ArticlePDF Available

Epigenetic-Hydrothermal Fluorite Veins in a Phosphorite Deposit from Balaton Highland (Pannonian Basin, Hungary): Signatures of a Regional Fluid Flow System in an Alpine Triassic Platform

Authors:

Abstract and Figures

The middle Anisian extensional tectonics of the Neotethyan realm developed a small, isolated carbonate platform in the middle part of the Balaton Highland (western Hungary), resulted in the deposition of uranium-bearing seamount phosphorite on the top of the drowned platform and produced some epigenetic fluorite veins in the Middle Triassic sequence. The stable C-O isotope data of carbonates are shifted from the typical Triassic carbonate ranges, confirming the epigenetic-hydrothermal origin of veining. Primary fluid inclusions in fluorite indicate that these veins were formed from low temperature (85–169 °C) and high salinity NaCl + CaCl2 + H2O type (apparent total salinity: 15.91–22.46 NaCl wt%) hydrothermal fluids, similar to parent fluids of the Alpine-type Pb-Zn deposits. These findings indicate that the Triassic regional fluid circulation systems in the Alpine platform carbonates also affected the area of the Balaton Highland. This is also in agreement with the previously established palinspatic tectonic reconstructions indicating that the Triassic carbonate and basement units in the Balaton Highland area were a part of the Southern Alpine. Similar fluorite veining in phosphorite deposits is also known in the Southern Alpine areas (e.g., Monte San Giorgi, Italy). Raman spectroscopic analyses detected H2 gas in the vapor phase of the fluid inclusions and a defect-rich fluorite structure in violet to black colored growth zones. This unique phenomenon is assumed to be the result of interaction between the uranium-rich phosphorite and the parent fluids of the epigenetic fluorite veins.
Content may be subject to copyright.
Minerals2021,11,640.https://doi.org/10.3390/min11060640www.mdpi.com/journal/minerals
Article
EpigeneticHydrothermalFluoriteVeinsinaPhosphorite
DepositfromBalatonHighland(PannonianBasin,Hungary):
SignaturesofaRegionalFluidFlowSysteminanAlpine
TriassicPlatform
ZsuzsaMolnár
1,
*,GabriellaB.Kiss
1,
*,FerencMolnár
2
,TamásVáczi
1,3
,GyörgyCzuppon
4
,IstvánDunkl
5
,
FedericaZaccarini
6
andIstvánDódony
1
1
DepartmentofMineralogy,EötvösLorándUniversity,PázmányP.Street1/C,H1117Budapest,Hungary;
vaczi.tamas@wigner.mta.hu(T.V.);dodony@tonline.hu(I.D.)
2
GeologicalSurveyofFinland,Vuorimiehentie5,P.O.Box96,FI02151Espoo,Finland;ferenc.molnar@gtk.fi
3
WignerResearchCentreforPhysics,EötvösLorándResearchNetwork,KonkolyThegeMiklósStreet29–33,
H1124Budapest,Hungary
4
ResearchCentreforAstronomyandEarthSciences,InstituteforGeologicalandGeochemicalResearch,
EötvösLorándResearchNetwork,BudaörsiStreet45,H1112Budapest,Hungary;czuppon@geochem.hu
5
GeoscienceCenter,DepartmentofSedimentologyandEnvironmentalGeology,UniversityofGöttingen,
Goldschmidtstrasse3,D37077Göttingen,Germany;istvan.dunkl@geo.unigoettingen.de
6
DepartmentofAppliedGeosciencesandGeophysics,UniversityofLeoben,PeterTunnerStreet5,
A8700Leoben,Austria;federica.zaccarini@unileoben.ac.at
*Correspondence:molnarzsuzsa89@gmail.com(Z.M.);gabriella.b.kiss@ttk.elte.hu(G.B.K.)
