ArticlePDF Available

Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera

Authors:

Abstract

Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera (Aarvik et al. 2017) are presented. 44 species new to the Nordic-Baltic area as well as numerous new country records are added. Two misspellings and 14 other mistakes of various types are corrected. The genus name Tuta Kieffer & Jørgensen, 1910 is recombined with the species name absoluta Meyrick, 1917 as Tuta absoluta (Meyrick, 1917) comb. rev.
1
Additions and corrections to the Nordic-Baltic Checklist of
Lepidoptera
LEIF AARVIK, BENGT ÅKE BENGTSSON, HALLVARD ELVEN, POVILAS IVINSKIS, URMAS
JÜRIVETE, OLE KARSHOLT, MARKO MUTANEN & NIKOLAY SAVENKOV
Aarvik, L., Bengtsson, B.Å., Elven, H., Ivinskis, P., Jürivete, U., Karsholt, O., Mutanen, M. &
Savenkov, N. 2021. Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera.
Norwegian Journal of Entomology 68, 1–14.
Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera (Aarvik et al. 2017) are
presented. 44 species new to the Nordic-Baltic area as well as numerous new country records are
added. Two misspellings and 14 other mistakes of various types are corrected. The genus name Tuta
Kieer & Jørgensen, 1910 is recombined with the species name absoluta Meyrick, 1917 as Tuta
absoluta (Meyrick, 1917) comb. rev.
Key words: Lepidoptera, checklist, Nordic-Baltic, additions, corrections.
Leif Aarvik, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo,
Norway. E-mail: leif.aarvik@nhm.uio.no
Bengt Å. Bengtsson, Lokegatan 3, S-386 93 Färjestaden, Sweden.
E-mail: bengt.a.bengtsson@gmail.com
Hallvard Elven, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318
Oslo, Norway. E-mail: hallvard.elven@nhm.uio.no
Povilas Ivinskis, St. Nature Research Centre, Akademijos 2, LT-08412 Vilnius-21, Lithuania.
E-mail: entlab@gmail.com
Urmas Jürivete, Estonian Lepidopterologists’ Society, Moora umb. 8, EE-11625 Tallinn, Estonia.
E-mail: urmas@kolmabi.ee
Ole Karsholt, Zoologisk Museum, Natural History Museum of Denmark, University of Copenhagen,
Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. E-mail: okarsholt@snm.ku.dk
Marko Mutanen, Department of Genetics and Physiology, P.O. Box 3000, FI-90014 University of
Oulu, Finland. E-mail: marko.mutanen@oulu.
Nikolay Savenkov, Latvian Museum of Natural History, K. Barona st. 4, LV-1050 Riga, Latvia.
E-mail: nikolajs@ldm.gov.lv
© Norwegian Journal of Entomology. 18 June 2021
Introduction
The authors present faunistic and taxonomic
updates to the Nordic-Baltic Checklist of
Lepidoptera (Aarvik et al. 2017). In the past three
years, numerous publications on Lepidoptera have
appeared which have added to the knowledge
of the fauna present in the area. The studies on
phylogeny using molecular methods are continuing
and recently this has aected particularly the
2
classication of Gelechioidea (Wang & Li
2020) and Geometridae (Murillo-Ramos et al.
2019, Müller et al. 2019, Sihvonen et al. 2020).
New monographs covering Europe or the whole
Palaearctic region give an extended perspective at
the genus level and inevitably lead to changes. An
example is the monograph on the noctuid genus
Agrochola Hübner, 1821 and allies (Ronkay et
al. 2017). At the national level numerous new
records have been made. This reects the interest
in Lepidoptera in each of the countries, but also to
some extent a warmer climate.
It has recently been suggested (Wiemers
et al. 2018) that Linnaeus’ Fauna Svecica was
published in 1760, not 1761. However, it seems
that Linnaeus in 1760 was only circulating a proof
version of Linnaeus (1761) and not a publication.
The suggested change would aect the year of
description for a number of species. Until more
evidence eventually appears, we consider the year
of publication to be 1761.
Material and methods
New country records are based on publications
referred to in each case. In cases where there is
no reference to a publication, the information
was gathered by the authors from the dierent
countries. A new version of the checklist in the
form of an excel sheet is available on the website
of the Norwegian Entomological Society: http://
www.entomologi.no/index.htm
The new country records are the responsibility
of the authors representing their own country.
New species for the list is the responsibility of the
contributor from the country where the species
was discovered, but has also been accepted
by the rest of the authors. Some of the records
have been published in entomological journals,
some have been presented on the internet and
others are presented for the rst time here. In
case of unpublished records, they are given
with the permission of the discoverer/collector.
New species for Finland are recorded on the
website «Laji» which is provided by The Finnish
Biodiversity Information Facility (FinBIF):
https://laji./en. The word ‘omitted’ is used in
cases when a record was omitted by mistake in
the checklist (Aarvik et al. 2017). The number
before the name of the taxon is the same as the
one used in the checklist. A new taxon takes
the number of the taxon preceding it, adding a
letter after the number, as in the example: 4178a.
Spodoptera cilium Guenée, 1852 D (Hviid 2018).
This means that Spodoptera cilium is a species
new to Denmark as well as the whole region, and
that it should be inserted after Spodoptera exigua,
which has number 4178.
New country records
ERIOCRANIIDAE
0020. Eriocrania salopiella (Stainton, 1854) Lt
(Ivinskis et al. 2018).
NEPTICULIDAE
0047. Stigmella freyella (Heyden, 1858) S
(Bengtsson 2020).
0051. Stigmella sakhalinella Puplesis, 1984 F.
0129. Trifurcula immundella (Zeller, 1839) N
(Aarvik et al. 2021), Lt (Ivinskis et al. 2018).
0136. Etainia louisella (Sircom, 1849) S
(Bengtsson 2019).
INCURVARIIDAE
0185. Incurvaria masculella (Denis & Schier-
müller, 1775) Lt (Ivinskis & Rimšaite 2017).
ADELIDAE
0216. Nemophora minimella (Denis & Schier-
müller, 1775) F, E.
0220. Adela reaumurella (Linnaeus, 1758) F.
TISCHERIIDAE
0245. Coptotriche marginea (Haworth, 1828) N
(Aarvik et al. 2019).
PSYCHIDAE
0308. Apterona helicoidella (Vallot, 1827) D
(Buhl et al. 2018).
TINEIDAE
0368. Trichophaga scandinaviella Zagulajev,
1960 E.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
3
0370. Elatobia fuliginosella (Lienig & Zeller,
1846) Lt (Ivinskis & Rimšaite 2017).
0382. Tinea svenssoni Opheim, 1966 Lt.
GRACILLARIIDAE
0473. Caloptilia della (Reutti, 1853) F, Lv, Lt
(Ivinskis et al. 2020).
0536. Phyllonorycter emberizaepenella (Bouché,
1834) I (Ólafsson 2018).
0556. Phyllonorycter viminetorum (Stainton,
1854) E.
0557. Phyllonorycter connexella (Zeller, 1846) N
(Aarvik et al. 2019).
YPONOMEUTIDAE
0595. Euhyponomeutoides ribesiella (Joannis,
1900) Lt (Ivinskis et al. 2020).
0604. Swammerdamia passerella (Zetterstedt,
1839) Lt (Ivinskis et al. 2018).
ARGYRESTHIIDAE
0626. Argyresthia trifasciata (Staudinger, 1871)
E.
GLYPHIPTERIGIDAE
0673. Digitivalva reticulella (Hübner, 1796) Lt
(Paulavičiūtė et al. 2017).
YPSOLOPHIDAE
0691. Ypsolopha mucronella (Scopoli, 1763) F.
LYONETIIDAE
0734. Leucoptera laburnella (Stainton, 1851) F.
0737. Leucoptera lathyrifoliella (Stainton, 1866)
D (omitted).
CHOREUTIDAE
0768. Choreutis diana (Hübner, 1822) Lt (Ivinskis
et al. 2019).
TORTRICIDAE
0797. Sparganothis pilleriana (Denis & Schier-
müller, 1775) Lv.
0973. Eupoecilia sanguisorbana (Herrich-
Schäer, 1856) E.
1001. Cochylis roseana (Haworth, 1811) S
(Bengtsson 2019).
1006. Cochylichroa atricapitana (Stephens, 1852)
(= Cochylis atricapitana) Lt (Ivinskis &
Rimšaite 2017).
1030. Apotomis lineana (Denis & Schiermüller,
1775) Lt (Ivinskis et al. 2018).
1062. Celypha woodiana (Barrett, 1882) Lt
(Ivinskis et al. 2020, Paulavičiūtė et al. 2020).
1115. Endothenia gentianaeana (Hübner, 1799)
Lt (Ivinskis et al. 2020).
1142. Ancylis comptana (Frölich, 1828) D (P.
Falck pers.comm.).
1193. Epinotia tedella (Clerck, 1759) I (E.
Ólafsson in litt.).
1195. Epinotia pusillana (Peyerimho, 1863) S
(Bengtsson 2019).
1212. Crocidosema plebejana Zeller, 1847 I
(omitted).
1257. Epiblema junctana (Herrich-Schäer,
1856) Lv.
1270. Notocelia rosaecolana (Doubleday, 1850) I
(E. Ólafsson in litt.).
1277. Retinia perangustana (Snellen, 1883) Lt
(Paulavičiūtė et al. 2020).
1323. Cydia conicolana (Heylaerts, 1874) F.
1330. Cydia grunertiana (Ratzeburg, 1868) Lv.
1336. Cydia leguminana (Lienig & Zeller, 1846)
N (Gustad & Aarvik in prep.)
1341. Cydia amplana (Hübner, 1799) Lv.
1354. Grapholita gemmiferana Treitschke, 1835
Lt (Ivinskis et al. 2019).
1358. Grapholita lobarzewskii (Nowicki, 1860)
Lt.
1370. Pammene albuginana (Guenée, 1845) Lt
(Ivinskis & Rimšaite 2017).
1381. Pammene trauniana (Denis & Schier-
müller, 1775) S (Bengtsson 2018).
1383. Pammene aurita Razowski, 1992 Lv.
SESIIDAE
1443. Synanthedon aviventris (Staudinger, 1883)
N (Aarvik et al. 2021).
1445. Synanthedon myopaeformis (Borkhausen,
1789) F.
AUTOSTICHIDAE
1476. Oegoconia deauratella (Herrich-Schäer,
1854) Lt (Ivinskis & Rimšaite 2017).
Norwegian Journal of Entomology 68, 1
14 (2021)
4
OECOPHORIDAE
1486. Denisia albimaculea (Haworth, 1828) N
(Aarvik et al. 2021).
1488. Denisia luticiliella (Erscho, 1877) D
(Buhl et al. 2018).
1512. Batia internella Jäckh, 1972 F.
1520. Oecophora bractella (Linnaeus, 1758) Lv.
COSMOPTERIGIDAE
1649. Pancalia nodosella (Bruand, 1851) Lt
(Ivinskis & Rimšaite 2017).
GELECHIIDAE
1678. Aproaerema larseniella Gozmány, 1957 Lt
(Paulavičiūtė 2019).
1700. Nothris gregerseni Karsholt & Šumpich,
2015 Lt (Ivinskis & Rimšaite 2017).
1719. Dichomeris latipennella (Rebel, 1937) D
(Buhl et al. 2020).
1733. Helcystogramma albinervis (Gerasimov,
1929) F.
1803. Monochroa divisella (Douglas, 1850) E.
1866. Gelechia scotinella Herrich-Schäer, 1854
N (Aarvik et al. 2019).
