ArticlePDF Available

Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera



Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera (Aarvik et al. 2017) are presented. 44 species new to the Nordic-Baltic area as well as numerous new country records are added. Two misspellings and 14 other mistakes of various types are corrected. The genus name Tuta Kieffer & Jørgensen, 1910 is recombined with the species name absoluta Meyrick, 1917 as Tuta absoluta (Meyrick, 1917) comb. rev.
Additions and corrections to the Nordic-Baltic Checklist of
Aarvik, L., Bengtsson, B.Å., Elven, H., Ivinskis, P., Jürivete, U., Karsholt, O., Mutanen, M. &
Savenkov, N. 2021. Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera.
Norwegian Journal of Entomology 68, 1–14.
Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera (Aarvik et al. 2017) are
presented. 44 species new to the Nordic-Baltic area as well as numerous new country records are
added. Two misspellings and 14 other mistakes of various types are corrected. The genus name Tuta
Kieer & Jørgensen, 1910 is recombined with the species name absoluta Meyrick, 1917 as Tuta
absoluta (Meyrick, 1917) comb. rev.
Key words: Lepidoptera, checklist, Nordic-Baltic, additions, corrections.
Leif Aarvik, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo,
Norway. E-mail:
Bengt Å. Bengtsson, Lokegatan 3, S-386 93 Färjestaden, Sweden.
Hallvard Elven, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318
Oslo, Norway. E-mail:
Povilas Ivinskis, St. Nature Research Centre, Akademijos 2, LT-08412 Vilnius-21, Lithuania.
Urmas Jürivete, Estonian Lepidopterologists’ Society, Moora umb. 8, EE-11625 Tallinn, Estonia.
Ole Karsholt, Zoologisk Museum, Natural History Museum of Denmark, University of Copenhagen,
Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. E-mail:
Marko Mutanen, Department of Genetics and Physiology, P.O. Box 3000, FI-90014 University of
Oulu, Finland. E-mail: marko.mutanen@oulu.
Nikolay Savenkov, Latvian Museum of Natural History, K. Barona st. 4, LV-1050 Riga, Latvia.
© Norwegian Journal of Entomology. 18 June 2021
The authors present faunistic and taxonomic
updates to the Nordic-Baltic Checklist of
Lepidoptera (Aarvik et al. 2017). In the past three
years, numerous publications on Lepidoptera have
appeared which have added to the knowledge
of the fauna present in the area. The studies on
phylogeny using molecular methods are continuing
and recently this has aected particularly the
classication of Gelechioidea (Wang & Li
2020) and Geometridae (Murillo-Ramos et al.
2019, Müller et al. 2019, Sihvonen et al. 2020).
New monographs covering Europe or the whole
Palaearctic region give an extended perspective at
the genus level and inevitably lead to changes. An
example is the monograph on the noctuid genus
Agrochola Hübner, 1821 and allies (Ronkay et
al. 2017). At the national level numerous new
records have been made. This reects the interest
in Lepidoptera in each of the countries, but also to
some extent a warmer climate.
It has recently been suggested (Wiemers
et al. 2018) that Linnaeus’ Fauna Svecica was
published in 1760, not 1761. However, it seems
that Linnaeus in 1760 was only circulating a proof
version of Linnaeus (1761) and not a publication.
The suggested change would aect the year of
description for a number of species. Until more
evidence eventually appears, we consider the year
of publication to be 1761.
Material and methods
New country records are based on publications
referred to in each case. In cases where there is
no reference to a publication, the information
was gathered by the authors from the dierent
countries. A new version of the checklist in the
form of an excel sheet is available on the website
of the Norwegian Entomological Society: http://
The new country records are the responsibility
of the authors representing their own country.
New species for the list is the responsibility of the
contributor from the country where the species
was discovered, but has also been accepted
by the rest of the authors. Some of the records
have been published in entomological journals,
some have been presented on the internet and
others are presented for the rst time here. In
case of unpublished records, they are given
with the permission of the discoverer/collector.
New species for Finland are recorded on the
website «Laji» which is provided by The Finnish
Biodiversity Information Facility (FinBIF):
https://laji./en. The word ‘omitted’ is used in
cases when a record was omitted by mistake in
the checklist (Aarvik et al. 2017). The number
before the name of the taxon is the same as the
one used in the checklist. A new taxon takes
the number of the taxon preceding it, adding a
letter after the number, as in the example: 4178a.
Spodoptera cilium Guenée, 1852 D (Hviid 2018).
This means that Spodoptera cilium is a species
new to Denmark as well as the whole region, and
that it should be inserted after Spodoptera exigua,
which has number 4178.
New country records
0020. Eriocrania salopiella (Stainton, 1854) Lt
(Ivinskis et al. 2018).
0047. Stigmella freyella (Heyden, 1858) S
(Bengtsson 2020).
0051. Stigmella sakhalinella Puplesis, 1984 F.
0129. Trifurcula immundella (Zeller, 1839) N
(Aarvik et al. 2021), Lt (Ivinskis et al. 2018).
0136. Etainia louisella (Sircom, 1849) S
(Bengtsson 2019).
0185. Incurvaria masculella (Denis & Schier-
müller, 1775) Lt (Ivinskis & Rimšaite 2017).
0216. Nemophora minimella (Denis & Schier-
müller, 1775) F, E.
0220. Adela reaumurella (Linnaeus, 1758) F.
0245. Coptotriche marginea (Haworth, 1828) N
(Aarvik et al. 2019).
0308. Apterona helicoidella (Vallot, 1827) D
(Buhl et al. 2018).
0368. Trichophaga scandinaviella Zagulajev,
1960 E.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
0370. Elatobia fuliginosella (Lienig & Zeller,
1846) Lt (Ivinskis & Rimšaite 2017).
0382. Tinea svenssoni Opheim, 1966 Lt.
0473. Caloptilia della (Reutti, 1853) F, Lv, Lt
(Ivinskis et al. 2020).
0536. Phyllonorycter emberizaepenella (Bouché,
1834) I (Ólafsson 2018).
0556. Phyllonorycter viminetorum (Stainton,
1854) E.
0557. Phyllonorycter connexella (Zeller, 1846) N
(Aarvik et al. 2019).
0595. Euhyponomeutoides ribesiella (Joannis,
1900) Lt (Ivinskis et al. 2020).
0604. Swammerdamia passerella (Zetterstedt,
1839) Lt (Ivinskis et al. 2018).
0626. Argyresthia trifasciata (Staudinger, 1871)
0673. Digitivalva reticulella (Hübner, 1796) Lt
(Paulavičiūtė et al. 2017).
0691. Ypsolopha mucronella (Scopoli, 1763) F.
0734. Leucoptera laburnella (Stainton, 1851) F.
0737. Leucoptera lathyrifoliella (Stainton, 1866)
D (omitted).
0768. Choreutis diana (Hübner, 1822) Lt (Ivinskis
et al. 2019).
0797. Sparganothis pilleriana (Denis & Schier-
müller, 1775) Lv.
0973. Eupoecilia sanguisorbana (Herrich-
Schäer, 1856) E.
1001. Cochylis roseana (Haworth, 1811) S
(Bengtsson 2019).
1006. Cochylichroa atricapitana (Stephens, 1852)
(= Cochylis atricapitana) Lt (Ivinskis &
Rimšaite 2017).
1030. Apotomis lineana (Denis & Schiermüller,
1775) Lt (Ivinskis et al. 2018).
1062. Celypha woodiana (Barrett, 1882) Lt
(Ivinskis et al. 2020, Paulavičiūtė et al. 2020).
1115. Endothenia gentianaeana (Hübner, 1799)
Lt (Ivinskis et al. 2020).
1142. Ancylis comptana (Frölich, 1828) D (P.
Falck pers.comm.).
1193. Epinotia tedella (Clerck, 1759) I (E.
Ólafsson in litt.).
1195. Epinotia pusillana (Peyerimho, 1863) S
(Bengtsson 2019).
1212. Crocidosema plebejana Zeller, 1847 I
1257. Epiblema junctana (Herrich-Schäer,
1856) Lv.
1270. Notocelia rosaecolana (Doubleday, 1850) I
(E. Ólafsson in litt.).
1277. Retinia perangustana (Snellen, 1883) Lt
(Paulavičiūtė et al. 2020).
1323. Cydia conicolana (Heylaerts, 1874) F.
1330. Cydia grunertiana (Ratzeburg, 1868) Lv.
1336. Cydia leguminana (Lienig & Zeller, 1846)
N (Gustad & Aarvik in prep.)
1341. Cydia amplana (Hübner, 1799) Lv.
1354. Grapholita gemmiferana Treitschke, 1835
Lt (Ivinskis et al. 2019).
1358. Grapholita lobarzewskii (Nowicki, 1860)
1370. Pammene albuginana (Guenée, 1845) Lt
(Ivinskis & Rimšaite 2017).
1381. Pammene trauniana (Denis & Schier-
müller, 1775) S (Bengtsson 2018).
1383. Pammene aurita Razowski, 1992 Lv.
1443. Synanthedon aviventris (Staudinger, 1883)
N (Aarvik et al. 2021).
1445. Synanthedon myopaeformis (Borkhausen,
1789) F.
1476. Oegoconia deauratella (Herrich-Schäer,
1854) Lt (Ivinskis & Rimšaite 2017).
Norwegian Journal of Entomology 68, 1
14 (2021)
1486. Denisia albimaculea (Haworth, 1828) N
(Aarvik et al. 2021).
1488. Denisia luticiliella (Erscho, 1877) D
(Buhl et al. 2018).
1512. Batia internella Jäckh, 1972 F.
1520. Oecophora bractella (Linnaeus, 1758) Lv.
1649. Pancalia nodosella (Bruand, 1851) Lt
(Ivinskis & Rimšaite 2017).