Abstract:ThemiddleAnisianextensionaltectonicsoftheNeotethyanrealmdevelopedasmall,iso
latedcarbonateplatforminthemiddlepartoftheBalatonHighland(westernHungary),resultedin
thedepositionofuraniumbearingseamountphosphoriteonthetopofthedrownedplatformand
producedsomeepigeneticfluoriteveinsintheMiddleTriassicsequence.ThestableCOisotope
dataofcarbonatesareshiftedfromthetypicalTriassiccarbonateranges,confirmingtheepigenetic
hydrothermaloriginofveining.Primaryfluidinclusionsinfluoriteindicatethattheseveinswere
formedfromlowtemperature(85–169°C)andhighsalinityNaCl+CaCl
2
+H
2
Otype(apparenttotal
salinity:15.91–22.46NaClwt%)hydrothermalfluids,similartoparentfluidsoftheAlpinetypePb
Zndeposits.ThesefindingsindicatethattheTriassicregionalfluidcirculationsystemsintheAlpine
platformcarbonatesalsoaffectedtheareaoftheBalatonHighland.Thisisalsoinagreementwith
thepreviouslyestablishedpalinspatictectonicreconstructionsindicatingthattheTriassiccarbonate
andbasementunitsintheBalatonHighlandareawereapartoftheSouthernAlpine.Similarfluorite
veininginphosphoritedepositsisalsoknownintheSouthernAlpineareas(e.g.,MonteSanGiorgi,
Italy).RamanspectroscopicanalysesdetectedH
2
gasinthevaporphaseofthefluidinclusionsand
adefectrichfluoritestructureinviolettoblackcoloredgrowthzones.Thisuniquephenomenonis
assumedtobetheresultofinteractionbetweentheuraniumrichphosphoriteandtheparentfluids
oftheepigeneticfluoriteveins.
Keywords:fluidinclusions;H
2
gas;Ramanspectroscopy;COisotopesincarbonate;structurally
disorderedzonesinfluoritecrystals;AlpinetypePbZnindication
Citation:Molnár,Z.;Kiss,G.B.;
Molnár,F.;Váczi,T.;Czuppon,G.;
Dunkl,I.;Zaccarini,F.;Dódony,I.
EpigeneticHydrothermalFluorite
VeinsinaPhosphoriteDepositfrom
BalatonHighland(PannonianBasin,
Hungary):SignaturesofaRegional
FluidFlowSysteminanAlpine
TriassicPlatform.Minerals2021,11,
640.https://doi.org/10.3390/min
11060640
AcademicEditor:JoelE.Gagnon
Received:19April2021
Accepted:12June2021
Published:16June2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Minerals2021,11,6402of21
1.Introduction
TheregularlyrevisedrawmaterialpolicyoftheEuropeanUnioncallsattentionto
theimportanceofcertainmetalsandminerals(e.g.,criticalrawmaterials)forthesustain
abledevelopmentofEuropeanindustry.Severalmineralandoreoccurrencesthathave
notbeenpreviouslystudiedindetailhavesignificantpotentialforsomecriticalelements
throughouttheCircumPannonianBasin.Reevaluationofhistoricallyknownmineraloc
currencesmayleadtorecognitionoftheirpreviouslyignoredrawmaterialcontentaswell
astoreconsiderationofthemineralpotentialintheregion.Developmentofneworede
positmodelsbyreinvestigationofthoseoccurrencesbyapplicationofmodernconcepts
andresearchmethodsmayrevealpreviouslyhiddenexplorationpossibilities.
Thepresentstudyfocusesonapreviouslyknownuraniumbearingphosphoriteoc
currenceatPécselyvillage[1,2],whichislocatedintheBalatonHighlandarea,inwestern
Hungary.ThismineraloccurrenceislocatedintheNorthernTransdanubiumUnit,which
isanallochthonousunitoriginatedfromtheSouthernAlps[3–5].Thephosphoritebear
ingsedimentaryhorizonsarecutbyepigeneticfluoriteveins.Fluoriteandfluoritebase
metalveinsystemswitheconomicsignificanceinthepastalsooccurinotherpartsofthe
Transdanubianterrain[6].Therefore,theoccurrenceofthefluoriteveinsatPécselymay
havesignificanceinaregionalmetallogeneticcontext.Thislocalityalsooffersaunique
opportunitytoinvestigatethemineralogicalandgeochemicalconsequencesoftheinter
actionbetweenthephosphoriteandthesuperimposinghydrothermalprocessesrespon
siblefortheformationofthefluoriteveins.