1902. Scrobipalpa bryophiloides Povolný, 1966
E, D (Buhl et al. 2020).
1905. Scrobipalpa ocellatella (Boyd, 1858) S
(Bengtsson 2019).
1908. Scrobipalpa salicorniae (E. Hering, 1889)
N (Aarvik et al. 2019).
1913. Scrobipalpula tussilaginis (Stainton, 1867)
Lv.
1924. Caryocolum alsinella (Zeller, 1868) N
(Aarvik et al. 2019), Lt (Ivinskis & Rimšaite
2017).
1936. Caryocolum blandelloides Karsholt, 1981
Lv.
1937. Caryocolum proxima (Haworth, 1828) Lt
(Paulavičiūtė et al. 2017).
1938. Caryocolum blandulella (Tutt, 1887) Lv.
1957. Carpatolechia fugacella (Zeller, 1839) S.
ELACHISTIDAE
2006. Elachista dispilella Zeller, 1839 Lt (Sruoga
et al. 2019).
2011. Elachista dispunctella (Duponchel, 1843)
Lt (Sruoga et al. 2019).
2041. Elachista poae Stainton, 1855 N.
2042. Elachista atricomella Stainton, 1849 F.
2052. Eachista deriventa Kaila & Mutanen, 2008
Lv.
2058. Elachista bifasciella Treitschke, 1833 N
(Aarvik et al. 2019).
2081. Elachista consortella Stainton, 1851 Lv.
2091. Blastodacna hellerella (Duponchel, 1838)
Lv.
COLEOPHORIDAE
2132. Coleophora amellivora Baldizzone, 1979
Lt (Ivinskis et al. 2019).
2138. Coleophora asteris Mühlig, 1864 F.
2161. Coleophora jaernaensis Björklund &
Palmqvist, 2002 E.
2188. Coleophora chalcogrammella Zeller, 1839
Lt.
2207. Coleophora vulnerariae Zeller, 1839 F.
BLASTOBASIDAE
2308. Hypatopa segnella (Zeller, 1873) Lt
(Ivinskis et al. 2018).
EPERMENIIDAE
2357. Epermenia aequidentellus (E. Hofmann,
1867) D (Buhl et al. 2018).
PTEROPHORIDAE
2390. Stenoptilia veronicae Karvonen, 1932
(eborinodactyla auct.) D (Buhl et al. 2017,
2020).
2392. S. mariaeluisae Bigot & Picard, 2002
(inopinata auct.) I (E. Ólafsson in litt.).
2419. Oxyptilus tristis (Zeller, 1841) N (Aarvik et
al. 2019).
2427. Hellinsia inulae (Zeller, 1852) S (Bengtsson
2020).
NYMPHALIDAE
2556. Araschnia levana (Linnaeus, 1758) N
(Aarvik et al. 2019)
2589. Apatura iris (Linnaeus, 1758) N (Aarvik et
al. 2021).
2594. Lasiommata megera (Linnaeus, 1767) E.
LYCAENIDAE
2664. Aricia agestis (Denis & Schiermüller,
1775) Lv.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
5
PYRALIDAE
2729. Sciota rhenella (Zincken, 1818) S
(Bengtsson 2020).
2769. Delplanqueia inscriptella (Duponchel,
1836) F, Lt (Ivinskis et al. 2018).
2775. Nephopterix angustella (Hübner, 1796) E.
2804. Eccopisa eractella Zeller, 1848 E.
2809. Euzophera bigella (Zeller, 1848) F.
2816. Ancylosis oblitella (Zeller, 1848) N (Aarvik
et al. 2019), F, E.
2824. Phycitodes lacteella (Rothschild, 1915) Lv,
Lt (Ivinskis et al. 2018).
2838. Cadra cautella (Walker, 1863) Lt (omitted).
2853. Endotricha ammealis (Denis & Schier-
müller, 1775) E.
CRAMBIDAE
2885. Sclerocona acutella (Eversmann, 1842) Lv.
2923. Spoladea recurvalis (Fabricius, 1775) N
(Aarvik et al. 2019), S (Bengtsson 2020), F.
2941. Cydalima perspectalis (Walker, 1859) F, E,
Lt (Paulavičiūtė & Mikalauskas 2018).
2950. Cynaeda pustulalis (Hübner, 1823) D (Buhl
et al. 2020).
3020. Pediasia luteella (Denis & Schiermüller,
1775) S (Bengtsson 2017).
3028. Agriphila latistria (Haworth, 1811) F.
3029. Agriphila aeneociliella (Eversmann, 1844)
F.
3033. Agriphila biarmicus (Tengström, 1865) Lt
(Ivinskis et al. 2018).
GEOMETRIDAE
3121. Idaea ochrata (Scopoli, 1763) Lv, Lt
(Švitra et al. 2017)
3124. Idaea fuscovenosa (Goeze, 1781) E.
3144. Scopula virgulata (Denis & Schiermüller,
1775) D (omitted).
3307. Pareulype berberata (Denis & Schier-
müller, 1775) E.
3361. Eupithecia abbreviata Stephens, 1831 Lt
(Švitra et al. 2018).
3387. Eupithecia insigniata (Hübner, 1790) F.
3402a. Eupithecia addictata Dietze, 1908 Lt
(Ūsaitis et al. 2019).
3458. Isturgia arenacearia (Denis & Schier-
müller, 1775) S (Palmqvist & Ryrholm 2020),
D (Larsen et al. 2020), E, Lv.
3473. Apocheima hispidaria (Denis & Schier-
müller, 1775) N (Aarvik et al. 2021).
3493. Peribatodes rhomboidaria (Denis &
Schiermüller, 1775) Lv, Lt (Švitra et al.
2017).
3548. Ennomos quercinaria (Hufnagel, 1767) F.
3623. Chlorissa cloraria (Hübner, 1813) F.
URANIIDAE
3636. Eversmannia exornata (Eversmann, 1837)
Lt (Švitra et al. 2018).
SPHINGIDAE
3714. Hyles euphorbiae (Linnaeus, 1758) N.
NOTODONTIDAE
3745. Drymonia obliterata (Esper, 1785) Lt
(Kaupys 2019).
EREBIDAE
3797. Hypena lividalis (Hübner, 1790) E.
3819. Laelia coenosa (Hübner, 1808) F.
3863. Utetheisa pulchella (Linnaeus, 1758) F.
3955. Eublemma parva (Hübner, 1808) N (Aarvik
et al. 2021).
3957. Eublemma purpurina (Denis & Schier-
müller, 1775) N (Aarvik et al. 2021), S
(Palmqvist & Ryrholm 2020), D (Larsen et al.
2019).
3977. Catocala elocata (Esper, 1787) E, Lv.
NOCTUIDAE
4001. Chrysodeixis chalcites (Esper, 1789) F, Lv.
4067. Cucullia verbasci (Linnaeus, 1758) F, E.
4166. Bryopsis muralis (Forster, 1771)
(= Nyctobrya muralis) N, F.
4185. Caradrina kadenii Freyer, 1836 S (Palmqvist
& Ryrholm 2020), D (Larsen et al. 2019).
4187. Caradrina albina Eversmann, 1848 S
(Palmqvist 2018).
4296. Apamea remissa (Hübner, 1809) I (omitted).
4299. Apamea crenata (Hufnagel, 1766) I
(omitted).
4321. Resapamea vulpecula (Eversmann, 1852)
(= R. hedeni) Lv.
4328. Xylomoia graminea (Graeser, 1889) E, Lv.
4373. Conistra rubiginosa (Scopoli, 1763) E, Lv.
4384. Lithophane ornitopus (Hufnagel, 1766) N
Norwegian Journal of Entomology 68, 1
14 (2021)
6
(Aarvik et al. 2019).
4409. Atethmia centrago (Hübner, 1809) N
(Aarvik et al. 2021). Lv.
4423. Aporophyla lueneburgensis (Freyer, 1848)
E.
4429. Polymixis lichenea (Hübner, 1813) N
(Aarvik et al. 2019).
4476. Polia lamuta (Herz, 1903) N (Saarenmaa
2020).
4486. Lacanobia amurensis (Staudinger, 1901)
Lv.
4496. Hyssia cavernosa (Eversmann, 1842) Lv.
4507. Conisania leineri (Freyer, 1836) E.
4509. Hecatera dysodea (Denis & Schiermüller,
1775) F, E.
4536. Mythimna l-album (Linnaeus, 1767) N
(Aarvik et al. 2021), E.
4540. Leucania loreyi (Duponchel, 1827) N, S
(Palmqvist & Ryrholm 2020).
4571. Euxoa vitta (Esper, 1789) E.
4581. Agrotis bigramma (Esper, 1790) Lv.
4591. Agrotis puta (Hübner, 1803) F.
4602. Diarsia orida (F. Schmidt, 1859) F.
4626. Noctua comes Hübner, 1813 I (E. Ólafsson
in litt.).
4655. Xestia distensa (Eversmann, 1851) N
(Aarvik et al. 2019).
NOLIDAE
4697. Nola cristatula (Hübner, 1793) Lv.
New taxa to the Nordic-Baltic area
DRYADAULIDAE
0312a. Dryadaula heindeli Gaedike & Scholz,
1998 N (Gustad & Aarvik 2017).
TINEIDAE
0324a. Triaxomera baldensis G. Petersen, 1983
Lt (Ivinskis & Rimšaite 2017).
0345a. Neurothaumasia Le Marchand, 1934.
0345b ankerella (Mann, 1867) D (P. Falck pers.
comm.).
0391a. Monopis jussii Kaila, Mutanen, Huemer,
Karsholt & Autto, 2020 N, S, F (Mutanen et
al. 2020).
GRACILLARIIDAE
0439a. Micrurapteryx kollariella (Zeller, 1839) D
(Buhl et al. 2019).
0441a. Parectopa robiniella Clemens, 1863 Lv,
Lt (Ivinskis et al. 2019).
0462a. Calybites quadrisignella (Zeller, 1839)
Lv.
0474a. Caloptilia honoratella (Rebel, 1914) D
(Buhl et al. 2019).
CHOREUTIDAE
0766a. Tebenna micalis (Mann, 1857) N (Aarvik
et al. 2021). In 2014 imported to Denmark as
larvae on Helichrysum italica in several
places; a single specimen was found in a light
trap. Since it has not been recorded, and the
species is considered introduced to Denmark.
TORTRICIDAE
0834a. Clepsis peritana (Clemens, 1860) D (Buhl
et al. in press).
0985a. Aethes bilbaensis (Rössler, 1877) D (Buhl
et al. 2020).
1222a. Eucosma albidulana (Herrich-Schäer,
1851) S (Ohlsson 2020).
1360a. Grapholita inopinata Heinrich, 1928 F
(https://laji./en/taxon/MX.5076585).
SESIIDAE
1454a. Chamaesphecia Spuler, 1910
1454b. nigrifrons (Le Cerf, 1911) Lt (Švitra et al.
2017).
OECOPHORIDAE
1518a. Esperia Hübner, 1825
1518b. sulphurella (Fabricius, 1775) D (Buhl et
al. 2018).
COSMOPTERIGIDAE
1668a. Ascalenia Wocke, 1876
1668b. viviparella Kasy 1969 Lt (Ivinskis et al.
2019).
GELECHIIDAE
1704a Neofaculta taigana Ponomarenko, 1998 N
(Aarvik et al. 2021), S, F.
1914a. Tuta Kieer & Jørgensen, 1910
1914b. absoluta (Meyrick, 1917) N (Aarvik et al.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
7
2021), S, F, D (Buhl et al. in press). Placed on
the list due to numerous recent records in
nature.
1955a. Carpatolechia aenigma (Sattler, 1983) Lt
(Paulavičiūtė 2017).