1678. Aproaerema larseniella Gozmány, 1957 Lt
(Paulavičiūtė 2019).
1700. Nothris gregerseni Karsholt & Šumpich,
2015 Lt (Ivinskis & Rimšaite 2017).
1719. Dichomeris latipennella (Rebel, 1937) D
(Buhl et al. 2020).
1733. Helcystogramma albinervis (Gerasimov,
1929) F.
1803. Monochroa divisella (Douglas, 1850) E.
1866. Gelechia scotinella Herrich-Schäer, 1854
N (Aarvik et al. 2019).
1902. Scrobipalpa bryophiloides Povolný, 1966
E, D (Buhl et al. 2020).
1905. Scrobipalpa ocellatella (Boyd, 1858) S
(Bengtsson 2019).
1908. Scrobipalpa salicorniae (E. Hering, 1889)
N (Aarvik et al. 2019).
1913. Scrobipalpula tussilaginis (Stainton, 1867)
1924. Caryocolum alsinella (Zeller, 1868) N
(Aarvik et al. 2019), Lt (Ivinskis & Rimšaite
1936. Caryocolum blandelloides Karsholt, 1981
1937. Caryocolum proxima (Haworth, 1828) Lt
(Paulavičiūtė et al. 2017).
1938. Caryocolum blandulella (Tutt, 1887) Lv.
1957. Carpatolechia fugacella (Zeller, 1839) S.
2006. Elachista dispilella Zeller, 1839 Lt (Sruoga
et al. 2019).
2011. Elachista dispunctella (Duponchel, 1843)
Lt (Sruoga et al. 2019).
2041. Elachista poae Stainton, 1855 N.
2042. Elachista atricomella Stainton, 1849 F.
2052. Eachista deriventa Kaila & Mutanen, 2008
2058. Elachista bifasciella Treitschke, 1833 N
(Aarvik et al. 2019).
2081. Elachista consortella Stainton, 1851 Lv.
2091. Blastodacna hellerella (Duponchel, 1838)
2132. Coleophora amellivora Baldizzone, 1979
Lt (Ivinskis et al. 2019).
2138. Coleophora asteris Mühlig, 1864 F.
2161. Coleophora jaernaensis Björklund &
Palmqvist, 2002 E.
2188. Coleophora chalcogrammella Zeller, 1839
2207. Coleophora vulnerariae Zeller, 1839 F.
2308. Hypatopa segnella (Zeller, 1873) Lt
(Ivinskis et al. 2018).
2357. Epermenia aequidentellus (E. Hofmann,
1867) D (Buhl et al. 2018).
2390. Stenoptilia veronicae Karvonen, 1932
(eborinodactyla auct.) D (Buhl et al. 2017,
2392. S. mariaeluisae Bigot & Picard, 2002
(inopinata auct.) I (E. Ólafsson in litt.).
2419. Oxyptilus tristis (Zeller, 1841) N (Aarvik et
al. 2019).
2427. Hellinsia inulae (Zeller, 1852) S (Bengtsson
2556. Araschnia levana (Linnaeus, 1758) N
(Aarvik et al. 2019)
2589. Apatura iris (Linnaeus, 1758) N (Aarvik et
al. 2021).
2594. Lasiommata megera (Linnaeus, 1767) E.
2664. Aricia agestis (Denis & Schiermüller,
1775) Lv.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
2729. Sciota rhenella (Zincken, 1818) S
(Bengtsson 2020).
2769. Delplanqueia inscriptella (Duponchel,
1836) F, Lt (Ivinskis et al. 2018).
2775. Nephopterix angustella (Hübner, 1796) E.
2804. Eccopisa eractella Zeller, 1848 E.
2809. Euzophera bigella (Zeller, 1848) F.
2816. Ancylosis oblitella (Zeller, 1848) N (Aarvik
et al. 2019), F, E.
2824. Phycitodes lacteella (Rothschild, 1915) Lv,
Lt (Ivinskis et al. 2018).
2838. Cadra cautella (Walker, 1863) Lt (omitted).
2853. Endotricha ammealis (Denis & Schier-
müller, 1775) E.
2885. Sclerocona acutella (Eversmann, 1842) Lv.
2923. Spoladea recurvalis (Fabricius, 1775) N
(Aarvik et al. 2019), S (Bengtsson 2020), F.
2941. Cydalima perspectalis (Walker, 1859) F, E,
Lt (Paulavičiūtė & Mikalauskas 2018).
2950. Cynaeda pustulalis (Hübner, 1823) D (Buhl
et al. 2020).
3020. Pediasia luteella (Denis & Schiermüller,
1775) S (Bengtsson 2017).
3028. Agriphila latistria (Haworth, 1811) F.
3029. Agriphila aeneociliella (Eversmann, 1844)
3033. Agriphila biarmicus (Tengström, 1865) Lt
(Ivinskis et al. 2018).
3121. Idaea ochrata (Scopoli, 1763) Lv, Lt
(Švitra et al. 2017)
3124. Idaea fuscovenosa (Goeze, 1781) E.
3144. Scopula virgulata (Denis & Schiermüller,
1775) D (omitted).
3307. Pareulype berberata (Denis & Schier-
müller, 1775) E.
3361. Eupithecia abbreviata Stephens, 1831 Lt
(Švitra et al. 2018).
3387. Eupithecia insigniata (Hübner, 1790) F.
3402a. Eupithecia addictata Dietze, 1908 Lt
(Ūsaitis et al. 2019).
3458. Isturgia arenacearia (Denis & Schier-
müller, 1775) S (Palmqvist & Ryrholm 2020),
D (Larsen et al. 2020), E, Lv.
3473. Apocheima hispidaria (Denis & Schier-
müller, 1775) N (Aarvik et al. 2021).
3493. Peribatodes rhomboidaria (Denis &
Schiermüller, 1775) Lv, Lt (Švitra et al.
3548. Ennomos quercinaria (Hufnagel, 1767) F.
3623. Chlorissa cloraria (Hübner, 1813) F.
3636. Eversmannia exornata (Eversmann, 1837)
Lt (Švitra et al. 2018).
3714. Hyles euphorbiae (Linnaeus, 1758) N.
3745. Drymonia obliterata (Esper, 1785) Lt
(Kaupys 2019).
3797. Hypena lividalis (Hübner, 1790) E.
3819. Laelia coenosa (Hübner, 1808) F.
3863. Utetheisa pulchella (Linnaeus, 1758) F.
3955. Eublemma parva (Hübner, 1808) N (Aarvik
et al. 2021).
3957. Eublemma purpurina (Denis & Schier-
müller, 1775) N (Aarvik et al. 2021), S
(Palmqvist & Ryrholm 2020), D (Larsen et al.
3977. Catocala elocata (Esper, 1787) E, Lv.
4001. Chrysodeixis chalcites (Esper, 1789) F, Lv.
4067. Cucullia verbasci (Linnaeus, 1758) F, E.
4166. Bryopsis muralis (Forster, 1771)
(= Nyctobrya muralis) N, F.
4185. Caradrina kadenii Freyer, 1836 S (Palmqvist
& Ryrholm 2020), D (Larsen et al. 2019).
4187. Caradrina albina Eversmann, 1848 S
(Palmqvist 2018).
4296. Apamea remissa (Hübner, 1809) I (omitted).
4299. Apamea crenata (Hufnagel, 1766) I
4321. Resapamea vulpecula (Eversmann, 1852)
(= R. hedeni) Lv.
4328. Xylomoia graminea (Graeser, 1889) E, Lv.
4373. Conistra rubiginosa (Scopoli, 1763) E, Lv.
4384. Lithophane ornitopus (Hufnagel, 1766) N
Norwegian Journal of Entomology 68, 1
14 (2021)
(Aarvik et al. 2019).
4409. Atethmia centrago (Hübner, 1809) N
(Aarvik et al. 2021). Lv.
4423. Aporophyla lueneburgensis (Freyer, 1848)
4429. Polymixis lichenea (Hübner, 1813) N
(Aarvik et al. 2019).
4476. Polia lamuta (Herz, 1903) N (Saarenmaa
4486. Lacanobia amurensis (Staudinger, 1901)
4496. Hyssia cavernosa (Eversmann, 1842) Lv.
4507. Conisania leineri (Freyer, 1836) E.
4509. Hecatera dysodea (Denis & Schiermüller,
1775) F, E.
4536. Mythimna l-album (Linnaeus, 1767) N
(Aarvik et al. 2021), E.
4540. Leucania loreyi (Duponchel, 1827) N, S
(Palmqvist & Ryrholm 2020).
4571. Euxoa vitta (Esper, 1789) E.
4581. Agrotis bigramma (Esper, 1790) Lv.
4591. Agrotis puta (Hübner, 1803) F.
4602. Diarsia orida (F. Schmidt, 1859) F.
4626. Noctua comes Hübner, 1813 I (E. Ólafsson
in litt.).
4655. Xestia distensa (Eversmann, 1851) N
(Aarvik et al. 2019).
4697. Nola cristatula (Hübner, 1793) Lv.
New taxa to the Nordic-Baltic area
0312a. Dryadaula heindeli Gaedike & Scholz,
1998 N (Gustad & Aarvik 2017).
0324a. Triaxomera baldensis G. Petersen, 1983
Lt (Ivinskis & Rimšaite 2017).
0345a. Neurothaumasia Le Marchand, 1934.
0345b ankerella (Mann, 1867) D (P. Falck pers.
0391a. Monopis jussii Kaila, Mutanen, Huemer,
Karsholt & Autto, 2020 N, S, F (Mutanen et
al. 2020).
0439a. Micrurapteryx kollariella (Zeller, 1839) D
(Buhl et al. 2019).