Resultsofresearchpresentedinthispaperandcomparisonofresultswithsimilar
occurrencesoffluoritebearingveinsintheregionprovideanewbackgroundfortheeval
uationofthemetallogeneticcontextofthepeculiarmineralizationatPécselyandhighlight
thepotentialroleoftheoverprintingregionalscaleAlpinefluidflowsystemsonolder
mineraldepositsinformationofunusualmetalassociationsandenrichments.Thispaper
alsopresentsanddiscussessomeunusualfeaturesobservedatthislocality,suchasthe
presenceofstructurallydisorderedzonesinfluoritecrystalsandtheoccurrenceofhydro
gengasinfluidinclusionsoffluorite.
2.GeologicalBackground
2.1.RegionalGeology
ThestudyareaislocatedinthesouthernpartoftheALCAPA(Alpine,Carpathian,
Pannonian)Megaunit[4,7]alongthenorthernsideofthePeriadriaticBalatonLineament
System(PABL)inwesternHungary(Figure1a).TheALCAPAMegaunitiscomposedof
metamorphosedProterozoictoMesozoicblocksoftheEasternAlpsandofPaleozoiclow
grademetamorphicandSouthernAlpinetypeMesozoiccarbonaceoussequencesofthe
TransdanubianMountainRange(TDMR),theBükkMountains,aswellasthecrystalline
blocksoftheInnerWesternCarpathians[5,7,8].ThecurrentlocationoftheALCAPA
MegaunitwithintheAlpCarpathianrealmistheresultofitsnortheastwarddirectedlat
eralescapementfromtheEasternAlpinecollisionzone[4,5,7–9].Thetotal350–400km
presentdayoffsetcanbeattributedtothePaleogenetoMidLateMioceneextension,lat
eralextrusion,andcounterclockwiserotationoftheALCAPAMegaunit[9–11].There
fore,thePaleozoic,Mesozoic,andPaleogeneunitsalongthePABLcanberegardedas
allochthonousblocksinatectonicmegamélange,betweentheALCAPAandZagorje
MidTransdanubianZone[12,13].
TheuraniumbearingphosphoriteoccurrenceatPécselyislocatedinthemiddlepart
oftheBalatonHighland,onthesoutheasternflankoftheNE–SWtrendingsynformof
TDMR.IntheMiddleTriassicsequenceofthisareathePelsonianhemipelagicbasinal
strataoftheFelsőörsLimestonearereplacedherebycoevalplatformcarbonatesofthe
TagyonFormation[14](Figure1b).Thislateralfacieschangeisexplainedbysynsedimen
taryextensionaltectonismthathasformedhalfgrabentypehemipelagicbasinsandiso
latedcarbonateplatforms[15].Astheresultofarelativesealevelrise,thePelsonian
Minerals2021,11,6403of21
TagyonPlatformwasdrownedandtransformedtoasubmarinemount(theTagyon
High);thefirstoverlyinglayersaboveitbelongtotheupperIllyrianCamunumSubzone
[16].ThiseventwasfollowedbydepositionoftheupperAnisian–Ladiniansequencewith
phosphoritehorizonsandradiolaritelayersonthetopofthesubmarinemount.Phospho
ritesareknownonlyatthenortheasternmarginoftheTagyonHigh,atÖregHill,near
thevillageofVászoly[17].Incontrast,radiolaritesandradiolarianrichcarbonatesoccur
morewidely:inadditiontotheareaoftheTagyonHigh,theyarealsoknownfromthe
easternpartoftheFelsőörsBasinlocatedintheproximityofthehighatAszófő.Theoc
currenceofanupperLadinianammonoidassemblageinaneptuniandykecutting
throughtheMiddleTriassicplatformcarbonatesinthenortheasternpartoftheBalaton
Highland[16]indicatestheprolongationoftheextensionaltectonicregimeatleastuntil
theendoftheMiddleTriassic.