COLEOPHORIDAE
2212a. Coleophora variicornis Toll, 1952 Lv.
2237a. Coleophora sirella Tabell & Mutanen,
2019 F (Tabell et al. 2019).
SCYTHRIDIDAE
2332a. Scythris penicillata (Chrétien, 1900) E
(omitted).
PYRALIDAE
2737a. Gymnancyla hornigii (Lederer, 1852) D
(Buhl et al. 2018).
CRAMBIDAE
2865a. Paracorsia Marion, 1959
2865b. repandalis (Denis & Schiermüller, 1775)
F.
2906a. Udea costalis (Eversmann, 1852) Lv, Lt
(omitted).
2939a. Hodebertia Leraut, 2003
2939b. testalis (Fabricius, 1794) D (Buhl et al.
2020).
2978a. Eudonia angustea (Curtis, 1827) D (Buhl
et al. 2018).
3034a. Agriphila tolli (Błeszyński, 1952) F.
GEOMETRIDAE
3185a. Xanthorhoe uralensis Choi, 2003 F.
3329a. Perizoma saxicola Tikhonov, 1994 E.
3497a. Ascotis Hübner, 1825
3497b. selenaria (Denis & Schiermüller, 1775)
S (Palmqvist & Ryrholm 2020), Lt (Ivinskis et
al. 2020).
3583a. Pungeleria Rougemont, 1903
3583b. capreolaria (Denis & Schiermüller,
1775) D (Skule & Hviid 2019).
SPHINGIDAE
3692a. Smerinthus caecus Ménétriés, 1857 Lv.
NOTODONTIDAE
Pygaerinae
3773a. Spatalia Hübner, 1819
3773b. argentina (Denis & Schiermüller, 1775)
F.
3782a. EUTELIIDAE
3782b. Eutelia Hübner, 1823
3782c. adulatrix (Hübner, 1813) D (Larsen et al.
2020).
EREBIDAE
3850a. Eilema caniola (Hübner, 1808) D (Larsen
2020).
NOCTUIDAE
4063a. Cucullia virgaureae Boisduval, 1840 F.
4068a. Phyllophila Guenée, 1852
4068b. obliterata (Rambur, 1833) F.
4178a. Spodoptera cilium Guenée, 1852 D (Hviid
2018).
4189a. Caradrina avirena Guenée, 1852 D
(Bech et al. 2017).
4387a. Lithophane leautieri (Boisduval, 1829) D
(omitted).
4422a. Aporophyla australis (Boisduval, 1829) D
(Larsen et al. 2019).
4531a. Mythimna alopecuri (Boisduval, 1840) D
(Larsen et al. 2019).
4629a. Noctua tertia von Mentzer, Moberg &
Fibiger, 1991 S (Palmqvist 2018).
Taxonomic changes
0029. Gazoryctra fuscoargenteus (O. Bang-
Haas, 1927) is a junior synonym. Replace with
G. uralensis (Grum-Grshimailo, 1899)
(Kallies & Farino 2018).
02590261, 02630264. According to Weidlich
& Arnscheid (2017) the parthenogenetic D.
lichenella (Linnaeus, 1761) is synonymous
with the bisexual D. fumosella (Heinemann,
1870). Robinson & Nielsen (1983)
synonymized D. lazuri (Clerck, 1759) with
D. fumosella. Consequently, the three names
lazuri, lichenella and fumosella represent
Norwegian Journal of Entomology 68, 1
14 (2021)
8
the same species. In addition, Weidlich &
Arnscheid (2017) synonymized D. norvegica
(Strand, 1919) with D. lichenella. These
authors overlooked the synonymy established
by Robinson & Nielsen (1983) and used the
name lazuri for a dierent Finnish species.
The latter is actually without name. Arnscheid
& Weidlich (2017) stated that it may represent a
bisexual form of D. fennicella (Suomalainen,
1980).
0346–0357. Regier et al. (2015) erected the
family Meessiidae for some genera which
until then had been placed in the subfamily
Meessiinae in Tineidae. In recent publications
on European Tineoidea the family Meessiidae
has become accepted (Budashkin & Bidzilya
2018, Gaedike 2019, Gaedike & Falck 2019).
The four genera of Meessiinae are placed in
the separate family Meessiidae before
Psychidae. However, it is still not certain if the
three genera Stenoptinea Dietz, 1905,
Karsholtia Gaedike, 1986 and Agnathosia
Amsel, 1954 really belong in Meessiidae.
0362. Haplotinea Diakono & Hinton, 1956
belongs to Myrmecozelinae (Gaedike 2019).
0361. The subfamily name Perissomasticinae
should be removed.
0664. Rhigognostis hufnagelii (Zeller, 1839) was
placed in the genus Eidophasia Stephens,
1842 (Baraniak 2020).
09921011. A molecular phylogeny of the subtribe
Cochylina was recently published (Brown
et al. 2020). These authors also indicated that
Cochylis epilinana (Duponchel, 1842)
should be placed in a genus of its own, but
it was overlooked that Longicornutia
Razowski, 1960 was available (Brown 2005,
Kovács & Kovács 2020). The reclassication
of species hitherto placed in Cochylidia
Obraztsov, 1956; Cochylis Treitschke, 1829
and Falseuncaria Obraztsov & Swatschek,
1958 is presented here:
Thyraylia Walsingham, 1897
nana (Haworth, 1811)
Cochylichroa Obraztsov & Swatschek, 1958
atricapitana (Stephens, 1852)
Pontoturania Obraztsov, 1943
posterana (Zeller, 1847)
Brevicornutia Razowski, 1960
pallidana (Zeller, 1847)
Cochylis Treitschke, 1829
roseana (Haworth, 1811)
aviciliana (Westwood, 1854)
Longicornutia Razowski, 1960
epilinana (Duponchel, 1842)
Neocochylis Razowski, 1960
hybridella (Hübner, 1813)
dubitana (Hübner, 1799)
Falseuncaria Obraztsov & Swatschek, 1958
degreyana (McLachlan, 1869)
ruciliana (Haworth, 1811)
Cochylidia Obraztsov, 1956
subroseana (Haworth, 1811)
richteriana (Fischer von Röslerstamm, 1837)
moguntiana (Rössler, 1864)
heydeniana (Herrich-Schäer, 1851)
implicitana (Wocke, 1856)
rupicola (Curtis, 1834)
0926. Acleris implexana (Walker, 1863) is
Nearctic (Gilligan et al. 2020). Replace with
A. ferrumixtana (Benander, 1934).
0987. Aethes adelaidae (Toll, 1955) raised
to species rank: (https://laji./en/taxon/
MX.5013777) F, Lv.
1471. Holcopogon bubulcellus (Staudinger,
1859) is a junior synonym and is replaced by
H. adseclella (Eversmann, 1844) (Sinev et al.
2017).
1629. Peleopodinae upgraded to family level. In
our area only the genus Carcina is represented
(Wang & Li 2020).
1635. Ethmiinae upgraded to family level and
placed close to Elachistidae (Wang & Li 2020).
1704a. Neofaculta taigana Ponomarenko, 1998 is
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
9
a cryptic species which has been confused with
N. infernella. It is a northern Holarctic species
and has been found in N, S and F (Aarvik et al.
2021).
1708. Anarsia lineatella Zeller, 1839 is to be
replaced by A. innoxiella Gregersen &
Karsholt, 2017 (Gregersen & Karsholt 2017).
1784. Apodia bifractella (Duponchel, 1843) is to
be replaced by Apodia martinii Petry, 1911.
The former has a more southern distribution in
Europe, but the ranges of the two species are
not known in detail (Huemer & Karsholt 2020).
1812. Monochroa parvulata (Gozmány, 1957)
was transferred to the genus Pragmatodes
Walsingham, 1908 (Huemer & Karsholt 2020).
1813. Eulamprotes Bradley, 1971 is a synonym
of Oxypteryx Rebel, 1911 (Bidzilya et al.
2019, Huemer & Karsholt 2020). Its
constituent species are transferred to Oxypteryx.
1914a. Corro Chang & Metz (2021) recently
transferred Tuta absoluta to Phthorimaea,
based on a phylogenetic analysis of 22
morphological characters of eight species. We
agree that T. absoluta is more closely related to
Phthorimaea operculella than to Tuta
atriplicella Kieer & Jörgensen, 1910.
However, their male genitalia are distinctly
dierent – much more than between many
genera of Gnorimoschemini. The latter
may be oversplit, and the generic structure
of Gnorimoschemini should be analysed
based on a larger number of taxa from dierent
genera and with a character set that includes
both morphological and molecular characters.
T. absoluta is a serious pest on tomatoes
etc., and the literature on it, since it was
introduced to the Old World, runs to
thousands of publications. Most of these are
on applied entomology, and researchers in that
eld are notoriously unhappy about changes in
nomenclature. Seen in the light of the
uncertainty of the generic placement of T.
absoluta, which is also admitted by Corro
Cheng & Metz (op. cit.: 51) who write: «Our
results support a need for generic re-
classication of the taxon absoluta under
its original genus, Phthorimaea», we nd
it premature to change its generic name. We
are of the opinion that for the time the stability
of nomenclature is best served by not changing
the generic combination, and we therefore
recombine it as Tuta absoluta (Meyrick),
comb. rev.
2053. Elachista zernyi Hartig, 1941 is a junior
synonym of E. stelviella Amsel 1932 (Kaila
2019).
2392. DNA barcoding shows that Danish
specimens identied as Stenoptilia inopinata
Bigot & Picard, 2002 is conspecic with
barcoded specimens of S. mariaeluisae Bigot
& Picard, 2002 from Iceland.
2548–2553. A revised classication of Argynnis
Fabricius, 1807 aiming at reconciling the
systems used in Europe and North America
was recently published (De Moya et al. 2017).
The new system was adopted in the new
European buttery checklist (Wiemers et
al. 2018). This results in the following updated
classication of the Nordic-Baltic species:
Argynnis Fabricius, 1807
paphia (Linnaeus, 1758)
laodice (Pallas, 1771)
Fabriciana Reuss, 1920
niobe (Linnaeus, 1758)
adippe (Denis & Schiermüller, 1775)
Speyeria Scudder, 1872
aglaja (Linnaeus, 1758)
2650. Scolitantides vicrama (Moore, 1865)
is transferred to Pseudophilotes Beuret, 1958
(Wiemers et al. 2018).
2654. Phengaris Doherty, 1891 has been given
priority over Maculinea Van Eecke, 1915
(ICZN 2017). This means that the nomenclature
used in our checklist can continue.
Norwegian Journal of Entomology 68, 1
14 (2021)
10
2763. Khorassania Amsel, 1951 is a synonym
of 2734 Pempelia Hübner, 1825. The species
Khorassania compositella is combined with
Pempelia as Pempelia compositella
(Treitschke, 1835) (Slamka 2019).
2765. Moitrelia Leraut, 2001 is a synonym of
Uncinus Amsel, 1951. The species Moitrelia
obductella is combined with Uncinus as
Uncinus obductella (Zeller, 1839) (Slamka
2019).
2836. Ephestia unicolorella Staudinger, 1881 is to
be replaced by E. woodiella Richards &
Thomson, 1932. The former is a southern
species known from Turkey and Syria (Leraut
2014, Buhl et al. 2020).
2843. Pyralis regalis (Denis & Schiermüller,
1775) is to be replaced by P. cardinalis Kaila,
Huemer, Mutanen, Tyllinen & Wikström, 2020
which was recently separated from the former
(Wikström et al. 2020).
3101–3609. The classication of Geometridae
has recently undergone numerous changes,
and a system which includes tribes is emerging.