0441a. Parectopa robiniella Clemens, 1863 Lv,
Lt (Ivinskis et al. 2019).
0462a. Calybites quadrisignella (Zeller, 1839)
0474a. Caloptilia honoratella (Rebel, 1914) D
(Buhl et al. 2019).
0766a. Tebenna micalis (Mann, 1857) N (Aarvik
et al. 2021). In 2014 imported to Denmark as
larvae on Helichrysum italica in several
places; a single specimen was found in a light
trap. Since it has not been recorded, and the
species is considered introduced to Denmark.
0834a. Clepsis peritana (Clemens, 1860) D (Buhl
et al. in press).
0985a. Aethes bilbaensis (Rössler, 1877) D (Buhl
et al. 2020).
1222a. Eucosma albidulana (Herrich-Schäer,
1851) S (Ohlsson 2020).
1360a. Grapholita inopinata Heinrich, 1928 F
1454a. Chamaesphecia Spuler, 1910
1454b. nigrifrons (Le Cerf, 1911) Lt (Švitra et al.
1518a. Esperia Hübner, 1825
1518b. sulphurella (Fabricius, 1775) D (Buhl et
al. 2018).
1668a. Ascalenia Wocke, 1876
1668b. viviparella Kasy 1969 Lt (Ivinskis et al.
1704a Neofaculta taigana Ponomarenko, 1998 N
(Aarvik et al. 2021), S, F.
1914a. Tuta Kieer & Jørgensen, 1910
1914b. absoluta (Meyrick, 1917) N (Aarvik et al.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
2021), S, F, D (Buhl et al. in press). Placed on
the list due to numerous recent records in
1955a. Carpatolechia aenigma (Sattler, 1983) Lt
(Paulavičiūtė 2017).
2212a. Coleophora variicornis Toll, 1952 Lv.
2237a. Coleophora sirella Tabell & Mutanen,
2019 F (Tabell et al. 2019).
2332a. Scythris penicillata (Chrétien, 1900) E
2737a. Gymnancyla hornigii (Lederer, 1852) D
(Buhl et al. 2018).
2865a. Paracorsia Marion, 1959
2865b. repandalis (Denis & Schiermüller, 1775)
2906a. Udea costalis (Eversmann, 1852) Lv, Lt
2939a. Hodebertia Leraut, 2003
2939b. testalis (Fabricius, 1794) D (Buhl et al.
2978a. Eudonia angustea (Curtis, 1827) D (Buhl
et al. 2018).
3034a. Agriphila tolli (Błeszyński, 1952) F.
3185a. Xanthorhoe uralensis Choi, 2003 F.
3329a. Perizoma saxicola Tikhonov, 1994 E.
3497a. Ascotis Hübner, 1825
3497b. selenaria (Denis & Schiermüller, 1775)
S (Palmqvist & Ryrholm 2020), Lt (Ivinskis et
al. 2020).
3583a. Pungeleria Rougemont, 1903
3583b. capreolaria (Denis & Schiermüller,
1775) D (Skule & Hviid 2019).
3692a. Smerinthus caecus Ménétriés, 1857 Lv.
3773a. Spatalia Hübner, 1819
3773b. argentina (Denis & Schiermüller, 1775)
3782b. Eutelia Hübner, 1823
3782c. adulatrix (Hübner, 1813) D (Larsen et al.
3850a. Eilema caniola (Hübner, 1808) D (Larsen
4063a. Cucullia virgaureae Boisduval, 1840 F.
4068a. Phyllophila Guenée, 1852
4068b. obliterata (Rambur, 1833) F.
4178a. Spodoptera cilium Guenée, 1852 D (Hviid
4189a. Caradrina avirena Guenée, 1852 D
(Bech et al. 2017).
4387a. Lithophane leautieri (Boisduval, 1829) D
4422a. Aporophyla australis (Boisduval, 1829) D
(Larsen et al. 2019).
4531a. Mythimna alopecuri (Boisduval, 1840) D
(Larsen et al. 2019).
4629a. Noctua tertia von Mentzer, Moberg &
Fibiger, 1991 S (Palmqvist 2018).
Taxonomic changes
0029. Gazoryctra fuscoargenteus (O. Bang-
Haas, 1927) is a junior synonym. Replace with
G. uralensis (Grum-Grshimailo, 1899)
(Kallies & Farino 2018).
02590261, 02630264. According to Weidlich
& Arnscheid (2017) the parthenogenetic D.
lichenella (Linnaeus, 1761) is synonymous
with the bisexual D. fumosella (Heinemann,
1870). Robinson & Nielsen (1983)
synonymized D. lazuri (Clerck, 1759) with
D. fumosella. Consequently, the three names
lazuri, lichenella and fumosella represent
Norwegian Journal of Entomology 68, 1
14 (2021)
the same species. In addition, Weidlich &
Arnscheid (2017) synonymized D. norvegica
(Strand, 1919) with D. lichenella. These
authors overlooked the synonymy established
by Robinson & Nielsen (1983) and used the
name lazuri for a dierent Finnish species.
The latter is actually without name. Arnscheid
& Weidlich (2017) stated that it may represent a
bisexual form of D. fennicella (Suomalainen,
0346–0357. Regier et al. (2015) erected the
family Meessiidae for some genera which
until then had been placed in the subfamily
Meessiinae in Tineidae. In recent publications
on European Tineoidea the family Meessiidae
has become accepted (Budashkin & Bidzilya
2018, Gaedike 2019, Gaedike & Falck 2019).
The four genera of Meessiinae are placed in
the separate family Meessiidae before
Psychidae. However, it is still not certain if the
three genera Stenoptinea Dietz, 1905,
Karsholtia Gaedike, 1986 and Agnathosia
Amsel, 1954 really belong in Meessiidae.
0362. Haplotinea Diakono & Hinton, 1956
belongs to Myrmecozelinae (Gaedike 2019).
0361. The subfamily name Perissomasticinae
should be removed.
0664. Rhigognostis hufnagelii (Zeller, 1839) was
placed in the genus Eidophasia Stephens,
1842 (Baraniak 2020).
09921011. A molecular phylogeny of the subtribe
Cochylina was recently published (Brown
et al. 2020). These authors also indicated that
Cochylis epilinana (Duponchel, 1842)
should be placed in a genus of its own, but
it was overlooked that Longicornutia
Razowski, 1960 was available (Brown 2005,
Kovács & Kovács 2020). The reclassication
of species hitherto placed in Cochylidia
Obraztsov, 1956; Cochylis Treitschke, 1829
and Falseuncaria Obraztsov & Swatschek,
1958 is presented here:
Thyraylia Walsingham, 1897
nana (Haworth, 1811)
Cochylichroa Obraztsov & Swatschek, 1958
atricapitana (Stephens, 1852)
Pontoturania Obraztsov, 1943
posterana (Zeller, 1847)
Brevicornutia Razowski, 1960
pallidana (Zeller, 1847)
Cochylis Treitschke, 1829
roseana (Haworth, 1811)
aviciliana (Westwood, 1854)
Longicornutia Razowski, 1960
epilinana (Duponchel, 1842)
Neocochylis Razowski, 1960
hybridella (Hübner, 1813)
dubitana (Hübner, 1799)
Falseuncaria Obraztsov & Swatschek, 1958
degreyana (McLachlan, 1869)
ruciliana (Haworth, 1811)
Cochylidia Obraztsov, 1956
subroseana (Haworth, 1811)
richteriana (Fischer von Röslerstamm, 1837)
moguntiana (Rössler, 1864)
heydeniana (Herrich-Schäer, 1851)
implicitana (Wocke, 1856)
rupicola (Curtis, 1834)
0926. Acleris implexana (Walker, 1863) is
Nearctic (Gilligan et al. 2020). Replace with
A. ferrumixtana (Benander, 1934).
0987. Aethes adelaidae (Toll, 1955) raised
to species rank: (https://laji./en/taxon/
MX.5013777) F, Lv.
1471. Holcopogon bubulcellus (Staudinger,
1859) is a junior synonym and is replaced by
H. adseclella (Eversmann, 1844) (Sinev et al.
1629. Peleopodinae upgraded to family level. In
our area only the genus Carcina is represented
(Wang & Li 2020).
1635. Ethmiinae upgraded to family level and
placed close to Elachistidae (Wang & Li 2020).
1704a. Neofaculta taigana Ponomarenko, 1998 is
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
a cryptic species which has been confused with
N. infernella. It is a northern Holarctic species
and has been found in N, S and F (Aarvik et al.
1708. Anarsia lineatella Zeller, 1839 is to be
replaced by A. innoxiella Gregersen &
Karsholt, 2017 (Gregersen & Karsholt 2017).
1784. Apodia bifractella (Duponchel, 1843) is to
be replaced by Apodia martinii Petry, 1911.
The former has a more southern distribution in
Europe, but the ranges of the two species are
not known in detail (Huemer & Karsholt 2020).
1812. Monochroa parvulata (Gozmány, 1957)
was transferred to the genus Pragmatodes
Walsingham, 1908 (Huemer & Karsholt 2020).
1813. Eulamprotes Bradley, 1971 is a synonym
of Oxypteryx Rebel, 1911 (Bidzilya et al.
2019, Huemer & Karsholt 2020). Its
constituent species are transferred to Oxypteryx.
1914a. Corro Chang & Metz (2021) recently
transferred Tuta absoluta to Phthorimaea,
based on a phylogenetic analysis of 22
morphological characters of eight species. We
agree that T. absoluta is more closely related to
Phthorimaea operculella than to Tuta
atriplicella Kieer & Jörgensen, 1910.