Minerals2021,11,6404of21
Figure1.Locationandgeologicalstructureofthestudyarea.(a)MajorstructuralunitsoftheEasternAlps—Pannonian
Basinregion(modifiedafter[18])withthepositionsofmajorPbZndeposits;(b)faciesarrangementofMiddleTriassic
FormationsalongthestrikeoftheBalatonHighland[16].TheformationsfoundintheareaofPécselyaremarkedwitha
yellowrectangle;(c)schematicgeologicalsectionofthePécsely11explorationtrench(modifiedafter[1]).
Minerals2021,11,6405of21
2.2.GeologyofthePécselyLocality
ThephosphoritedepositislocatedatÖregHill,betweenthevillagesofPécsely,
Vászoly,andÖrvényes(Figure1b);GPScoordinatesofthesamplingsiteinWGS’84(DM):
N46°55.764′E17°47.147).Thisdepositwasstudiedindetailduringthe1950s[1]dueto
theobservedradioactiveanomalycausedbytheuraniumcontentofthesedimentary
phosphoriteoccurrence.
Thephosphoritelayers,togetherwiththecrosscuttingfluoriteveins,arelocatedin
Triassiclimestoneanddolostone(Figure1c).ThehostrockofthephosphoriteistheLadin
ianpelagicVászolyLimestoneFormation[17].Thisformationisunconformablyoverlying
theAnisianplatformcarbonateTagyonLimestoneFormationdepositedinalocalbasin
andintercalatedwithfelsictuffintheupperAnisian[14,16].
ThebrownishgreyUbearingphosphoritelayersinthesedimentarysequenceofthe
ÖregHillappearinthreehorizons[2]inalessthan1km2area.Thelowermostandthickest
(max.1.2m)horizonoccursatthedrowningsurfaceoftheTagyonFormationandthe
overlyingtuffaceouscarbonatebedsoftheVászolyFormation.Themiddlesectionwith
varyingthickness(5–20cm)depositedaftertheformationoforganicrichlimestoneofthe
lowermemberoftheVászolyFormation.Theuppermostthinnestphosphoritehorizon
(max5cm)formsadark,greenishgreycrustonthebeddingsurfaceoftheVászolyFor
mation.Asdescribedby[1],fluoritecalciteveinsappearalongnormalfaultsandcut
acrossthephosphoriterichcarbonatesequence(Figure1c).
Thedetailedmineralogicalandgeochemicalcharacteristicsofthephosphoritelayers
arepresentedin[2].Thedominantmineralassemblageinthephosphoriticlayersconsists
ofcarbonatebearingfluorapatite(CFA)andcalcite,buthematite,pyrite,andzirconare
alsopresentrarely.TheCFAcontains137–612ppmUand113–261ppmtotalREE+Y.The
UenrichmentisrelatedtotheCFA;individualuraniummineralswerenotidentified.The
carbonandoxygenisotopiccompositionsofthehostlimestone(δ18OPDB=from−2.18‰to
1.54‰;δ13CPDB=from1.86‰to1.99‰)overlapwiththestableisotopefieldofthetypical
MiddleTriassicmarinecarbonates[19],whilethestableisotopevaluesofcarbonatesfrom
veinsaregenerallycharacterizedbydifferentvalues(δ18OPDB=from−8.12to−6.42‰;
δ13CPDB=from–5.50‰to1.55‰)suggestingepigenetichydrothermalorigin[2].
Earlierstudies[1]suggestedanepigeneticoriginforthefluoriteveins;however,they
haveleftseveralopenquestionsregardingtheformationprocessesoftheseveins,thein
teractionbetweenthephosphoritelayers,andthesuperimpositionofhydrothermalpro
cessesaswellastheregionalcorrelationwithsimilarveinsintheTransdanubianUnit.