The new system is presented in the 6th volume
of Geometrid Moths of Europe (Müller et al.
2019). Some additions and modications can
be found in Brehm et al. (2019), Murillo-
Ramos et al. (2019) and Sihvonen et al. (2020).
3604. Elophos Boisduval, 1840 is replaced by
Yezognophos Matsumura, 1927 (Müller et al.
2019).
3606. Glacies Millière, 1874 is a synonym of
Psodos Treitschke, 1825 (Müller et al. 2019).
3960a. Euclidia mi (Clerck, 1759) is placed in the
genus Callistege Hübner, 1823. Callistege
was upgraded from status as subgenus of
Euclidia Ochsenheimer, 1816 to status as a
separate genus by Lafontaine & Schmidt
(2010). Treating the two genera as synonyms
would also mean having to synonymize the
genus Mocis Hübner, 1823 (Zahiri et al. 2012:
g. 6).
4070. Protodeltote Ueda, 1984 was upgraded from
status as subgenus of Deltote Reichenbach,
1817 to full generic status by Schmidt et
al. (2018). This results in the combination
Protodeltote pygarga (Hufnagel, 1766).
4165. Nyctobrya Boursin, 1957 is replaced by
Bryopsis Boursin 1970 (Vargas-Rodríguez et
al. 2020).
4321. Resapamea hedeni (Graeser, 1888) is
a junior synonym. Replace with R. vulpecula
(Eversmann, 1852) (Kononenko 2005).
4345. Some of the genera proposed by Beck
(1992) were treated inconsistently in the
checklist. With some doubt we accept the
diagnosis given by Beck (1992) for Fissipunctia
as nomenclaturally valid. The publication by
Beck is part of the 1991 volume of the journal
Atalanta. It was, however, printed in 1992.
4360–4370. The monographic treatment of the
Eurasian and North African Agrochola Hübner,
1821 generic complex (L. Ronkay et al. 2017)
has led to a revised classication of the group:
Agrochola Hübner, 1821
lychnidis (Denis & Schiermüller, 1775)
Anchoscelis Guenée, 1839
Omphaloscelis Hampson, 1906 syn.
nitida (Denis & Schiermüller, 1775)
lunosa (Haworth, 1809)
litura (Linnaeus, 1758)
helvola (Linnaeus, 1758)
Leptologia L.B. Prout, 1901
lota (Clerck, 1759)
macilenta (Hübner, 1809)
Sunira Franclemont, 1950
circellaris (Hufnagel, 1766)
Propenistra Berio, 1980
laevis (Hübner, 1803)
4468. We consider the diagnosis given by Beck
(1992) as valid. Thus the genus should be cited
as Coranarta Beck, 1992.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
11
4486. Lacanobia amurensis (Staudinger, 1901).
For this species the name Lacanobia aliena
(Hübner, 1809) has been used in European
literature. It was pointed out by Poole
(1989) that Noctua aliena Hübner, 1809 (now
in Lacanobia) is a primary homonym of
Noctua aliena Hübner, 1808 (a synonym of
Eriopygodes imbecilla (Fabricius, 1794)). In
the Danish catalogue (Karsholt & Stadel
Nielsen 1998) the name Lacanobia amurensis
(Staudinger, 1901) was adopted as a
replacement name. This was a nomenclatural
act in accordance with the 3rd edition of
the ICZN Code of 1985 which was in use
at that time. Had it been after 1999 when the
4th edition of the ICZN Code was published,
'reversed precedence' could have been used
to give Noctua aliena Hübner, 1809 precedence
over N. aliena Hübner, 1808. With Lacanobia
amurensis (Staudinger, 1901) now in prevailing
usage, reversal of precedence is not permitted.
Consequently, Lacanobia aliena (Hübner, 1809)
cannot be used as the valid name for this species.
4474. Polia conspicua (A. Bang-Haas, 1912)
is a junior synonym. Replace with P. vesperugo
Eversmann, 1856 (Varga et al. 2017).
Corrections
0536. Phyllonorycter emberizaepenella. Spelling
of species name.
1339. Cydia splendana. Add parenthesis before
Hübner, 1799.
1480. Deuterogonia pudorina (Wocke, 1857).
Year of description.
1538. Agnoea elsae. Add parenthesis before and
after Svensson, 1982.
1683. Aproaerema vinella Bankes, 1898. Remove
parenthesis.
2467. Carcharodus alceae (Esper, 1780). Year of
description.
2512. Pontia chloridice (Hübner, 1813). Year of
description.
2522. Colias croceus (Georoy, 1785). Author.
2546. Brenthis daphne (Denis & Schiermüller,
1775). Author and year.
2566. Nymphalis xanthomelas (Denis & Schier-
müller, 1775). Author and year.
2630. Chazara briseis. Spelling of species name
2666. Aricia nicias (Meigen, 1829). Year of
description.
2857. Uresiphita gilvata (Fabricius, 1794). Delete
I’ (E. Ólafsson in litt.).
3396. Eupithecia goossensiata. The reference in
the comment on page 166 should be (Hausmann
et al. 2011) (not Hausmann et al. 2013).
3654. Lasiocampa quercus (Linnaeus, 1758).
Delete ‘I’ (E. Ólafsson in litt.).
4267. Longalatedes Beck, 1992. Year of
description.
Acknowledgements. The authors wish to thank all persons
who have shared information about new records. In particular
we thank Thomas Pape, Copenhagen, for giving advice on
the nomenclatural problem concerning Lacanobia amurensis,
and Erling Ólafsson, Reykjavik, Iceland for information
on additions to the Lepidoptera fauna of Iceland. Per Falck,
Neksø, Denmark, informed about new species for Denmark in
2020. We are indebted to the referees for careful checking of
the manuscript, which resulted in numerous improvements.
References
Aarvik, L., Bengtsson, B.Å., Elven, H., Ivinskis,
P., Jürivete, U., Karsholt, O., Mutanen, M., &
Savenkov, N. 2017. Nordic-Baltic Checklist of
Lepidoptera. Norwegian Journal of Entomology.
Supplement 3. 1–236.
Aarvik, L., Berggren, K., Engdal, J., Slagsvold, P.K.,
Sørlibråten, O. & Voith, R. 2019. Nye funn av
sommerfugler i Norge 11. Insekt-Nytt 44 (1), 5–54.
Aarvik, L., Berggren, K., Slagsvold, P.K., & Voith, R.
2021. Nye funn av sommerfugler i Norge 12. Insekt-
Nytt 46 (1), 5–41.
Arnscheid, W.R. & Weidlich, M. 2017. Psychidae.
In: Karsholt, O., Mutanen, M. & Nuss, M. (eds).
Microlepidoptera of Europe 8. Brill, Leiden/Boston.
423 pp.
Baraniak, E. 2020. Eidophasia insulella (Walsingham,
1900) and Eidophasia hufnagelii (Zeller, 1839),
two rare European moths: description of genitalia
conrms generic placement (Lepidoptera:
Plutellidae). The European Zoological Journal
2020, 444–451.
Bech, K., Helsing, F., Jensen, L., Kjeldgaard, S.,
Knudsen, K., Larsen, B.S., Larsen, E. S., Møller,
Norwegian Journal of Entomology 68, 1
14 (2021)
12
H.E. & Szyska, P. 2017. Fund af storsommerfugle
i Danmark 2016. Lepidoptera 11(3) (Tillæg), 1–80.
Beck, H. 1992. Taxonomische Änderungen bei den
Noctuinae, Cuculliinae und Plusiinae (Noctuidae,
Lepidoptera). Atalanta 22, 175–232.
Bengtsson, B.Å. 2017. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2016.
Entomologisk Tidskrift 138, 1–24.
Bengtsson, B.Å. 2018. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2017.
Entomologisk Tidskrift 139, 7–20.
Bengtsson, B.Å. 2019. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2018.
Entomologisk Tidskrift 140, 1–18.
Bengtsson, B.Å. 2020. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2019.
Entomologisk Tidskrift 141, 1–22.
Bidzilya, O., Karsholt, O., Kravchenko, V. & Šumpich,
J. 2019. An annotated checklist of Gelechiidae
(Lepidoptera) of Israel with description of two new
species. Zootaxa 4677, 1–68.
Brehm, G., Murillo-Ramos, L., Sihvonen, P.,
Hausmann, A., Schmidt, B.C., Õunap, E., Moser, A.,
Mörtter, R., Bolt, D., Bodner, F., Lindt, A., Parra,
L.E. & Wahlberg. N. 2019. New World geometrid
moths (Lepidoptera: Geometridae): Molecular
phylogeny, biogeography, taxonomic updates and
description of 11 new tribes. Arthropod Systematics
& Phylogeny 77 (3), 457–486.
Brown, J.W. 2005. World catalogue of insects.
Volume 5: Tortricidae (Lepidoptera). Apollo Books,
Stenstrup. 741 pp.
Brown, J., Aarvik, L., Heikkilä, M., Brown, R. &
Mutanen, M. 2020. A molecular phylogeny of
Cochylina with conrmation of its relationship
to Euliina (Lepidoptera: Tortricidae). Systematic
Entomology 45, 160–174.
Budashkin, Y.I. & Bidzilya, O. 2018. Four new species
of the genus Eudarcia Clemens, 1880 (Lepidoptera:
Meessiidae) from Crimea. Zootaxa 4446, 111–124.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F. 2017. Fund af småsommerfugle
fra Danmark 2016 (Lepidoptera). Entomologiske
Meddelelser 85, 17–35.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F., 2018. Fund af småsommerfugle
fra Danmark i 2017 (Lepidoptera). Entomologiske
Meddelelser 86, 13–26.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F. 2020. Fund af småsommerfugle
fra Danmark i 2018 (Lepidoptera). Entomologiske
Meddelelser 87 (2019), 1–18.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F. in press. Fund af småsommerfugle
fra Danmark i 2019 (Lepidoptera). Entomologiske
Meddelelser 88.
Corro Chang, P. & Metz, M.A. 2021. Classication
of Tuta absoluta (Meyrick, 1917) (Lepidoptera:
Gelechiidae: Gelechiinae: Gnorimoschemini) based
on cladistic analysis of morphology. Proceedings
of the entomological Society of Washington 123,
41–54.
De Moya, R.S., Savage, W.K., Tenney, C., Bao, X.,
Wahlberg, N. & Hill, R.I. 2017. Interrelationships
and diversication of Argynnis Fabricius and
Speyeria Scudder butteries. Systematic Entomology
42, 635–649.
Gaedike, R. 2019. Tineidae II (Myrmecozelinae,
Perissomasticinae, Tineinae, Hieroxestinae, and
Stathmopolitinae). In: Karsholt, O., Mutanen, M. &
Nuss, M. (eds). Microlepidoptera of Europe 9. Brill,
Leiden. 248 pp.
Gaedike, R. & Falck, P. 2019. Tineoidea (Meessiidae,
Tineidae) and Glyphipterigidae: Acrolepiinae from
the Canary Islands, Spain (Insecta: Lepidoptera).
SHILAP Revista de lepidopterologia 47, 507–517.
Gilligan, T.M., Brown, J.W. & Baixeras, J. 2020.
Immigrant Tortricidae: Holarctic versus Introduced
Species in North America. Insects 11 (594), 159.
Gregersen, K. & Karsholt, O. 2017. Taxonomic
confusion around the Peach Twig Borer, Anarsia
lineatella Zeller, 1839, with description of a
new species (Lepidoptera, Gelechiidae). Nota
lepidopterologica 40, 65–85.