However, their male genitalia are distinctly
dierent – much more than between many
genera of Gnorimoschemini. The latter
may be oversplit, and the generic structure
of Gnorimoschemini should be analysed
based on a larger number of taxa from dierent
genera and with a character set that includes
both morphological and molecular characters.
T. absoluta is a serious pest on tomatoes
etc., and the literature on it, since it was
introduced to the Old World, runs to
thousands of publications. Most of these are
on applied entomology, and researchers in that
eld are notoriously unhappy about changes in
nomenclature. Seen in the light of the
uncertainty of the generic placement of T.
absoluta, which is also admitted by Corro
Cheng & Metz (op. cit.: 51) who write: «Our
results support a need for generic re-
classication of the taxon absoluta under
its original genus, Phthorimaea», we nd
it premature to change its generic name. We
are of the opinion that for the time the stability
of nomenclature is best served by not changing
the generic combination, and we therefore
recombine it as Tuta absoluta (Meyrick),
comb. rev.
2053. Elachista zernyi Hartig, 1941 is a junior
synonym of E. stelviella Amsel 1932 (Kaila
2392. DNA barcoding shows that Danish
specimens identied as Stenoptilia inopinata
Bigot & Picard, 2002 is conspecic with
barcoded specimens of S. mariaeluisae Bigot
& Picard, 2002 from Iceland.
2548–2553. A revised classication of Argynnis
Fabricius, 1807 aiming at reconciling the
systems used in Europe and North America
was recently published (De Moya et al. 2017).
The new system was adopted in the new
European buttery checklist (Wiemers et
al. 2018). This results in the following updated
classication of the Nordic-Baltic species:
Argynnis Fabricius, 1807
paphia (Linnaeus, 1758)
laodice (Pallas, 1771)
Fabriciana Reuss, 1920
niobe (Linnaeus, 1758)
adippe (Denis & Schiermüller, 1775)
Speyeria Scudder, 1872
aglaja (Linnaeus, 1758)
2650. Scolitantides vicrama (Moore, 1865)
is transferred to Pseudophilotes Beuret, 1958
(Wiemers et al. 2018).
2654. Phengaris Doherty, 1891 has been given
priority over Maculinea Van Eecke, 1915
(ICZN 2017). This means that the nomenclature
used in our checklist can continue.
Norwegian Journal of Entomology 68, 1
14 (2021)
2763. Khorassania Amsel, 1951 is a synonym
of 2734 Pempelia Hübner, 1825. The species
Khorassania compositella is combined with
Pempelia as Pempelia compositella
(Treitschke, 1835) (Slamka 2019).
2765. Moitrelia Leraut, 2001 is a synonym of
Uncinus Amsel, 1951. The species Moitrelia
obductella is combined with Uncinus as
Uncinus obductella (Zeller, 1839) (Slamka
2836. Ephestia unicolorella Staudinger, 1881 is to
be replaced by E. woodiella Richards &
Thomson, 1932. The former is a southern
species known from Turkey and Syria (Leraut
2014, Buhl et al. 2020).
2843. Pyralis regalis (Denis & Schiermüller,
1775) is to be replaced by P. cardinalis Kaila,
Huemer, Mutanen, Tyllinen & Wikström, 2020
which was recently separated from the former
(Wikström et al. 2020).
3101–3609. The classication of Geometridae
has recently undergone numerous changes,
and a system which includes tribes is emerging.
The new system is presented in the 6th volume
of Geometrid Moths of Europe (Müller et al.
2019). Some additions and modications can
be found in Brehm et al. (2019), Murillo-
Ramos et al. (2019) and Sihvonen et al. (2020).
3604. Elophos Boisduval, 1840 is replaced by
Yezognophos Matsumura, 1927 (Müller et al.
3606. Glacies Millière, 1874 is a synonym of
Psodos Treitschke, 1825 (Müller et al. 2019).
3960a. Euclidia mi (Clerck, 1759) is placed in the
genus Callistege Hübner, 1823. Callistege
was upgraded from status as subgenus of
Euclidia Ochsenheimer, 1816 to status as a
separate genus by Lafontaine & Schmidt
(2010). Treating the two genera as synonyms
would also mean having to synonymize the
genus Mocis Hübner, 1823 (Zahiri et al. 2012:
g. 6).
4070. Protodeltote Ueda, 1984 was upgraded from
status as subgenus of Deltote Reichenbach,
1817 to full generic status by Schmidt et
al. (2018). This results in the combination
Protodeltote pygarga (Hufnagel, 1766).
4165. Nyctobrya Boursin, 1957 is replaced by
Bryopsis Boursin 1970 (Vargas-Rodríguez et
al. 2020).
4321. Resapamea hedeni (Graeser, 1888) is
a junior synonym. Replace with R. vulpecula
(Eversmann, 1852) (Kononenko 2005).
4345. Some of the genera proposed by Beck
(1992) were treated inconsistently in the
checklist. With some doubt we accept the
diagnosis given by Beck (1992) for Fissipunctia
as nomenclaturally valid. The publication by
Beck is part of the 1991 volume of the journal
Atalanta. It was, however, printed in 1992.
4360–4370. The monographic treatment of the
Eurasian and North African Agrochola Hübner,
1821 generic complex (L. Ronkay et al. 2017)
has led to a revised classication of the group:
Agrochola Hübner, 1821
lychnidis (Denis & Schiermüller, 1775)
Anchoscelis Guenée, 1839
Omphaloscelis Hampson, 1906 syn.
nitida (Denis & Schiermüller, 1775)
lunosa (Haworth, 1809)
litura (Linnaeus, 1758)
helvola (Linnaeus, 1758)
Leptologia L.B. Prout, 1901
lota (Clerck, 1759)
macilenta (Hübner, 1809)
Sunira Franclemont, 1950
circellaris (Hufnagel, 1766)
Propenistra Berio, 1980
laevis (Hübner, 1803)
4468. We consider the diagnosis given by Beck
(1992) as valid. Thus the genus should be cited
as Coranarta Beck, 1992.
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
4486. Lacanobia amurensis (Staudinger, 1901).
For this species the name Lacanobia aliena
(Hübner, 1809) has been used in European
literature. It was pointed out by Poole
(1989) that Noctua aliena Hübner, 1809 (now
in Lacanobia) is a primary homonym of
Noctua aliena Hübner, 1808 (a synonym of
Eriopygodes imbecilla (Fabricius, 1794)). In
the Danish catalogue (Karsholt & Stadel
Nielsen 1998) the name Lacanobia amurensis
(Staudinger, 1901) was adopted as a
replacement name. This was a nomenclatural
act in accordance with the 3rd edition of
the ICZN Code of 1985 which was in use
at that time. Had it been after 1999 when the
4th edition of the ICZN Code was published,
'reversed precedence' could have been used
to give Noctua aliena Hübner, 1809 precedence
over N. aliena Hübner, 1808. With Lacanobia
amurensis (Staudinger, 1901) now in prevailing
usage, reversal of precedence is not permitted.
Consequently, Lacanobia aliena (Hübner, 1809)
cannot be used as the valid name for this species.
4474. Polia conspicua (A. Bang-Haas, 1912)
is a junior synonym. Replace with P. vesperugo
Eversmann, 1856 (Varga et al. 2017).
0536. Phyllonorycter emberizaepenella. Spelling
of species name.
1339. Cydia splendana. Add parenthesis before
Hübner, 1799.
1480. Deuterogonia pudorina (Wocke, 1857).
Year of description.
1538. Agnoea elsae. Add parenthesis before and
after Svensson, 1982.
1683. Aproaerema vinella Bankes, 1898. Remove
2467. Carcharodus alceae (Esper, 1780). Year of
2512. Pontia chloridice (Hübner, 1813). Year of
2522. Colias croceus (Georoy, 1785). Author.
2546. Brenthis daphne (Denis & Schiermüller,
1775). Author and year.
2566. Nymphalis xanthomelas (Denis & Schier-
müller, 1775). Author and year.
2630. Chazara briseis. Spelling of species name
2666. Aricia nicias (Meigen, 1829). Year of
2857. Uresiphita gilvata (Fabricius, 1794). Delete
I’ (E. Ólafsson in litt.).
3396. Eupithecia goossensiata. The reference in
the comment on page 166 should be (Hausmann
et al. 2011) (not Hausmann et al. 2013).
3654. Lasiocampa quercus (Linnaeus, 1758).
Delete ‘I’ (E. Ólafsson in litt.).
4267. Longalatedes Beck, 1992. Year of
Acknowledgements. The authors wish to thank all persons
who have shared information about new records. In particular
we thank Thomas Pape, Copenhagen, for giving advice on
the nomenclatural problem concerning Lacanobia amurensis,
and Erling Ólafsson, Reykjavik, Iceland for information
on additions to the Lepidoptera fauna of Iceland. Per Falck,
Neksø, Denmark, informed about new species for Denmark in
2020. We are indebted to the referees for careful checking of
the manuscript, which resulted in numerous improvements.
Aarvik, L., Bengtsson, B.Å., Elven, H., Ivinskis,
P., Jürivete, U., Karsholt, O., Mutanen, M., &
Savenkov, N. 2017. Nordic-Baltic Checklist of
Lepidoptera. Norwegian Journal of Entomology.
Supplement 3. 1–236.
Aarvik, L., Berggren, K., Engdal, J., Slagsvold, P.K.,
Sørlibråten, O. & Voith, R. 2019. Nye funn av
sommerfugler i Norge 11. Insekt-Nytt 44 (1), 5–54.
Aarvik, L., Berggren, K., Slagsvold, P.K., & Voith, R.
2021. Nye funn av sommerfugler i Norge 12. Insekt-
Nytt 46 (1), 5–41.
Arnscheid, W.R. & Weidlich, M. 2017. Psychidae.