3.MaterialsandMethods
Inordertoachievetheobjectivessetupduringtheresearchwork,hostrock,phos
phorite,andfluoriteveinsampleswerecollectedfromtheareaofÖregHillatPécsely
(Figure1b).Petrographyofsampleswascarriedoutonstandardpolishedthinsections
usingNikonAlphaphotandZeissAxioplanpolarizingmicroscopes.QualitativeSEM
EDSanalysesofmineralswerecompletedbyanAMRAY1830Iscanningelectronmicro
scope.Theobservationswereperformedwith20kVacceleratingvoltageand1nAbeam
current.Cathodoluminescence(CL)imagingoffluoritewasperformedwiththesame
equipmentusingaGatanMiniCLdetector,with10kVacceleratingvoltageand3nAbeam
current.Quantitativeelectronmicroprobeanalysesofthefluoritegrainswerecompleted
bymeansofaJEOLSuperprobeJXA8200typeelectronmicroprobe.Wavelengthdisper
sivemodewasused,with15kVacceleratingvoltageand10nAbeamcurrent.Thedetec
tionlimitsforeachelementareshownintherelatedtables.
Fluidinclusionpetrographyandmicrothermometrywerecarriedouton100–120μm
thick,doublepolishedsectionsofhydrothermalfluoriteandcalcite,usingaLinkamFT
IR600typeheating–freezingstagemountedonanOlympusBX51typepolarizingmicro
scopeprovidingupto1000timesopticalmagnification.Thecalibrationofthestagewas
donebyanalysesofCO2andpurewatersyntheticfluidinclusions.Theprecisionofthe
Minerals2021,11,6406of21
microthermometricmeasurementswas±0.1°Cbelow0°C,and±1°Cathighertempera
tures.Interpretationofthemicrothermometricdatawascarriedoutbyamacroprogram
inMSExcel,developedinaVisualBasicenvironmentbyG.B.Kiss,usingthecalculation
methodsofsalinitiesandisochorsin[20–23].
Ramanmicroanalysesoffluoritestructureandfluidinclusionsinfluoritewerecom
pletedusingaHoribaJobinYvonLabRAMHR800UVedgefilterbasedconfocaldisper
siveRamanspectrometercoupledwithanOlympusBXFMtypemicroscope.Duringthe
measurements,the532nmemissionofafrequencydoubledNd:YAGlaser,a600
grooves/mmgrating,50μmconfocalaperture,and50xlongworkingdistanceobjective
wereused.
ThetraceelementcontentoffluoritesampleswasdeterminedbyICPMS.Twenty
eightelementswereanalyzedusingexternalcalibrationandUandThbyisotopedilution
[24].Singlecrystalsof0.5–2mmsizeweregentlycrushedand0.1–0.2mm(ca.100–200
μg),inclusionfreefragmentswithdifferentcolorswerecarefullyselectedanddissolved
inhot,ultrapureHCl.Thus,thesensitivityandspatialresolutionofthistechniquewas
betweentheclassicalwetchemicalanalysisperformedonpulverizedandhomogenized
samplesofseveralhundredsofmginmassandthelaserablationtechniquethatrepre
sentsasmallervolume,butwithconsiderablyhigheruncertainty.Additionally,laserab
lationistypicallynotviableonfluoritebecauseofthelowabsorptionofUVlightandthe
frequentfragmentationandsmallexplosionsduringablation.TheREEdistributionpat
ternsoffluoritewerecomparedwithCIcarbonaceouschondrite(CI)andPostArchean
AustralianShale(PAAS)[25,26].