Gustad, J.R. & Aarvik, L. 2017. A remarkable
extension of range, the fungivorous moth Dryadaula
heindeli Gaedike & Scholz, 1998 (Lepidoptera,
Dryadaulidae) recorded in Norway. Norwegian
Journal of Entomology 64, 138–142.
Hausmann, A., Haszprunar, G. & Hebert, P. 2011.
DNA Barcoding the Geometrid Fauna of Bavaria
(Lepidoptera): Successes, Surprises, and Questions.
PLoS ONE 6 (2) e17134, 1–9. DOI: 10.1371/journal.
pone.0017134
Huemer, P. & Karsholt, O. 2020. Commented checklist
of European Gelechiidae (Lepidoptera). ZooKeys
921, 65–140.
Hviid, C. 2018. Spodoptera cilium Guenée, ny ugle for
Danmark. Lepidoptera 11, 160–164.
ICZN 2017. Opinion 2399 (Case 3508) Maculinea
Van Eecke, 1915 (Lepidoptera: Lycaenidae):
precedence over Phengaris Doherty, 1891 not
granted. Bulletin of Zoological Nomenclature 74,
117–120.
Ivinskis, P. & Rimšaitė, J. 2017. New and rare
Lepidoptera for Lithuania, report of 2017. Bulletin
of the Lithuanian Entomological Society 1 (29),
35–46.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
13
Ivinskis, P., Rimšaitė, J. & Eismantas, A. 2018. Rare
and new for the Lithuanian fauna Lepidoptera
species. Bulletin of the Lithuanian Entomological
Society 2 (30), 30–37.
Ivinskis, P., Rimšaitė, J., Pūtys, Ž. & Paznekaitė,
V. 2019. Rare and new for the Lithuanian fauna
species of Lepidoptera. Bulletin of the Lithuanian
Entomological Society 3 (31), 48–56.
Ivinskis, P., Rimšaitė, J., & Pūtys, Ž. 2020. Data on
new and rare Lepidoptera, a report of 2020. Bulletin
of the Lithuanian Entomological Society 4 (32),
25–34.
Kaila, L. 2019. An annotated catalogue of Elachistinae
of the World (Lepidoptera: Gelechioidea:
Elachistidae). Zootaxa 4632, 1–231.
Kallies, A. & Farino, T. 2018. A new species of
Pharmacis Hübner, 1820 from Spain with a brief
review of the genera Pharmacis and Korscheltellus
Börner, 1920 (Lepidoptera, Hepialidae). Nota
lepidopterologica 41, 225–249.
Karsholt, O. & Stadel Nielsen, P. 2013. Revideret
fortegnelse over Danmarks Sommerfugle. Revised
catalogue of the Lepidoptera of Denmark.
Lepidopterologisk Forening, København. 120 pp.
Kaupys, M. 2019. One new and 88 rare for the
Lithuanian fauna Lepidoptera species, recorded in
2018-2019. Bulletin of the Lithuanian Entomological
Society 3 (31), 57–67.
Kononenko, V. 2005. Noctuidae Sibiricae. Volume
1. An annotated checklist of the Noctuidae (s.l.)
(Insecta, Lepidoptera) of the Asian part of Russia
and the Ural Region. Entomological Press, Sorø.
243 pp.
Kovács, Z. & Kovács, S. 2020. Tribul Cochylini în
România. Partea V. (Cryptocochylis, Pontoturania,
Falseuncaria, Cochylis, Longicornutia, Diceratura,
Brevicornutia, Cochylidia, Neocochylis,
Cochylichroa, Thyraylia, Eulia, completǎri,
correctǎri, concluzii). Buletin de Informare
Entomologică 31, 5–61.
Lafontaine, J.D. & Schmidt, B.C. 2010. Annotated
check list of the Noctuoidea (Insecta, Lepidoptera)
of North America north of Mexico. ZooKeys 40,
1–239.
Larsen, E. S. 2020. Fund af nye storsommerfugle
for den danske fauna siden 2005. Lepidoptera, 11,
347–380.
Larsen, E.S., Bech, K., Helsing, F., Jensen, L.,
Kjeldgaard, S., Knudsen, K., Larsen, B.S., Møller,
H.E. & Szyska, P. 2019. Fund af storsommerfugle i
Danmark 2018. Lepidoptera 11 (7) (Tillæg), 1–88.
Larsen, E.S., Bech, K., Helsing, F., Jensen, L.,
Kjeldgaard, S., Knudsen, K., Larsen, B.S., Møller,
H.E. & Szyska, P. 2020. Fund af storsommerfugle i
Danmark 2019. Lepidoptera 11 (9) (Tillæg), 1–88.
Leraut, P. 2014. Pyralids 2. Moths of Europe 4, 1–440.
Verrieres le Buisson.
Linnaeus, C. 1761. Fauna Svecica. Stockholmiae
[xlviii] + 578 pp.
Müller, B., Erlacher, S., Hausmann, A., Rajaei, H.,
Sihvonen, P. & Skou, P. 2019. Ennominae II. The
Geometrid Moths of Europe 6. Brill, Leiden 906 pp.
Murillo-Ramos, L. Brehm, G., Sihvonen, P.,
Hausmann, A., Holm, S., Ghanavi, H.R., Õunap, E.,
Truuverk, A., Staude, H., Friedrich, E. Tammaru, T.
& Wahlberg, N. 2019. A comprehensive molecular
phylogeny of Geometridae (Lepidoptera) with a
focus on enigmatic small subfamilies. PeerJ 7,
e7386.
Mutanen, M. & Kaila, L. 2019–2021. Perhoset
– Lepidoptera. In: The Finnish Biodiversity
Information Facility (FinBIF): https://laji./en
Mutanen, M., Huemer, P., Autto, J., Karsholt, O.
& Kaila, L. 2020. Monopis jussii, a new species
(Lepidoptera, Tineidae) inhabiting nests of the
Boreal owl (Aegolius funereus). ZooKeys 992, 157–
181.
Ohlsson, A. 2020. Eucosma albidulana (Herrich-
Schäer, 1851) en för Sverige ny vecklare
funnen i Åhus, Skåne (Lepidoptera, Tortricidae).
Entomologisk Tidskrift 141, 149–153.
Ólafsson, E. 2018. Toppagullmölur (Phyllonorycter
emberizaepenellus). http://www.ni.is/biota/
animalia/arthropoda/hexapoda/insecta/lepidoptera/
gracillariidae/toppagullmolur-phyllonorycter
[accessed December 2020]
Palmqvist, G. 2018. Intressanta fynd av storfjärilar
(Macrolepidoptera) i Sverige 2017. Entomologisk
Tidskrift 139, 75–85.
Palmqvist, G. & Ryrholm, N. 2020. Intressanta fynd
av storfjärilar (Macrolepidoptera) i Sverige 2019.
Entomologisk Tidskrift 141, 65–80.
Paulavičiūtė, B. 2017. Carpatolechia aenigma
(Lepidoptera, Gelechiidae) – a new species for
the Lithuanian fauna. Bulletin of the Lithuanian
Entomological Society 1 (29), 53–57.
Paulavičiūtė, B. 2019. Data on 3 new and 6
rare Gelechiidae moth species (Lepidoptera:
Gelechiidae) for Lithuania. Bulletin of the
Lithuanian Entomological Society 3 (31), 68–72.
Paulavičiūtė, B., Bačianskas, V. & Inokaitis, V. 2017.
Data on 2 new and 113 rare for the Lithuanian
fauna moth (Lepidoptera) species. Bulletin of the
Lithuanian Entomological Society 1 (29), 5869.
Paulavičiūtė, B. & Mikalauskas, D. 2018. First record
of the box tree moth Cydalima perspectalis (Walker,
1859) (Lepidoptera: Crambidae) in Lithuania.
Bulletin of the Lithuanian Entomological Society 2
Norwegian Journal of Entomology 68, 1
14 (2021)
14
(30), 55–59.
Paulavičiūtė, B., Inokaitis, V., Švitra, G. & Bačianskas,
V. 2020. New data on 2 new and 42 rare Tortricidae
(Lepidoptera) species for Lithuanian fauna. Bulletin
of the Lithuanian Entomological Society 4 (32),
54–60.
Poole, R.W. 1989. Noctuidae. Pars 1-3. Lepidopterorum
Catalogus (N.S.). 118, i-xii., 1-1314.
Robinson, G. & Nielsen, E.S. 1983. The
Microlepidoptera described by Linnaeus & Clerck.
Systematic Entomology 8, 191–242.
Ronkay, L., Ronkay, G., Gyulai, P. & Varga, Z. 2017.
The Witt Catalogue. A Taxonomic Atlas of the
Eurasian and North African Noctuoidea. Vol. 9.
Xyleninae I. Heterocera Press Ltd., Budapest. 342
pp.
Saarenmaa, H. 2020. Polia lamuta (Herz, 1903)
(Lepidoptera, Noctuidae) discovered in Norway, and
notes on other boreo-montane species. Norwegian
Journal of Entomology 67, 189195.
Schmidt, B.C., Lafontaine, J.D. & Troubridge, J.T.
2018. Additions and corrections to the check list
of the Noctuoidea (Insecta, Lepidoptera) of North
America north of Mexico IV. ZooKeys 788, 241–
252.
Sihvonen, P., Murillo-Ramos, L., Brehm, G., Staude,
H. & Wahlberg, N. 2020. Molecular phylogeny
of Sterrhinae moths (Lepidoptera: Geometridae):
towards a global classication. Systematic
entomology 45, 606–634.
Sinev, S.Yu., Baryshnikova, S.V., Lvovsky, A.L.,
Anikin, V.V. & Zolotuhin, V.V. 2017. Volgo-Ural
Mi crolepidoptera described by E. Eversmann.
In: Anikin, V.V., Sachkov, S.A. & Zolotuhin, V.V.
(eds.), Fauna Lepidopterologica Volgo-Uralensis:
from P. Pallas to present days. Proceed ings of the
Museum Witt Munich 7, 374–379. [pls. 1, 2]
Skule, B. & Hviid, C. 2019. Måleren Pungeleria
capreolaria (Denis & Schiermüller, 1775 – ny
storsommerfugl for Danmark. Lepidoptera 11, 267–
271.
Slamka, F. 2019. Pyraloidea of Europe 4. Phycitinae –
Part 1. František Slamka, Bratislava. 432 pp.
Sruoga, V., Ivinskis, P. & Rimšaitė, J. 2019. New data on
new and insuciently known for Lithuanian fauna
species of Elachistinae (Lepidoptera: Elachistidae).
Bulletin of the Lithuanian Entomological Society 3
(31), 73–77.
Švitra, G., Bačianskas, V., Kvietkauskas, R.,
Mikalauskas, D. & Ūsaitis, T. 2017. 3 new and 159
rare for the Lithuanian fauna Lepidoptera species
recorded in 2016–2017. Bulletin of the Lithuanian
Entomological Society 1 (29), 77–104.
Švitra, G., Bačianskas, V., Inokaitis, V., Mikalauskas,
D. & Ūsaitis, T. 2018. Two new and 110 rare for
the Lithuanian fauna Lepidoptera species recorded
in 2018. Bulletin of the Lithuanian Entomological
Society 2 (30), 78–102.
Tabell, J., Mutanen, M. & Siloaho. 2019. Coleophora
sirella Tabell & Mutanen, sp. n. from Finland
(Lepidoptera: Coleophoridae). Entomologica
Fennica 30, 49–56.
Ūsaitis, T., Mikalauskas, D. & Bačianskas, V. 2019.
New and rare for the Lithuanian fauna Lepidoptera
species recorded in 2019. Bulletin of the Lithuanian
Entomological Society 3 (31), 79–98.
