regional migration and population histories.
Article
The mechanism used by mussels to stick to slippery rocks is the idea behind glue that could mend broken bones.
Book
http://www.nap.edu/catalog.php?record_id=10287
Article
Multiple activities affect the marine environment in concert, yet current management primarily considers activities in isolation. A shift towards a more comprehensive management of these activities, as with recent emphasis on ecosystem-based approaches to management, requires a means for evaluating their interactive and cumulative impacts. Here we develop a framework for this evaluation, focusing on five core concepts: (1) activities have interactive and cumulative impacts, (2) management decisions require consideration of, and tradeoffs among, all ecosystem services, (3) not all stressors are equal or have impacts that increase linearly, (4) management must account for the different scales of activities and impacts, and (5) some externalities cannot be controlled locally but must be accounted for in marine spatial planning. Comprehensive ocean zoning provides a powerful tool with which these key concepts are collectively addressed.
Article
The growth of technological and scientific knowledge in the past two centuries has been the overriding dynamic element in the economic and social history of the world. Its result is now often called the knowledge economy. But what are the historical origins of this revolution and what have been its mechanisms? In The Gifts of Athena, Joel Mokyr constructs an original framework to analyze the concept of "useful" knowledge. He argues that the growth explosion in the modern West in the past two centuries was driven not just by the appearance of new technological ideas but also by the improved access to these ideas in society at large--as made possible by social networks comprising universities, publishers, professional sciences, and kindred institutions. Through a wealth of historical evidence set in clear and lively prose, he shows that changes in the intellectual and social environment and the institutional background in which knowledge was generated and disseminated brought about the Industrial Revolution, followed by sustained economic growth and continuing technological change. Mokyr draws a link between intellectual forces such as the European enlightenment and subsequent economic changes of the nineteenth century, and follows their development into the twentieth century. He further explores some of the key implications of the knowledge revolution. Among these is the rise and fall of the "factory system" as an organizing principle of modern economic organization. He analyzes the impact of this revolution on information technology and communications as well as on the public's state of health and the structure of households. By examining the social and political roots of resistance to new knowledge, Mokyr also links growth in knowledge to political economy and connects the economic history of technology to the New Institutional Economics. The Gifts of Athena provides crucial insights into a matter of fundamental concern to a range of disciplines including economics, economic history, political economy, the history of technology, and the history of science.
Article
The recognition that Earth history has been punctuated by supercontinents, the assembly and breakup of which have profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere, is arguably the most important development in Earth Science since the advent of plate tectonics. But whereas the widespread recognition of the importance of supercontinents is quite recent, the concept of a supercon-tinent cycle is not new and advocacy of episodicity in tectonic processes predates plate tectonics. In order to give current deliberations on the supercontinent cycle some historical perspective, we trace the development of ideas concerning long-term episodicity in tectonic processes from early views on episodic orogeny and continental crust formation, such as those embodied in the chelogenic cycle, through the first realization that such episodicity was the manifestation of the cyclic assembly and breakup of supercontinents, to the surge in interest in supercontinent reconstructions. We then chronicle some of the key contributions that led to the cycle's widespread recognition and the rapidly expanding developments of the past ten years.
Article
Extracting minerals from sea-floor vents should not go ahead without a coherent conservation framework, argues Cindy Lee Van Dover.
Article
Vast areas of valuable resources unfettered by legal rights have, for centuries, been the central target of human exploitation and appropriation. The global commons -- Antarctica, the high seas and deep seabed minerals, the atmosphere, and space -- have remained exceptions only because access has been difficult or impossible, and the technology for successful extraction has been lacking. Now, technology has caught up with desire, and management regimes are needed to guide human use of these important resource domains.In The Global Commons, Susan Buck considers the history of human interactions with each of the global commons areas and provides a concise yet thorough account of the evolution of management regimes for each area. She explains historical underpinnings of international law, examines the stakeholders involved, and discusses current policy and problems associated with it.Buck applies key analytical concepts drawn from institutional analysis and regime theory to examine how legal and political concerns have affected the evolution of management regimes for the global commons. She presents in-depth case studies of each of the four regimes, outlining the historical evolution of the commons -- development of interest in exploiting the resource domain; conflicts among nations over the use of the commons; and efforts to design institutions to control access to the domains and to regulate their use -- and concluding with a description of the management regime that eventually emerged from the informal and formal negotiations.The Global Commons provides a clear, useful introduction to the subject that will be of interest to general readers as well as to students in international relations and international environmental law, and in environmental law and policy generally.
Wasted seafood in the United States: Quantifying loss from production to consumption and moving toward solutions
  • D C Love
  • J P Fry
  • M C Milli
  • R A Neff
The Discovery of the Titanic: Exploring the greatest of all lost ships
  • R D Ballard
Is deep sea mining vital for a greener future-even if it destroys ecosystems? The Guardian
  • D Carrington
Homo erectus may have been a sailor-and able to speak. The Guardian
  • N Davis
Delving deeper: critical challenges for the 21st century deep-sea research
  • Marine European
  • Board
Deep seabed mining: an urgent wake-up call to protect our oceans
  • Greenpeace International
Drivers and implications of change in global ocean health over the past five years
  • B S Halpern
  • M Frazier
  • J Afflerbach
  • O Hara
  • C Katona
  • Stewart Lowndes
Nautilus Minerals officially sinks, shares still trading
  • A Stutt
Summary for policymakers
  • H-O Pörtner
  • D C Roberts
  • V Masson-Delmotte
  • P Zhai
  • M Tignor
  • E Poloczanska
  • K Mintenbeck
  • A Alegría
  • M Nicolai
  • A Okem
  • J Petzold
  • B Rama
  • N M Weyer
Deep sea mining decisions: approaching the point of no return
  • S Losada
  • P Terras
The pulse of the earth. Martinus Nijhoff
  • Jmf Umbgrove
The Sunken Billions: The Economic Justification for Fisheries Reform
  • World Bank
The oceanic circle, governing the seas as a global resource
  • E Mann-Borgese
Deep-sea mining: serious consequences for the marine ecosystem. GEOMAR, Kiel, Germany, press release
  • Geomar