In: Karsholt, O., Mutanen, M. & Nuss, M. (eds).
Microlepidoptera of Europe 8. Brill, Leiden/Boston.
423 pp.
Baraniak, E. 2020. Eidophasia insulella (Walsingham,
1900) and Eidophasia hufnagelii (Zeller, 1839),
two rare European moths: description of genitalia
conrms generic placement (Lepidoptera:
Plutellidae). The European Zoological Journal
2020, 444–451.
Bech, K., Helsing, F., Jensen, L., Kjeldgaard, S.,
Knudsen, K., Larsen, B.S., Larsen, E. S., Møller,
Norwegian Journal of Entomology 68, 1
14 (2021)
H.E. & Szyska, P. 2017. Fund af storsommerfugle
i Danmark 2016. Lepidoptera 11(3) (Tillæg), 1–80.
Beck, H. 1992. Taxonomische Änderungen bei den
Noctuinae, Cuculliinae und Plusiinae (Noctuidae,
Lepidoptera). Atalanta 22, 175–232.
Bengtsson, B.Å. 2017. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2016.
Entomologisk Tidskrift 138, 1–24.
Bengtsson, B.Å. 2018. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2017.
Entomologisk Tidskrift 139, 7–20.
Bengtsson, B.Å. 2019. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2018.
Entomologisk Tidskrift 140, 1–18.
Bengtsson, B.Å. 2020. Anmärkningsvärda fynd av
småfjärilar (Microlepidoptera) i Sverige 2019.
Entomologisk Tidskrift 141, 1–22.
Bidzilya, O., Karsholt, O., Kravchenko, V. & Šumpich,
J. 2019. An annotated checklist of Gelechiidae
(Lepidoptera) of Israel with description of two new
species. Zootaxa 4677, 1–68.
Brehm, G., Murillo-Ramos, L., Sihvonen, P.,
Hausmann, A., Schmidt, B.C., Õunap, E., Moser, A.,
Mörtter, R., Bolt, D., Bodner, F., Lindt, A., Parra,
L.E. & Wahlberg. N. 2019. New World geometrid
moths (Lepidoptera: Geometridae): Molecular
phylogeny, biogeography, taxonomic updates and
description of 11 new tribes. Arthropod Systematics
& Phylogeny 77 (3), 457–486.
Brown, J.W. 2005. World catalogue of insects.
Volume 5: Tortricidae (Lepidoptera). Apollo Books,
Stenstrup. 741 pp.
Brown, J., Aarvik, L., Heikkilä, M., Brown, R. &
Mutanen, M. 2020. A molecular phylogeny of
Cochylina with conrmation of its relationship
to Euliina (Lepidoptera: Tortricidae). Systematic
Entomology 45, 160–174.
Budashkin, Y.I. & Bidzilya, O. 2018. Four new species
of the genus Eudarcia Clemens, 1880 (Lepidoptera:
Meessiidae) from Crimea. Zootaxa 4446, 111–124.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F. 2017. Fund af småsommerfugle
fra Danmark 2016 (Lepidoptera). Entomologiske
Meddelelser 85, 17–35.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F., 2018. Fund af småsommerfugle
fra Danmark i 2017 (Lepidoptera). Entomologiske
Meddelelser 86, 13–26.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F. 2020. Fund af småsommerfugle
fra Danmark i 2018 (Lepidoptera). Entomologiske
Meddelelser 87 (2019), 1–18.
Buhl, O., Falck, P., Karsholt, O., Larsen, K. &
Vilhelmsen, F. in press. Fund af småsommerfugle
fra Danmark i 2019 (Lepidoptera). Entomologiske
Meddelelser 88.
Corro Chang, P. & Metz, M.A. 2021. Classication
of Tuta absoluta (Meyrick, 1917) (Lepidoptera:
Gelechiidae: Gelechiinae: Gnorimoschemini) based
on cladistic analysis of morphology. Proceedings
of the entomological Society of Washington 123,
De Moya, R.S., Savage, W.K., Tenney, C., Bao, X.,
Wahlberg, N. & Hill, R.I. 2017. Interrelationships
and diversication of Argynnis Fabricius and
Speyeria Scudder butteries. Systematic Entomology
42, 635–649.
Gaedike, R. 2019. Tineidae II (Myrmecozelinae,
Perissomasticinae, Tineinae, Hieroxestinae, and
Stathmopolitinae). In: Karsholt, O., Mutanen, M. &
Nuss, M. (eds). Microlepidoptera of Europe 9. Brill,
Leiden. 248 pp.
Gaedike, R. & Falck, P. 2019. Tineoidea (Meessiidae,
Tineidae) and Glyphipterigidae: Acrolepiinae from
the Canary Islands, Spain (Insecta: Lepidoptera).
SHILAP Revista de lepidopterologia 47, 507–517.
Gilligan, T.M., Brown, J.W. & Baixeras, J. 2020.
Immigrant Tortricidae: Holarctic versus Introduced
Species in North America. Insects 11 (594), 159.
Gregersen, K. & Karsholt, O. 2017. Taxonomic
confusion around the Peach Twig Borer, Anarsia
lineatella Zeller, 1839, with description of a
new species (Lepidoptera, Gelechiidae). Nota
lepidopterologica 40, 65–85.
Gustad, J.R. & Aarvik, L. 2017. A remarkable
extension of range, the fungivorous moth Dryadaula
heindeli Gaedike & Scholz, 1998 (Lepidoptera,
Dryadaulidae) recorded in Norway. Norwegian
Journal of Entomology 64, 138–142.
Hausmann, A., Haszprunar, G. & Hebert, P. 2011.
DNA Barcoding the Geometrid Fauna of Bavaria
(Lepidoptera): Successes, Surprises, and Questions.
PLoS ONE 6 (2) e17134, 1–9. DOI: 10.1371/journal.
Huemer, P. & Karsholt, O. 2020. Commented checklist
of European Gelechiidae (Lepidoptera). ZooKeys
921, 65–140.
Hviid, C. 2018. Spodoptera cilium Guenée, ny ugle for
Danmark. Lepidoptera 11, 160–164.
ICZN 2017. Opinion 2399 (Case 3508) Maculinea
Van Eecke, 1915 (Lepidoptera: Lycaenidae):
precedence over Phengaris Doherty, 1891 not
granted. Bulletin of Zoological Nomenclature 74,
Ivinskis, P. & Rimšaitė, J. 2017. New and rare
Lepidoptera for Lithuania, report of 2017. Bulletin
of the Lithuanian Entomological Society 1 (29),
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
Ivinskis, P., Rimšaitė, J. & Eismantas, A. 2018. Rare
and new for the Lithuanian fauna Lepidoptera
species. Bulletin of the Lithuanian Entomological
Society 2 (30), 30–37.
Ivinskis, P., Rimšaitė, J., Pūtys, Ž. & Paznekaitė,
V. 2019. Rare and new for the Lithuanian fauna
species of Lepidoptera. Bulletin of the Lithuanian
Entomological Society 3 (31), 48–56.
Ivinskis, P., Rimšaitė, J., & Pūtys, Ž. 2020. Data on
new and rare Lepidoptera, a report of 2020. Bulletin
of the Lithuanian Entomological Society 4 (32),
Kaila, L. 2019. An annotated catalogue of Elachistinae
of the World (Lepidoptera: Gelechioidea:
Elachistidae). Zootaxa 4632, 1–231.
Kallies, A. & Farino, T. 2018. A new species of
Pharmacis Hübner, 1820 from Spain with a brief
review of the genera Pharmacis and Korscheltellus
Börner, 1920 (Lepidoptera, Hepialidae). Nota
lepidopterologica 41, 225–249.
Karsholt, O. & Stadel Nielsen, P. 2013. Revideret
fortegnelse over Danmarks Sommerfugle. Revised
catalogue of the Lepidoptera of Denmark.
Lepidopterologisk Forening, København. 120 pp.
Kaupys, M. 2019. One new and 88 rare for the
Lithuanian fauna Lepidoptera species, recorded in
2018-2019. Bulletin of the Lithuanian Entomological
Society 3 (31), 57–67.
Kononenko, V. 2005. Noctuidae Sibiricae. Volume
1. An annotated checklist of the Noctuidae (s.l.)
(Insecta, Lepidoptera) of the Asian part of Russia
and the Ural Region. Entomological Press, Sorø.
243 pp.
Kovács, Z. & Kovács, S. 2020. Tribul Cochylini în
România. Partea V. (Cryptocochylis, Pontoturania,
Falseuncaria, Cochylis, Longicornutia, Diceratura,
Brevicornutia, Cochylidia, Neocochylis,
Cochylichroa, Thyraylia, Eulia, completǎri,
correctǎri, concluzii). Buletin de Informare
Entomologică 31, 5–61.
Lafontaine, J.D. & Schmidt, B.C. 2010. Annotated
check list of the Noctuoidea (Insecta, Lepidoptera)
of North America north of Mexico. ZooKeys 40,
Larsen, E. S. 2020. Fund af nye storsommerfugle
for den danske fauna siden 2005. Lepidoptera, 11,
Larsen, E.S., Bech, K., Helsing, F., Jensen, L.,
Kjeldgaard, S., Knudsen, K., Larsen, B.S., Møller,
H.E. & Szyska, P. 2019. Fund af storsommerfugle i
Danmark 2018. Lepidoptera 11 (7) (Tillæg), 1–88.
Larsen, E.S., Bech, K., Helsing, F., Jensen, L.,
Kjeldgaard, S., Knudsen, K., Larsen, B.S., Møller,
H.E. & Szyska, P. 2020. Fund af storsommerfugle i
Danmark 2019. Lepidoptera 11 (9) (Tillæg), 1–88.