Varga, Z., Ronkay, G. & Ronkay, L. 2017. Revised
taxonomic check list of the Eurasiatic species of the
subtribe Poliina (Noctuidae, Noctuinae, Hadenini).
Deutsche Entomologische Zeitschrift 64 (2), 133–
160.
Vargas-Rodríguez, S.M., Fibiger, M.(†), Honey, M.R.,
Ronkay, G., Yela, J.L., Zilli, A. & Ronkay, L. 2020.
Bryophila perloides Guenée, 1852 (Lepidoptera:
Noctuidae: Bryophilinae), an overlooked member
of the European Noctuidae fauna, with upgrading of
Bryopsis Boursin, 1970 to generic level (Taxonomic
studies on the western Palaearctic Bryophilinae, No.
1). Zootaxa 4845 (1), 53–70.
Wang, Q.-Y. & Li, H.-H. 2020. Phylogeny of
the superfamily Gelechioidea (Lepidoptera:
Obtectomera), with an exploratory application on
geometric morphometrics. Zoologica Scripta 49 (3),
307–328.
Wiemers, M., Balletto, E., Dincă, V., Fric, Z.F., Lamas,
G., Lukhtanov, V., Munguira, M.L., Swaay, C.A.v.,
Vila, R., Vliegenthart, A., Wahlberg, N. & Verovnik,
R. 2018. An updated checklist of the European
Butteries (Lepidoptera, Papilionoidea). ZooKeys
811, 9–45.
Wikström, B., Huemer, P., Mutanen, M., Tyllinen, J.
& Kaila, L. 2020. Pyralis cardinalis, a charismatic
new species related to P. regalis [Denis &
Schiermüller], 1775, rst recognized in Finland
(Lepidoptera, Pyralidae). Nota lepidopterologica
43, 337–364.
Zahiri, R., Holloway, J.D., Kitching, I.J., Lafontaine,
J.D., Mutanen, M. & Wahlberg, N. 2012.
Molecular phylogenetics of Erebidae (Lepidoptera,
Noctuoidea). Systematic Entomology 37, 102–124.
Received: 13 January 2021
Accepted: 21 March 2021
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
... First, we inferred a phylogenetic tree for a more than hundred-species subset of European Geometridae using more than 600 protein-coding loci sequenced by AHE technique (Cronn et al., 2012;Faircloth et al., 2012). Thereafter, this tree was used as a phylogenomic backbone for a dataset comprising legacy molecular markers obtained by Sanger sequencing for all species of geometrids known from the Nordic-Baltic region as defined by Aarvik et al. (2017): Denmark, Estonia, Finland, Iceland, Latvia, Lithuania, Norway and Sweden. Recent additions to the Nordic-Baltic fauna reported by Aarvik et al. (2021) were also considered. ...
... Based on phylogenetic analysis of morphological characters, Sihvonen and Kaila (2004) Õunap et al., 2008;Sihvonen et al., 2020), and tribe-level rearrangements have also been performed (Sihvonen et al., 2020). Our sample comprised all 50 species of sterrhines recorded in north Europe (Aarvik et al., 2017), supplemented by five additional species belonging to the tribes Cyllopodini and C. quercimontaria (Bastelberger) (pendularia-group), which received maximum statistical support, was recovered as branching off the main evolutionary lineage next to C. puppillaria ( Figure 2). The remaining, statistically much less supported part of the tree comprises species from both porata-group (C. ...
... However, considering the estimates about the number of undescribed taxa (e.g., Brehm et al., 2011) it is evident that the actual global diversity of larentiines exceeds 7000 species. In recent years, Larentiinae have been subjected to large-scale phylogenetic studies repeatedly, with those of Europe (Aarvik et al., 2017(Aarvik et al., , 2021, supplemented by further 21 species belonging to taxonomic key groups that do not occur in this region Murillo-Ramos et al., 2019;Õunap et al., 2016). F I G U R E 3 Maximum likelihood phylogeny of the basal part of the subfamily Larentiinae. ...
Article
A comprehensive phylogeny of north European Geometridae is reconstructed using a two‐step analytical pipeline. First, a phylogenomic backbone tree was inferred using a 117‐species subset of geometrid moths and a 35‐species set of outgroup taxa from eight other macroheteroceran families. The data matrix totalled 209,499 bp from 648 protein‐coding loci obtained using anchored hybrid enrichment technique for sequencing. This backbone was used for constructing a larger phylogeny of Geometridae based on up to 11 ‘traditional’ protein‐coding genes which were obtained for all 376 species of north European geometrids, complemented by 98 species from taxonomic key groups of Geometridae from other parts of the world. Our results largely corroborate earlier findings about higher classification of Geometridae, but new evidence nevertheless allows us to suggest several changes to the taxonomy. Lampropterygini Õunap & Nedumpally tribus nova and Pelurgini Õunap & Nedumpally tribus nova (both Larentiinae) are described. Epirranthini are regarded as a junior subjective synonym of Rumiini syn. n. Triphosini and Macariini are shown to be paraphyletic within their current limits. Costaconvexa Agenjo is transferred from Xanthorhoini to Epirrhoini new tribe association , Artiora Meyrick from Ennomini incertae sedis to Boarmiini new tribe association , Selenia Hübner from Ennominae incertae sedis to Epionini new tribe association and Epirranthis Hübner from Epirranthini to Rumiini new tribe association . Ochyria Hübner stat. rev. is revived from synonym of Xanthorhoe Hübner as a valid genus and Epelis Hulst stat. rev. and Speranza Curtis stat. rev. from synonyms of Macaria Curtis as valid genera, leading to the following new or revised combinations: Ochyria quadrifasiata (Clerck) rev. comb. , Epelis carbonaria (Clerck) comb. n. , Speranza fusca (Thunberg) comb. n. , Speranza artesiaria (Denis & Schiffermüller) rev. comb. , Speranza brunneata (Thunberg) rev. comb. , Speranza wauaria (Linnaeus) rev. comb. , Speranza loricaria (Eversmann) rev. comb. Perizoma saxicola Tikhonov rev. comb. is transferred back to its original genus from Gagitodes Warren. Hydrelia Hübner, Xanthorhoe and Heliomata Grote & Robinson are shown to be paraphyletic within their current limits.
... Deze soort werd al gemeld uit Griekenland, Hongarije, Italië, Oostenrijk, Roemenië en Slowakije (Kaila 2015). In de Scandinavische landen komt E. elsaella enkel voor in Zweden (Aarvik et al. 2017). Verder werd ze ook al gemeld uit Duitsland, Tsjechië en Zwitserland (Kaila 2019 (Fig. 31) (Laštůvka et al. 2018). ...
Article
Full-text available
Samenvatting. Belangrijke meldingen van nieuwe soorten voor de Belgische fauna worden meegedeeld. De nieuwe soorten voor België zijn: 1. Alucita desmodactyla Zeller, 1847 (Alucitidae), 1 ex. te Bomal (LX) op 16.vii.2022, determinatie door genitaalonderzoek en bevestigd door Imre Fazekas. 2. Hypatopa segnella (Zeller, 1873) (Blastobasidae), 1 ex. te Nismes (NA) op 09.vii.2022. 3. Coleophora curictae Baldizzone, 2016 (Coleophoridae), 4 ex. te Lamorteau (LX) op 29.vi.2019, determinatie bevestigd door DNA-onderzoek. 4. Coleophora partitella Zeller, 1849 (Coleophoridae), 1 ex. te Torgny (LX) op 27.vi.2021, determinatie bevestigd door genitaalonderzoek. 5. Chrysocrambus linetella (Fabricius, 1781) (Crambidae), 1 ex. te Torgny (LX) op 27.vi.2021, determinatie bevestigd door genitaalonderzoek. 6. Dolicharthria punctalis (Denis & Schiffermüller, 1775) (Crambidae), 1 ex. te Torgny (LX) op 27.vi.2021, 1 ex. te Athus (LX) op 24.vii.2021 en 1 ex. te Torgny (LX) op 25.vi.2022. 7. Agonopterix astrantiae (Heinemann, 1870) (Depressariidae), 1 ex. te Lamorteau (LX) op 01.viii.2020, determinatie bevestigd door genitaalonderzoek en 1 ex. te Virton (LX) op 06.viii.2020, determinatie door genitaalonderzoek en bevestigd door DNA�controle. 8. Elachista pomerana Frey, 1870 (Elachistidae), 1 ex. te Kinrooi (LI) op 13.vi.2020, determinatie door genitaalonderzoek en bevestigd door DNA-controle. 9. Elachista berndtiella Traugott-Olsen, 1985 (Elachistidae), 2 ex. te Furfooz (NA) op 04.ix.2022, determinatie door genitaalonderzoek en bevestigd door Lauri Kaila. 10. Elachista elsaella Traugott�Olsen, 1988 (Elachistidae), 1 ex. te Nismes (NA) op 21.v.1982, determinatie door genitaalonderzoek en bevestigd door Lauri Kaila. 11. Elachista occidentalis Frey, 1882 (Elachistidae), 1 ex. te Lamorteau (LX) op 06.vii.2019 en 1 ex. te Torgny (LX) op 27.vi.2021, determinatie door genitaalonderzoek en bevestigd door DNA-controle. 12. Stigmella svenssoni (Johansson, 1971) (Nepticulidae), 1 ex. te De Panne (WV) op 21.viii.2021, determinatie door genitaalonderzoek en bevestigd door DNA-controle. 13. Thaumetopoea pityocampa (Denis & Schiffermüller, 1775) (Notodontidae), 1 ex. te Arlon (LX) op 31.vii.2021. 14. Reisseronia tarnierella (Bruand, 1850) (Psychidae), 2 ex. te Stockay (LG) op 24.iv.2021, determinatie bevestigd door genitaalonderzoek. 15. Etiella zinckenella (Treitschke, 1832) (Pyralidae), 1 ex. te Koksijde (WV) op 22.viii.2021. 16. Tenaga rhenania (Petersen, 1962) (Tineidae), 7 ex. te Aywaille (LG) op 21.vi.2020, determinatie bevestigd door genitaalonderzoek.
... This species occurs in South Italy, Croatia and Greece (Zucco & Scalercio, 2023;Lepiforum, 2024). According to the Nordic-Baltic checklist of Lepidoptera by Aarvik et al. (2017), H. radicaria is found in Denmark, but no records are known from the Baltic States, Finland, Sweden and Norway. Horisme radicaria was reported in Brandenburg region, Eastern Germany, where it flies sympatrically with H. tersata (Gelbrecht & Weisbach, 2015). ...
... The moth is widely distributed across temperate Europe and western Asia, from Spain (see below) (Karsholt & Razowski, 1996) eastwards to Romania and Moldova (Rákosy et al., 2003), to Ukraine (Crimea) and Russia (Sinev, 2019), Iran (Rajaei et al., 2023) and northwards to the Nordic and Baltic countries (Aarvik et al., 2017), but is replaced by other congeneric species in the Russian Far-East and Japan (Kumata, 1982). As an introduced species, G. syringella is also widespread in Canada and the United States of America (Pohl et al., 2016(Pohl et al., , 2018. ...
Article
Full-text available
The widespread leaf-miner moth Gracillaria syringella (Fabricius, 1794) (Lepidoptera: Gracillariidae), is here reported for the first time in Portugal, whilst previously unpublished records in Spain are also presented. We comment upon the finding, in the context of the distribution and ecology of the moth.
... The geometrid moth fauna of Europe is well-documented in terms of species composition and ecology (Hausmann, 2001(Hausmann, -2019, especially in the northern parts of the region (Mikkola et al., 1985(Mikkola et al., , 1989Skou, 1986). In this study, we treat Northern Europe with the limits defined in Aarvik et al. (2017Aarvik et al. ( , 2021, which covers the Nordic and Baltic countries. For geometrid species of this region, we have complete phylogenetic and ecological information available. ...
Article
Interspecific variation in body size is one of the most popular topics in comparative studies. Despite recent advances, little is still known about the patterns and processes behind the evolution of body size in insects. Here, we used a robust data set comprising all geometrid moth species occurring in Northern Europe to examine the evolutionary associations involving body size and several life-history traits under an explicitly phylogenetic framework. We provided new insights into the interactive effects of life-history traits on body size and evidence of correlated evolution. We further established the sequence of trait evolution linking body size with the life-history traits correlated with it. We found that most (but not all) of the studied life-history traits, to some extent, interfered with interspecific variation in body size, but interactive effects were uncommon. Both bi- and multivariate phylogenetic analyses indicated that larger species tend to be nocturnal flyers, overwinter in the larval stage, feed on the foliage of trees rather than herbs, and have a generalist feeding behavior. We found evidence of correlated evolution involving body size with overwintering stage, host-plant growth form, and dietary specialization. The examination of evolutionary transitions within the correlated models signaled that overwintering as larvae preceded the evolution of large sizes, as did feeding on tree foliage and the generalist feeding behavior. By showing that both body size and all life-history traits correlated with it evolve at very slow rates, we caution against uncritical attempts to propose causal explanations for respective associations based on contemporary ecological settings.
Article
Full-text available
The relationship of Xylomoia strix Mikkola, 1980; Xylomoia retinax Mikkola, 1998; and Xylomoia stangelmaieri Mikkola, 1998 is reconsidered based on 59 genitalia slides (37 males and 22 females) and 40 barcodes of adults collected from the type localities and areas in-between. Due to lack of stable morphologic differences, apart from the wing coloration of X. retinax, and low genetic distance between the three, they are considered as three subspecies of X. strix: the nominotypical one X. strix stangelmaieristat. nov. and X. strix retinaxstat. nov. Included are photographs of all specimens covering 37 adults, and 28 male and 18 female genitalia, as well as a phylogenetic tree and a map showing collecting localities.
Book
Full-text available
Tässä raportissa esitellään Suomen valtakunnallisen yöperhosseurannan (Nocturna) 30-vuotisen seurantakauden 1993–2022 toimintaa ja keskeiset tulokset. Seuranta käynnistettiin vuonna 1993 osana koko maan kattavaa monimuotoisuuden yleisseurantaa, mutta havaintoverkoston optimointien myötä seuranta keskittyi erityisesti metsäympäristöjen yöperhoslajiston seurantaan. Seurannan alkuaikoina havaintopaikkoja oli parhaimmillaan yli 150, mutta 2010-luvulla määrä väheni alle kolmannekseen. Viime vuosina, erityisesti uudenlaisten pyydysten käyttöönoton myötä, seurantapaikkojen määrä on kasvanut jälleen yli sataan, ja verkko on nykyisin kattavimmillaan. Pyydysten ylläpito on viimeisellä kymmenvuotiskaudella siirtynyt viranomaisilta (alueelliset ELY-keskukset) vapaaehtoisille yhteistyötahoille. Aineiston määrittämisestä ja tallennuksesta vastaavat vapaaehtoiset perhosharrastajat, joiden rekrytoinnissa on ollut apuna Suomen Perhostutkijain Seura. Seurantaa ovat koordinoineet Kainuun ELY-keskus ja Suomen ympäristökeskus (Syke). Seurannan tuottamaa pitkäaikaista aineistoa on käytetty monien ympäristössä tapahtuvien laaja-alaisten muutosten, kuten maankäytön, ilmaston ja ilmansaasteiden, vaikutusten tutkimiseksi. Aineistoa onkin viime aikoina käytetty paljon tieteellisissä tutkimushankkeissa niin Suomessa kuin ulkomailla. Suomen yöperhosyhteisöissä on todettu vuosina 1993–2022 useita merkittäviä ja laaja-alaisia muutoksia. Vuosittain havaittu lajimäärä on kasvanut, ja nousu on ollut voimakkainta Etelä-Suomen sisäosissa. Useat eteläistä alkuperää olevat yöperhoslajit ovat levittäytyneet maahan ja runsastuneet voimakkaasti. Samalla monet levinneisyydeltään pohjoiset lajit ovat puolestaan vähentyneet ja vetäytyneet kohti pohjoista. Lajien runsaussuhteissa tapahtuneiden muutosten myötä Suomen yöperhosyhteisöjen lajikoostumus on keskimäärin ”lounaistunut” etenkin maan eteläpuoliskolla. Näiden muutosten odotetaan jatkuvan ja mahdollisesti voimistuvan. Monisukupolvisuus eli useamman kuin yhden sukupolven esiintyminen kesässä on yleistynyt yhä useammalla yöperhoslajilla, ja yleistyminen on ollut voimakkainta maan eteläosissa. Uhanalaisten lajien määrät ovat vähentyneet etenkin seurantajakson alkupuolella voimakkaasti. Yöperhosten kokonaisyksilömäärä on seurantakauden aikana vaihdellut jaksoittaisesti noin kymmenen vuoden sykleissä, mutta kaiken kaikkiaan kokonaisyksilömäärä on pysynyt vakaana lajimäärän kasvusta huolimatta. Todennäköisin selitys useimmille havaituille muutoksille Suomen yöperhosyhteisöissä on seurantakauden aikana tapahtunut ilmaston lämpeneminen. Lämpeneminen on hyödyttänyt monia etelästä levittäytyneitä lajeja ja toisaalta haitannut pohjoiseen vetäytyneitä lajeja. Myös erilaiset maankäytön muutokset ovat voineet vaikuttaa monien lajien menestymiseen. Happaman laskeuman pieneneminen on todennäköisesti vaikuttanut myönteisesti jäkälillä toukkana elävien yöperhosten kantoihin. Lisäksi korkeasta maaperän typpipitoisuudesta hyötyvillä kasveilla sekä jäkälillä toukkana elävät yöperhoset ovat voineet hyötyä typpilaskeumasta. Esitämme suosituksia seurannan jatkon turvaamiseksi. Seurannan verkoston ajallista tai alueellista kattavuutta tulee pitää yllä ja mahdollisuuksien mukaan parantaa ja seurannan resurssit tulee varmistaa pidemmällä aikavälillä. Seurannan tulosten säännöllinen raportointi ja kansainvälisen yhteistyön edistäminen muiden yöperhosten seurantaa ylläpitävien maiden kanssa ovat myös lähitulevaisuuden tärkeitä tavoitteita. Landsomfattande övervakning av finska nattfjärilar (1993–2022) I denna rapport presenteras de centrala resultaten från en 30-årig övervakning av nattfjärilar i Finland 1993–2022 (Nocturna) och dess verksamhet. Övervakningen inleddes 1993 som en del av den landsomfattande övervakningen av den biologiska mångfalden, men efter optimering i observationsnätet kom övervakningen att fokusera särskilt på nattfjärilsfaunan i skogsmiljöer. I början av övervakningsperioden fanns det över 150 observationsplatser, men under 2010-talet minskade antalet till mindre än en tredjedel. Under de senaste åren har antalet observationsplatser återigen ökat till över 100, särskilt med införandet av en ny typ av fälla, frysfällan, och nu är observationsnätverket mer omfattande än någonsin. Under den senaste tioårsperioden har ansvaret för fällorna övergått från myndigheterna (regionala NTM-centraler) till frivilliga samarbetspartner. Frivilliga amatörlepidopterologer ansvarar för identifiering av fjärilar och registrering av data. Rekryteringen av dessa har stötts av Lepidopterologiska Sällskapet i Finland. Övervakningen har koordinerats av NTM-centralen i Kajanaland och Finlands miljöcentral (Syke). De långsiktiga data som övervakningen genererat har använts för att studera påverkan av omfattande miljöförändringar, såsom förändrad markanvändning, klimatförändring och luftföroreningar, på nattfjärilsfaunan. Dessa data har på senare tid använts i många vetenskapliga studier både i Finland och utomlands. Under perioden 1993–2022 har Finlands nattfjärilssamhällen genomgått flera betydande och omfattande förändringar. Antalet observerade arter har ökat, och ökningen har varit mest påtaglig i de södra delarna av inlandet. Många nattfjärilsarter med ursprung i sydligare områden har spridit sig till Finland och ökat kraftigt i antal. Samtidigt har flera nordliga arter minskat och dragit sig norrut. På grund av förändringarna i arternas relativa förekomst har Finlands nattfjärilssamhällen blivit mer ”sydvästliga” i sammansättningen, särskilt i den södra halvan av landet. Dessa förändringar förväntas fortsätta och eventuellt förstärkas i framtiden. Multivoltinism, vilket betyder att flera generationer förekommer under en och samma sommar, har blivit allt vanligare hos flera nattfjärilsarter, och denna ökning har varit mest påtaglig i de södra delarna av landet. Hotade arter har minskat, speciellt under den första halvan av övervakningsperioden. Totalantalet nattfjärilar har varierat cykliskt under övervakningsperioden, med ungefär tio års intervall, men totalantalet har förblivit stabilt trots ökningen av antalet arter. Den mest sannolika förklaringen till de flesta observerade förändringarna i Finlands nattfjärilssamhällen är den globala uppvärmning som skett under övervakningsperioden. Uppvärmningen har gynnat många arter som har spridit sig söderifrån, samtidigt som den haft negativ inverkan på nordliga arter, som har dragit sig norrut. Förändringar i markanvändningen kan också ha påverkat många arters överlevnad. Minskningen av surt nedfall har troligen haft en positiv inverkan på populationerna av nattfjärilar som lever på lavar som larver. Dessutom kan nattfjärilar vars larver lever på växter som kräver hög kvävehalt i marken ha gynnats av kvävenedfall. Vi rekommenderar att observationsnätverkets tidsmässiga och geografiska täckning upprätthålls och förbättras när det är möjligt, och att resurserna för övervakningen säkerställs på lång sikt. Regelbunden rapportering av övervakningsresultaten och främjande av internationellt samarbete med andra länder som övervakar nattfjärilar är också viktiga mål för framtiden. The Finnish moth monitoring scheme of 30 years (1993–2022) This report presents the main results of the 30-year Finnish moth monitoring scheme (Nocturna 1993–2022). Moth monitoring in Finland started in 1993 as part of a nationwide biodiversity monitoring scheme, but after optimisations of the monitoring network, the scheme was focused on nocturnal moths in forest habitats. During the first few years, the monitoring network consisted of more than 150 sites at highest but, during the 2010s, the number of sites was diminished to less than a third of this initial amount. In the last few years, the number of sites has again increased to over 100, particularly due to the deployment of a more modern trapping system. Nowadays, the geographical coverage of the monitoring network is at its all-time peak. Maintenance of the traps has shifted from public officials (regional environmental centres) to voluntary collaborators during the last decade of the 30-year monitoring period. Voluntary amateur lepidopterists, mainly recruited through the Finnish Lepidopterological Society, have been responsible for species identification and data recording. The monitoring scheme has been coordinated by the Kainuu Centre for Economic Development, Transport and the Environment and the Finnish Environment Institute (Syke). The long-term monitoring data have been used in researching many widespread environmental changes such as land use change, climate change and air pollution. Especially in recent years, the data have been used in multiple scientific studies in Finland and abroad. The nocturnal moth community in Finland has undergone many remarkable and widespread changes during the monitoring period of 1993–2022. The number of species detected every year has grown, most sharply in the interior parts of southern Finland. Many moth species of originally more southern distribution have spread to Finland and strongly increased in numbers, while species with northern distributions have decreased and retreated towards the north. Due to the changes in these species’ abundance, the species communities in Finland have become more “southwestern” in composition. These changes are expected to continue and possibly intensify. Multivoltinism (the appearance of multiple generations during the summer) has become more common with more species, most prominently in the southern parts of Finland. Threatened species have strongly decreased, especially during the first half of the monitoring period. The overall abundance of moths has changed in ca. 10-year intervals during the monitoring period, but there is no trend in overall abundance despite the growing number of species. The most likely explanation for many of the detected changes in the Finnish nocturnal moth community is the climatic warming during the monitoring period. Warming has benefitted many southern species, while northern species have been harmed by it. The diverging trends between species could also be the result of changes in land use. Additionally, lichen-feeding species have most likely benefitted from decreased sulfur deposits and still high nitrogen deposits, and the latter has probably also been beneficial for species feeding on plants which benefit from high soil nitrogen concentrations. In this report, we present recommendations to secure the continuation of the moth monitoring scheme in Finland. The temporal and geographical continuity should be maintained and improved if possible, and the resources for the scheme should be secured for the long term. Reporting the monitoring results regularly and advancing international cooperation are also important goals for the future.