Leraut, P. 2014. Pyralids 2. Moths of Europe 4, 1–440.
Verrieres le Buisson.
Linnaeus, C. 1761. Fauna Svecica. Stockholmiae
[xlviii] + 578 pp.
Müller, B., Erlacher, S., Hausmann, A., Rajaei, H.,
Sihvonen, P. & Skou, P. 2019. Ennominae II. The
Geometrid Moths of Europe 6. Brill, Leiden 906 pp.
Murillo-Ramos, L. Brehm, G., Sihvonen, P.,
Hausmann, A., Holm, S., Ghanavi, H.R., Õunap, E.,
Truuverk, A., Staude, H., Friedrich, E. Tammaru, T.
& Wahlberg, N. 2019. A comprehensive molecular
phylogeny of Geometridae (Lepidoptera) with a
focus on enigmatic small subfamilies. PeerJ 7,
Mutanen, M. & Kaila, L. 2019–2021. Perhoset
– Lepidoptera. In: The Finnish Biodiversity
Information Facility (FinBIF): https://laji./en
Mutanen, M., Huemer, P., Autto, J., Karsholt, O.
& Kaila, L. 2020. Monopis jussii, a new species
(Lepidoptera, Tineidae) inhabiting nests of the
Boreal owl (Aegolius funereus). ZooKeys 992, 157–
Ohlsson, A. 2020. Eucosma albidulana (Herrich-
Schäer, 1851) en för Sverige ny vecklare
funnen i Åhus, Skåne (Lepidoptera, Tortricidae).
Entomologisk Tidskrift 141, 149–153.
Ólafsson, E. 2018. Toppagullmölur (Phyllonorycter
[accessed December 2020]
Palmqvist, G. 2018. Intressanta fynd av storfjärilar
(Macrolepidoptera) i Sverige 2017. Entomologisk
Tidskrift 139, 75–85.
Palmqvist, G. & Ryrholm, N. 2020. Intressanta fynd
av storfjärilar (Macrolepidoptera) i Sverige 2019.
Entomologisk Tidskrift 141, 65–80.
Paulavičiūtė, B. 2017. Carpatolechia aenigma
(Lepidoptera, Gelechiidae) – a new species for
the Lithuanian fauna. Bulletin of the Lithuanian
Entomological Society 1 (29), 53–57.
Paulavičiūtė, B. 2019. Data on 3 new and 6
rare Gelechiidae moth species (Lepidoptera:
Gelechiidae) for Lithuania. Bulletin of the
Lithuanian Entomological Society 3 (31), 68–72.
Paulavičiūtė, B., Bačianskas, V. & Inokaitis, V. 2017.
Data on 2 new and 113 rare for the Lithuanian
fauna moth (Lepidoptera) species. Bulletin of the
Lithuanian Entomological Society 1 (29), 5869.
Paulavičiūtė, B. & Mikalauskas, D. 2018. First record
of the box tree moth Cydalima perspectalis (Walker,
1859) (Lepidoptera: Crambidae) in Lithuania.
Bulletin of the Lithuanian Entomological Society 2
Norwegian Journal of Entomology 68, 1
14 (2021)
(30), 55–59.
Paulavičiūtė, B., Inokaitis, V., Švitra, G. & Bačianskas,
V. 2020. New data on 2 new and 42 rare Tortricidae
(Lepidoptera) species for Lithuanian fauna. Bulletin
of the Lithuanian Entomological Society 4 (32),
Poole, R.W. 1989. Noctuidae. Pars 1-3. Lepidopterorum
Catalogus (N.S.). 118, i-xii., 1-1314.
Robinson, G. & Nielsen, E.S. 1983. The
Microlepidoptera described by Linnaeus & Clerck.
Systematic Entomology 8, 191–242.
Ronkay, L., Ronkay, G., Gyulai, P. & Varga, Z. 2017.
The Witt Catalogue. A Taxonomic Atlas of the
Eurasian and North African Noctuoidea. Vol. 9.
Xyleninae I. Heterocera Press Ltd., Budapest. 342
Saarenmaa, H. 2020. Polia lamuta (Herz, 1903)
(Lepidoptera, Noctuidae) discovered in Norway, and
notes on other boreo-montane species. Norwegian
Journal of Entomology 67, 189195.
Schmidt, B.C., Lafontaine, J.D. & Troubridge, J.T.
2018. Additions and corrections to the check list
of the Noctuoidea (Insecta, Lepidoptera) of North
America north of Mexico IV. ZooKeys 788, 241–
Sihvonen, P., Murillo-Ramos, L., Brehm, G., Staude,
H. & Wahlberg, N. 2020. Molecular phylogeny
of Sterrhinae moths (Lepidoptera: Geometridae):
towards a global classication. Systematic
entomology 45, 606–634.
Sinev, S.Yu., Baryshnikova, S.V., Lvovsky, A.L.,
Anikin, V.V. & Zolotuhin, V.V. 2017. Volgo-Ural
Mi crolepidoptera described by E. Eversmann.
In: Anikin, V.V., Sachkov, S.A. & Zolotuhin, V.V.
(eds.), Fauna Lepidopterologica Volgo-Uralensis:
from P. Pallas to present days. Proceed ings of the
Museum Witt Munich 7, 374–379. [pls. 1, 2]
Skule, B. & Hviid, C. 2019. Måleren Pungeleria
capreolaria (Denis & Schiermüller, 1775 – ny
storsommerfugl for Danmark. Lepidoptera 11, 267–
Slamka, F. 2019. Pyraloidea of Europe 4. Phycitinae –
Part 1. František Slamka, Bratislava. 432 pp.
Sruoga, V., Ivinskis, P. & Rimšaitė, J. 2019. New data on
new and insuciently known for Lithuanian fauna
species of Elachistinae (Lepidoptera: Elachistidae).
Bulletin of the Lithuanian Entomological Society 3
(31), 73–77.
Švitra, G., Bačianskas, V., Kvietkauskas, R.,
Mikalauskas, D. & Ūsaitis, T. 2017. 3 new and 159
rare for the Lithuanian fauna Lepidoptera species
recorded in 2016–2017. Bulletin of the Lithuanian
Entomological Society 1 (29), 77–104.
Švitra, G., Bačianskas, V., Inokaitis, V., Mikalauskas,
D. & Ūsaitis, T. 2018. Two new and 110 rare for
the Lithuanian fauna Lepidoptera species recorded
in 2018. Bulletin of the Lithuanian Entomological
Society 2 (30), 78–102.
Tabell, J., Mutanen, M. & Siloaho. 2019. Coleophora
sirella Tabell & Mutanen, sp. n. from Finland
(Lepidoptera: Coleophoridae). Entomologica
Fennica 30, 49–56.
Ūsaitis, T., Mikalauskas, D. & Bačianskas, V. 2019.
New and rare for the Lithuanian fauna Lepidoptera
species recorded in 2019. Bulletin of the Lithuanian
Entomological Society 3 (31), 79–98.
Varga, Z., Ronkay, G. & Ronkay, L. 2017. Revised
taxonomic check list of the Eurasiatic species of the
subtribe Poliina (Noctuidae, Noctuinae, Hadenini).
Deutsche Entomologische Zeitschrift 64 (2), 133–
Vargas-Rodríguez, S.M., Fibiger, M.(†), Honey, M.R.,
Ronkay, G., Yela, J.L., Zilli, A. & Ronkay, L. 2020.
Bryophila perloides Guenée, 1852 (Lepidoptera:
Noctuidae: Bryophilinae), an overlooked member
of the European Noctuidae fauna, with upgrading of
Bryopsis Boursin, 1970 to generic level (Taxonomic
studies on the western Palaearctic Bryophilinae, No.
1). Zootaxa 4845 (1), 53–70.
Wang, Q.-Y. & Li, H.-H. 2020. Phylogeny of
the superfamily Gelechioidea (Lepidoptera:
Obtectomera), with an exploratory application on
geometric morphometrics. Zoologica Scripta 49 (3),
Wiemers, M., Balletto, E., Dincă, V., Fric, Z.F., Lamas,
G., Lukhtanov, V., Munguira, M.L., Swaay, C.A.v.,
Vila, R., Vliegenthart, A., Wahlberg, N. & Verovnik,
R. 2018. An updated checklist of the European
Butteries (Lepidoptera, Papilionoidea). ZooKeys
811, 9–45.
Wikström, B., Huemer, P., Mutanen, M., Tyllinen, J.
& Kaila, L. 2020. Pyralis cardinalis, a charismatic
new species related to P. regalis [Denis &
Schiermüller], 1775, rst recognized in Finland
(Lepidoptera, Pyralidae). Nota lepidopterologica
43, 337–364.
Zahiri, R., Holloway, J.D., Kitching, I.J., Lafontaine,
J.D., Mutanen, M. & Wahlberg, N. 2012.
Molecular phylogenetics of Erebidae (Lepidoptera,
Noctuoidea). Systematic Entomology 37, 102–124.
Received: 13 January 2021
Accepted: 21 March 2021
Aarvik et al.: Additions and corrections to the Nordic-Baltic Checklist of Lepidoptera
... alba, i.e., Populus × canescens, as host plants of P. xenia [66,67]. The mine of P. labyrinthella can be distinguished from that of P. xenia by its narrower dark area [68]. The adult morphology is highly similar [68]. ...
... The mine of P. labyrinthella can be distinguished from that of P. xenia by its narrower dark area [68]. The adult morphology is highly similar [68]. Furthermore, the DNA barcoding data of these two species is also similar [36] (Figure 3; Table 1). ...
Full-text available
Arboreta serve as effective tools for identifying alien insect pests and novel trophic associations. In this study, we used an arboretum in Slovenia to survey woody plants and identify both alien and native leaf miners. The leaves and twigs of 50 woody plant species and their cultivars were examined for characteristic damage. We used an integrative approach that combined identification based on leaf mines and DNA barcoding of the larvae and pupae found in the mines. In total, 62 leaf-mining species were identified, including eight alien species, of which the heliozelid Coptodisca lucifluella (Clemens, 1860) and the agromyzid Cerodontha unisetiorbita Zlobin, 1992 were documented for Slovenia for the first time. Additionally, three presumably native Gracillariidae moths Phyllocnistis labyrinthella (Bjerkander, 1790), P. ramulicola Langmaid & Corley, 2007 and P. saligna (Zeller, 1839) represented the first record for Slovenia. Furthermore, we documented 23 novel-to-science trophic associations, 20 of which involved native insects and alien woody plants, primarily from Asia. This study highlights the importance of arboreta and botanical gardens for the interception of invasive alien insects and the early detection of trophic shifts of native insects to alien plants, which can aid in predicting their potential spread.
... Ze is in het begin van de jaren zeventig in Europa (Sattler 1971) opgemerkt en is heden wijdverbreid. De soort komt momenteel voor in: België (dit artikel), Bulgarije (Tsvetanov & Zlatkov 2019), Duitsland (Sutter 1994), Estland (Aarvik et al. 2017), Finland (Vähätalo 2014), Hongarije (Fazekas 2008 Hoewel de soort wijd verspreid is in Europa, is ze toch overal zeer lokaal en vrij zeldzaam, dit in tegenstelling tot zijn meest gebruikte waardplant Chenopodium album L. die overal algemeen is. ...
Full-text available
Samenvatting. Op 21 september 2022 werd het eerste exemplaar van Scythris sinensis (Felder & Rogenhofer, 1875) (Lepidoptera: Scythrididae) voor België gefotografeerd te Ruisbroek in de provincie Antwerpen. Waardplanten zijn Chenopodium album L. (melganzenvoet) en Atriplex patula L. (uitstaande melde) (Amaranthaceae). Deze soort wordt hier voor het eerst uit België vermeld. Abstract. On September 21, 2022, the first specimen of Scythris sinensis (Felder & Rogenhofer, 1875) (Lepidoptera: Scythrididae) for Belgium was photographed in Ruisbroek in the Province of Antwerp. Hostplants are Chenopodium album L. (white goosefoot) and Atriplex patula L. (spear saltbush) (Amaranthaceae). This species is mentioned here for the first time for the Belgian fauna. Résumé. Le 21 septembre 2022, le premier spécimen de Scythris sinensis (Felder & Rogenhofer, 1875) (Lepidoptera: Scythrididae) pour la Belgique a été photographié à Ruisbroek dans la province d'Anvers. Les plantes hôtes sont Chenopodium album L. (chénopode blanc) and Atriplex patula L. (arroche étalée) (Amaranthaceae). Cette espèce est mentionnée ici pour la première fois pour la faune belge.
... A total of 188 individuals were identified as belonging to these combined taxa (Table S1). The species taxonomy follows Aarvik, et al. [32] and red-listed species follow Eide, et al. [33]. ...
Full-text available
Simple Summary This research investigates moth biodiversity in two southern Swedish provinces, Västergötland and Småland, spanning from 1974 to 2019. The moth diversity over these years was evaluated using data collected from literary sources. To augment this dataset, a light trap was installed in each province in 2020. The data demonstrate enhanced diversity in Kalmar, Småland, and a more rapid colonisation rate throughout the study period in Småland compared to Västergötland. Noteworthily, our traps in Västergötland and Småland captured 44% and 28% of the known moth species in these provinces, respectively. We reveal significant associations between the probability of species presence in the traps and specific traits when contrasted with a provincial species pool. Traits disproportionately represented in the traps encompass species with considerable variation in colour patterns, generalist habitat and host plant preferences, extended flight periods, and species that primarily overwinter as eggs. This research underscores the influences of climate change and human activities on the shaping of moth biodiversity. Abstract As moths are vital components of ecosystems and serve as important bioindicators, understanding the dynamics of their communities and the factors influencing these dynamics, such as anthropogenic impacts, is crucial to understand the ecological processes. Our study focuses on two provinces in southern Sweden, Västergötland and Småland, where we used province records from 1974 to 2019 in combination with light traps (in 2020) to record the presence and abundance of moth species, subsequently assessing species traits to determine potential associations with their presence in anthropogenically modified landscapes. This study design provides a unique opportunity to assess temporal changes in moth communities and their responses to shifts in environmental conditions, including anthropogenic impacts. Across the Västergötland and Småland provinces in Sweden, we recorded 776 moth taxa belonging to fourteen different taxonomic families of mainly Macroheterocera. We captured 44% and 28% of the total moth species known from these provinces in our traps in Borås (Västergötland) and Kalmar (Småland), respectively. In 2020, the species richness and abundance were higher in Borås than in Kalmar, while the Shannon and Simpson diversity indices revealed a higher species diversity in Kalmar. Between 1974 and 2019, the colonisation rates of the provinces increased faster in Småland. Ninety-three species were found to have colonised these provinces since 1974, showing that species richness increased over the study period. We reveal significant associations between the probability of a species being present in the traps and distinct traits compared to a provincial species pool. Traits over-represented in the traps included species with a high variation in colour patterns, generalist habitat preferences, extended flight periods, lower host plant specificity, and overwintering primarily as eggs. Our findings underscore the ongoing ecological filtering that favours certain species-specific traits. This study sheds light on the roles of climate change and anthropogenic impacts in shaping moth biodiversity, offers key insights into the ecological processes involved, and can guide future conservation efforts.
... Some 3000 species have been described [208], but the majority are undescribed, and it has been estimated that there may be as many as 20-40,000 [209]. This subfamily is of great significance for the biological control of agricultural and forestry lepidopterous pests globally, owing to their extensive diversity, wide distribution in terrestrial habitats, and their exclusive parasitization of larval Lepidoptera from almost all families within the taxon Eulepidoptera [210,211]. These wasps are all koinobiont endoparasitoids and exhibit a remarkable ability to parasitize nearly the entire taxonomic and biological spectrum of Lepidoptera, with only the four most basal superfamilies being probable exceptions [211]. ...
Full-text available
Many insects defend themselves against predation by being distasteful or toxic. The chemicals involved may be sequestered from their diet or synthesized de novo in the insects’ body tissues. Parasitoid wasps are a diverse group of insects that play a critical role in regulating their host insect populations such as lepidopteran caterpillars. The successful parasitization of caterpillars by parasitoid wasps is contingent upon their aptitude for locating and selecting suitable hosts, thereby determining their efficacy in parasitism. However, some hosts can be toxic to parasitoid wasps, which can pose challenges to their survival and reproduction. Caterpillars employ a varied array of defensive mechanisms to safeguard themselves against natural predators, particularly parasitoid wasps. These defenses are deployed pre-emptively, concurrently, or subsequently during encounters with such natural enemies. Caterpillars utilize a range of strategies to evade detection or deter and evade attackers. These tactics encompass both measures to prevent being noticed and mechanisms aimed at repelling or eluding potential threats. Post-attack strategies aim to eliminate or incapacitate the eggs or larvae of parasitoids. In this review, we investigate the dietary challenges faced by parasitoid wasps when encountering toxic hosts. We first summarize the known mechanisms through which insect hosts can be toxic to parasitoids and which protect caterpillars from parasitization. We then discuss the dietary adaptations and physiological mechanisms that parasitoid wasps have evolved to overcome these challenges, such as changes in feeding behavior, detoxification enzymes, and immune responses. We present new analyses of all published parasitoid–host records for the Ichneumonoidea that attack Lepidoptera caterpillars and show that classically toxic host groups are indeed hosts to significantly fewer species of parasitoid than most other lepidopteran groups.
... The genus currently only includes two valid species, whereas a third recently described taxon, Exapate bicuspidella Bruun & Krogerus, 1996, is considered to be a junior synonym of E. congelatella (Aarvik et al. 2017). This species has been described from 8 reared specimens from north-eastern Finland and separated from its congeners by the earlier flight period and several subtle differences in the adult and pupal morphology (Bruun & Krogerus 1996). ...
A new species of cold-season moths, Exapate aidasi sp. nov., is described from male specimens collected in Armenia. This is also the first record of the genus Exapate in Armenia and south of the Caucasus. The new species differs from the two previously known congeneric taxa both in phenotypic characteristics and in the structure of the male genitalia. In addition, DNA barcodes (cytochrome c-oxidase subunit 1) are clearly divergent from those of other species. Adult and male genitalia of all three species of Exapate are shown for comparison.
... As a second estimation method we followed the faunal comparison approach used by LafOntaine & wOOd (1997) to estimate Iran's total Lepidoptera fauna, but also species numbers within each superfamily. Species numbers were extracted from the most recent checklists (KarshOLt & nieLsen 2013;aarviK et al. 2017;wiemers et al. 2018) as well as from the Lepiforum web portal (rOdeLand et al. 2006(rOdeLand et al. -2022. Data were extrapolated based on the known species richness of Iranian Papilionoidea and those of the whole of Europe and of selected European regions, namely Denmark, the Nordic and Baltic regions, Germany and the Iberian Peninsula, all of which have a well-studied Lepidoptera fauna. ...