Article
Full-text available
New and interesting records of Balkans Lepidoptera are detailed. Holoterpna pruinosata (Staudinger, 1897), recently known in Europe only from Crimea, was re-discovered in the Balkan Peninsula. Idaea sericeata (Hübner, 1813) is shown to be a part of the Balkan fauna. Pabulatrix pabulatricula (Brahm, 1791) is new for the Central Balkans. Two genera and four species are new and six species are reported for the second time for Albania. For Montenegro, one genus and four species are new and four species are recorded for the second time. One genus and four species are new for the Republic of North Macedonia. Three species are new and two are reported for the second time for Serbia. Four species are new to Bulgaria and 11 are reported for the second time. For many other species, third localities are reported for certain countries. For other species we report highest or lowest altitude localities and southernmost/easternmost points of their range. Data for some other interesting species from these countries and Greece are also presented, including new localities for species with poorly known distribution in the Balkan Peninsula and Balkans countries. Illustrations of specimens and their genitalia are given when necessary. Altogether data for 267 species of Lepidoptera are presented here, with 200 figures of habitats, specimens and their genitalia. In addition one Tachinidae (Diptera) parasitoid is new for Albania, and a new host species is reported for it.
Article
Full-text available
The species in the genus Clavigesta Obraztsov, 1946 have been studied more intensively since the taxonomic and faunistic revision of the genus was published in 2010 (Larsen, 2010). This has resulted in the description of one new species (Nel et Varenne, 2023) and many new distributional records. This article presents new records with a summary of the faunistic changes. Clavigesta fabrei Nel et Varenne, 2023 syn. nov. is shown to be a junior synonym of C. gerti Larsen, 2010.
Article
Full-text available
Insekt-Nytt 46 (1) 2021 New species of lepidoptera discovered in Norway. Denne oppdateringen inneholder i hovedsak funn fra 2019 og 2020. De fleste nye arter som har dukket opp i løpet av de to sesongene er enten migranter eller arter som er i ekspansjon mot nord. To av artene er resultat av endret taksonomi, det vil si artssplittinger.
Article
Full-text available
This report represents data on 2 new (Celypha woodiana and Retinia perangustana) and 42 rare for the Lithuanian fauna Tortricidae species. Species were collected from 11 administrative districts of Lithuania.
Article
Full-text available
Monopis jussii Kaila, Mutanen, Huemer, Karsholt & Autto, sp. nov. (Lepidoptera, Tineidae) is described as a new species. It is closely related to the widespread and common M. laevigella ([Denis & Schiffermül-ler], 1775), but differs in its distinct COI DNA barcode sequences, four examined nuclear loci as well as details in forewing coloration and pattern. Most reared specimens of M. jussii have emerged from the nest remnants of the Boreal owl (Aegolius funereus (Linnaeus, 1758)), but also nests of the Ural owl (Strix uralensis Pallas, 1771) and the Great tit (Parus major Linnaeus, 1758) have been observed as suitable habitats. Based on the present knowledge, the new species has a boreo-montane distribution as it is recorded only from northern Europe and the Alps. Several extensive rearing experiments from Strix spp. nest remnants from southern Finland did not produce any M. jussii, but thousands of M. laevigella, suggesting that the species is lacking in the area or, more unlikely, that the nest of these owl species do not serve as good habitat for the new species. This unexpected species discovery highlights, once again, the usefulness of DNA barcoding in revealing the cryptic layers of biodiversity. To serve stability we select a neotype for Tinea laevigella [Denis & Schiffermüller], 1775, and discuss the complicated synonymy and nomenclature of this species. A peer-reviewed open-access journal Marko Mutanen et al. / ZooKeys 992: 157-181 (2020) 158
Article
Full-text available
The informal Pyralis regalis complex, including species of the genus Pyralis Linnaeus, 1758 (Pyralidae), with a bright white or silvery pattern on the forewing, is reviewed, supplemented by observations of the externally distinguished P. perversalis (Herrich-Schäffer, 1849), which also exhibits similarities in genitalia and DNA barcodes. We describe Pyralis cardinalis Kaila, Huemer, Mutanen, Tyllinen & Wikström, sp. nov. , based on specimens ranging from Denmark and Sweden in the West to Japan and South Korea in the East. A neotype is designated for the predominantly South European P. regalis [Denis & Schiffermüller], 1775. Lectotypes are designated for Asopia kacheticalis Christoph, 1893 and Pyralis princeps Butler, 1889. Pyralis regalis ssp. sagarrai Leraut, 2005 is considered a valid species, stat. nov.
Article
Full-text available
In support of a comprehensive update to the checklist of the moths of North America, we attempt to determine the status of 151 species of Tortricidae present in North America that may be Holarctic, introduced, or sibling species of their European counterparts. Discovering the natural distributions of these taxa is often difficult, if not impossible, but several criteria can be applied to determine if a species that is present in both Europe and North America is natively Holarctic, introduced, or represented by different but closely related species on each continent. We use DNA barcodes (when available), morphology, host plants, and historical records (literature and museum specimens) to make these assessments and propose several taxonomic changes, as well as future areas of research. The following taxa are raised from synonymy to species status: Acleris ferrumixtana (Benander, 1934), stat. rev.; Acleris viburnana (Clemens, 1860), stat. rev.; Acleris pulverosana (Walker, 1863), stat. rev.; Acleris placidana (Robinson, 1869), stat. rev.; Lobesia spiraeae (McDunnough, 1938), stat. rev.; and Epiblema arctica Miller, 1985, stat. rev. Cydia saltitans (Westwood, 1858), stat. rev., is determined to be the valid name for the "jumping bean moth," and Phiaris glaciana (Möschler, 1860), comb. n., is placed in a new genus. We determine that the number of Holarctic species has been overestimated by at least 20% in the past, and that the overall number of introduced species in North America is unexpectedly high, with Tortricidae accounting for approximately 23-30% of the total number of Lepidoptera species introduced to North America.
Article
Full-text available
The taxonomic position of two species Plutella hufnagelii Zeller 1839 and Caunaca insulella Walsingham 1900, in the family Plutellidae: has been unclear. In current fauna studies, these species are usually placed in the genera Rhigognostis and Eidophasia respectively. In this paper, I address the taxonomic position of P. hufnagelli and C. insulella and describethe genitalia of both sexes. Analysis of genital structure confirms the correct placement of these species into the genus Eidophasia.
Article
Full-text available
The checklist of European Gelechiidae covers 865 species, belonging to 109 genera, with three species records which require confirmation. Further, it is the first checklist to include a complete coverage of proved synonyms of species and at generic level. The following taxonomic changes are introduced: Pseudosophronia con-stanti (Nel, 1998) syn. nov. A peer-reviewed open-access journal Peter Huemer & Ole Karsholt / ZooKeys 921: 65-140 (2020) 66 Dichomeris neatodes Meyrick, 1923 sp. rev.; Caryocolum horoscopa (Meyrick, 1926) stat. rev.; Ivanauskiella occitanica (Nel & Varenne, 2013) sp. rev.; Apodia martinii Petry, 1911 sp. rev.; Caulastrocecis cryptoxena (Gozmány, 1952) sp. rev. Following Article 23.9.2 ICZN we propose Caryocolum blandella (Douglas, 1852) (Gelechia) nom. protectum and Caryocolum signatella (Eversmann, 1844) (Lita) nom. oblitum.
Article
A multigene phylogenetic study was carried out to test current, mostly morphology‐based hypotheses on Sterrhinae phylogeny with additional material included from further geographical areas and morphologically different lineages. A maximum likelihood analysis (11 molecular markers and 7665 bp) was conducted on 76 species and 41 genera using iq‐tree software. The resulting phylogenetic hypothesis is well resolved and branches have high support values. Results generally agree with earlier hypotheses at tribal levels and support the hypothesis that Sterrhinae comprises two major lineages. Based on the molecular phylogeny and extensive morphological examination, nine tribes are considered valid and the following taxonomic changes are introduced to recognize monophyletic groups: Mecoceratini Guenée, 1858 (= Ametridini Prout, 1910) is transferred from Desmobathrinae to Sterrhinae, and it is considered valid at tribal level new classification; Haemaleini Sihvonen & Brehm is described as a new tribe and deemed sister to Scopulini + Lissoblemmini; Lissoblemmini Sihvonen & Staude is described as a new tribe and sister to Scopulini; Lythriini Herbulot, 1962 is now a junior synonym of Rhodometrini Agenjo, 1952 syn.n.; and Rhodostrophiini Prout, 1935 is now a junior synonym of Cyllopodini Kirby, 1892 syn.n. In addition, 48 taxa are transferred from other geometrid subfamilies to Sterrhinae, or within Sterrhinae from one tribe to another, or they are classified into a tribe for the first time, or a new genus classification is proposed. The results demonstrate the limited explanatory power of earlier classifications, particularly at the tribal level. This is probably a result of earlier classifications being based on superficial characters and biased towards the European and North American fauna. The species richness and distribution of Sterrhinae and its constituent tribes are reviewed, showing that the globally distributed Sterrhinae are most diverse in the Neotropics (31% of global fauna). They are species‐rich in the Palaearctic (22%), Afrotropics (19%) and Indo‐Malay (16%) regions, whereas they are almost absent in Oceania (1%). In terms of the described fauna, the most species‐rich tribes are Scopulini (928 species), Sterrhini (876 species) and Cosymbiini (553 species), all of which have a cosmopolitan distribution. Mecoceratiini and Haemaleini are almost entirely Neotropical. Timandrini and Lissoblemmini, by contrast, are absent in the Neotropics. We present a revised classification of the global Sterrhinae fauna, which includes about 3000 putatively valid species, classified into nine tribes and 97 genera. Four genera are of uncertain position within Sterrhinae. Our results highlight the compelling need to include more genera from a global perspective in molecular phylogenetic studies, in order to create a stable global classification for this subfamily. This published work has been registered on ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A66F5DDD‐06D6‐4908‐893E‐E8B124BB99B1. We analysed the phylogeny of Sterrhinae moths based on molecular dataset of 76 species and 11 genes, combined those with morphology and included the results in a global classification framework. Two new tribes are described, Mecoceratini is transferred from Desmobathrinae to Sterrhinae, and 50 other taxonomic changes are proposed. Sterrhinae are a cosmopolitan group of about 3000 species, with the highest species richness in the Neotropics and the lowest in Oceania.