Full-text available
Stigmella naturnella (Klimesch, 1936), a leafminer of Betula , is here recorded as new for France, Croatia, Ukraine, Belgium, and the Netherlands, Since 2018, it has expanded its range into the last two countries, partly based on numerous online observations. Its distribution history is reviewed, the species is diagnosed and its life history is described. A lectotype is designated for Nepticula naturnella Klimesch, 1936. The species is widespread in the Palearctic, from Japan to the North Sea, with a maximum of 1.63% variation in its DNA barcode. Legacy leafmine records for Germany are reviewed, resulting in the confirmation of its occurrence in Baden-Württemberg already in 1935, but other old records are rejected. It is one of the few Nepticulidae species that hibernate as adult, a possible contributing factor to its expansion. As the leafmines may be confused with other Betula mining species, a revised key to the leafmines of European Stigmella species on Betula is provided. Stigmella glutinosae (Stainton, 1858) and S. alnetella (Stainton, 1856), usually feeding in Alnus , are both recorded to occur occasionally on Betula and are included in the key.
Full-text available
While some species rapidly decline, compromising vital ecosystem services, others are stable or even increasing in abundance. We studied shifts in species richness and abundance of moths over five decades in Central Sweden and examined whether and how changes were associated with phenotypic traits. We combined information from captures in a light trap in historical time (the 1970s) and contemporarily (2019) with provincial colonisation records. Both community species richness and the abundance of moths increased between the time periods. A large fraction (38%) of the 410 species were not present in both periods, 101 species had colonised the area (an estimated influx of about 2.5 new species per year), and 51 species had disappeared (an estimated local extinction rate of about 1.16 species per year). Abundance increased with an increasing number of host plants and with increasing colour pattern variation. The composition of the community shifted towards species characterised by smaller wingspan and larger ranges. The functional trait variability of the moth community was homogenised from the historical to the contemporary period, in line with reports from other species communities in modern landscapes. However, our finding of a concomitant increase in species richness and total abundance differs from the results of many recent studies of insect communities in other geographic regions. Implication for insect conservation We conclude that the entire boreal moth fauna is undergoing a substantial biogeographical shift, changing to the moth species historically occurring at more southern latitudes. The alterations in species composition, overall abundance, and community-wide trait distribution described here may cascade up and down in the ecosystem because moths are important pollinators, herbivores, and prey.
Full-text available
Insekt-Nytt 46 (1) 2021 New species of lepidoptera discovered in Norway. Denne oppdateringen inneholder i hovedsak funn fra 2019 og 2020. De fleste nye arter som har dukket opp i løpet av de to sesongene er enten migranter eller arter som er i ekspansjon mot nord. To av artene er resultat av endret taksonomi, det vil si artssplittinger.
Full-text available
This report represents data on 2 new (Celypha woodiana and Retinia perangustana) and 42 rare for the Lithuanian fauna Tortricidae species. Species were collected from 11 administrative districts of Lithuania.
Full-text available
Monopis jussii Kaila, Mutanen, Huemer, Karsholt & Autto, sp. nov. (Lepidoptera, Tineidae) is described as a new species. It is closely related to the widespread and common M. laevigella ([Denis & Schiffermül-ler], 1775), but differs in its distinct COI DNA barcode sequences, four examined nuclear loci as well as details in forewing coloration and pattern. Most reared specimens of M. jussii have emerged from the nest remnants of the Boreal owl (Aegolius funereus (Linnaeus, 1758)), but also nests of the Ural owl (Strix uralensis Pallas, 1771) and the Great tit (Parus major Linnaeus, 1758) have been observed as suitable habitats. Based on the present knowledge, the new species has a boreo-montane distribution as it is recorded only from northern Europe and the Alps. Several extensive rearing experiments from Strix spp. nest remnants from southern Finland did not produce any M. jussii, but thousands of M. laevigella, suggesting that the species is lacking in the area or, more unlikely, that the nest of these owl species do not serve as good habitat for the new species. This unexpected species discovery highlights, once again, the usefulness of DNA barcoding in revealing the cryptic layers of biodiversity. To serve stability we select a neotype for Tinea laevigella [Denis & Schiffermüller], 1775, and discuss the complicated synonymy and nomenclature of this species. A peer-reviewed open-access journal Marko Mutanen et al. / ZooKeys 992: 157-181 (2020) 158
Full-text available
In support of a comprehensive update to the checklist of the moths of North America, we attempt to determine the status of 151 species of Tortricidae present in North America that may be Holarctic, introduced, or sibling species of their European counterparts. Discovering the natural distributions of these taxa is often difficult, if not impossible, but several criteria can be applied to determine if a species that is present in both Europe and North America is natively Holarctic, introduced, or represented by different but closely related species on each continent. We use DNA barcodes (when available), morphology, host plants, and historical records (literature and museum specimens) to make these assessments and propose several taxonomic changes, as well as future areas of research. The following taxa are raised from synonymy to species status: Acleris ferrumixtana (Benander, 1934), stat. rev.; Acleris viburnana (Clemens, 1860), stat. rev.; Acleris pulverosana (Walker, 1863), stat. rev.; Acleris placidana (Robinson, 1869), stat. rev.; Lobesia spiraeae (McDunnough, 1938), stat. rev.; and Epiblema arctica Miller, 1985, stat. rev. Cydia saltitans (Westwood, 1858), stat. rev., is determined to be the valid name for the "jumping bean moth," and Phiaris glaciana (Möschler, 1860), comb. n., is placed in a new genus. We determine that the number of Holarctic species has been overestimated by at least 20% in the past, and that the overall number of introduced species in North America is unexpectedly high, with Tortricidae accounting for approximately 23-30% of the total number of Lepidoptera species introduced to North America.
Full-text available
The taxonomic position of two species Plutella hufnagelii Zeller 1839 and Caunaca insulella Walsingham 1900, in the family Plutellidae: has been unclear. In current fauna studies, these species are usually placed in the genera Rhigognostis and Eidophasia respectively. In this paper, I address the taxonomic position of P. hufnagelli and C. insulella and describethe genitalia of both sexes. Analysis of genital structure confirms the correct placement of these species into the genus Eidophasia.
Full-text available
The checklist of European Gelechiidae covers 865 species, belonging to 109 genera, with three species records which require confirmation. Further, it is the first checklist to include a complete coverage of proved synonyms of species and at generic level. The following taxonomic changes are introduced: Pseudosophronia con-stanti (Nel, 1998) syn. nov. A peer-reviewed open-access journal Peter Huemer & Ole Karsholt / ZooKeys 921: 65-140 (2020) 66 Dichomeris neatodes Meyrick, 1923 sp. rev.; Caryocolum horoscopa (Meyrick, 1926) stat. rev.; Ivanauskiella occitanica (Nel & Varenne, 2013) sp. rev.; Apodia martinii Petry, 1911 sp. rev.; Caulastrocecis cryptoxena (Gozmány, 1952) sp. rev. Following Article 23.9.2 ICZN we propose Caryocolum blandella (Douglas, 1852) (Gelechia) nom. protectum and Caryocolum signatella (Eversmann, 1844) (Lita) nom. oblitum.
A multigene phylogenetic study was carried out to test current, mostly morphology‐based hypotheses on Sterrhinae phylogeny with additional material included from further geographical areas and morphologically different lineages. A maximum likelihood analysis (11 molecular markers and 7665 bp) was conducted on 76 species and 41 genera using iq‐tree software. The resulting phylogenetic hypothesis is well resolved and branches have high support values. Results generally agree with earlier hypotheses at tribal levels and support the hypothesis that Sterrhinae comprises two major lineages. Based on the molecular phylogeny and extensive morphological examination, nine tribes are considered valid and the following taxonomic changes are introduced to recognize monophyletic groups: Mecoceratini Guenée, 1858 (= Ametridini Prout, 1910) is transferred from Desmobathrinae to Sterrhinae, and it is considered valid at tribal level new classification; Haemaleini Sihvonen & Brehm is described as a new tribe and deemed sister to Scopulini + Lissoblemmini; Lissoblemmini Sihvonen & Staude is described as a new tribe and sister to Scopulini; Lythriini Herbulot, 1962 is now a junior synonym of Rhodometrini Agenjo, 1952 syn.n.; and Rhodostrophiini Prout, 1935 is now a junior synonym of Cyllopodini Kirby, 1892 syn.n. In addition, 48 taxa are transferred from other geometrid subfamilies to Sterrhinae, or within Sterrhinae from one tribe to another, or they are classified into a tribe for the first time, or a new genus classification is proposed. The results demonstrate the limited explanatory power of earlier classifications, particularly at the tribal level. This is probably a result of earlier classifications being based on superficial characters and biased towards the European and North American fauna. The species richness and distribution of Sterrhinae and its constituent tribes are reviewed, showing that the globally distributed Sterrhinae are most diverse in the Neotropics (31% of global fauna). They are species‐rich in the Palaearctic (22%), Afrotropics (19%) and Indo‐Malay (16%) regions, whereas they are almost absent in Oceania (1%). In terms of the described fauna, the most species‐rich tribes are Scopulini (928 species), Sterrhini (876 species) and Cosymbiini (553 species), all of which have a cosmopolitan distribution. Mecoceratiini and Haemaleini are almost entirely Neotropical. Timandrini and Lissoblemmini, by contrast, are absent in the Neotropics. We present a revised classification of the global Sterrhinae fauna, which includes about 3000 putatively valid species, classified into nine tribes and 97 genera. Four genera are of uncertain position within Sterrhinae. Our results highlight the compelling need to include more genera from a global perspective in molecular phylogenetic studies, in order to create a stable global classification for this subfamily. This published work has been registered on ZooBank,‐06D6‐4908‐893E‐E8B124BB99B1. We analysed the phylogeny of Sterrhinae moths based on molecular dataset of 76 species and 11 genes, combined those with morphology and included the results in a global classification framework. Two new tribes are described, Mecoceratini is transferred from Desmobathrinae to Sterrhinae, and 50 other taxonomic changes are proposed. Sterrhinae are a cosmopolitan group of about 3000 species, with the highest species richness in the Neotropics and the lowest in Oceania.