Carbonandoxygenisotopeanalysesofcarbonatemineralsassociatedwithfluorite
werecarriedoutbyinsitusamplingofcarbonatesusinganelectricmicrodrillwithabit
diameterof0.6mm.Theresulting150–200μgsamplesweredissolvedbycarbonateor
thophosphoricacidreactionat72°C[27],andthealiquotswereanalyzedusinganauto
matedGASBENCHIIsamplepreparationdeviceattachedtoaThermoFinniganDelta
PlusXPmassspectrometer.Theisotopecompositionsareexpressedasδ13Candδ18Oin
relativetoVPDB(ViennaPeeDeeBelemnite),accordingtotheequation:δ=
(Rsample/Rstandard−1)×1000,whereRisthe13C/12Cor18O/16Oratiointhesampleorinthe
internationalstandard.Theprecisionwasbetterthan0.15‰forCandOisotopedata,
basedonreplicatemeasurementsofinternationalstandards(NBS19;NBS18)andin
housereferencematerials.
4.Results
4.1.FieldDescription,Mineralogy,andPetrographyoftheFluoriteVeinsandtheirHostRock
Duringthefieldwork,fluorite–dolomite–calciteveinsweresampledinanaban
donedpitaswellasinthewastedumpofthatpitintheareaofÖregHillatPécsely(Figure
1b).ThelocationofveinsiscontrolledbyNW–SEorientednormalfaultsdippingby70°
totheNEinwhitepinkishandwhiteyellowishlimestone,dolomitizedlimestone,and
dolomite.Theveinscanbefollowedinaseveralmeterslong,~10cmwidezonesalong
thefaults.Thehostrocksarebrecciatedalongthefaults(Figure2c).Thethicknessofthe
faultbrecciais~5cm.Theclastsinthemonomictbrecciaaretypicallyangular,rarely
rounded,elongatedinshape,2mmto3cminsize,whichindicatesmovementwithina
shortdistance.Theratiooffragmenttocementis4to1.Thecrystalsoffluorite,dolomite,
andcalcitearelocatedaroundtheclastsofthebrecciaaswellasinsatelliteveins(Figure
2a,b).Fluoriteanddolomiteinthematrixofthebrecciaalsoappearinnestsandcavities,
inwhichtheamountofdolomiteishigher(Figure2a,b).Thefluoritegrainsarecharacter
izedby0.1–2mmsizeanddarkpurplecolor,andthezonationofthecrystalscanoftenbe
observedmacroscopically.Thesaddledolomiteinthesebrecciaveinsisoftentranslucent
andcolorlessorwhite,butinthenests,itisalwaysnottransparent,withwhiteorpale
rosecolor.Texturalfeaturesindicatethatdepositionofdolomiteandcalciteoutlastedthe
crystallizationoffluoriteinthebrecciamatrixandalsointheconnectedveinlets.
Minerals2021,11,6407of21
Observationsinthepolarizingmicroscopeconfirmedthatthelightpinkishcolorof
thehostrockcanberelatedtothepresenceofdisseminationofsmallflakes(2–5μm)of
hematitecrystals(Figure2a).Theindividualhematiteflakesarerectangularandhexago
nalinshapewithcherryredcolor.Dolomiteprismsarecommonlycorrodedbyhematite
flakes(Figure2b,d,e)andshowunduloseextinction.Microscopicobservationsonfluorite
anddolomiteshowedthattheoutlinesofthesecrystalsareoftencorroded,andthegrains
aremostlycrushedorfragmented.Individualfluoritecrystalsshowfromdarkpurpleto
colorlessgrowthzoneswithallshadesofpurple.TheSEMCLimagesoffluoritealso
showaveryfineandcomplicatedzonation(Figure2i,j).
Themacroscopicallyvisibledarkbandsconsistofseveralthin(10–100μm)darkpur
plezones(Figure2d,e).Undercrossedpolarizers(+N),incontrasttothenormalisotropic
behavior,thesecrystalsdonotshowfullextinction,andzoningindarkgreycolorisstill
visible(Figure2e).
ObservationsintheSEMrevealedthatthehostrocklimestoneofphosphoritehori
zonsandfluoriteveins(VászolyLimestoneFm.)ispartlyorentirelydolomitized.Inthe
partlydolomitizedrockbodies,variousfabricselectivedolomitetypeswereobserved.In
thebeds,scattered,irregularaggregatesofveryfinelycrystallinedolomiteand/or15to
200μmsizedeuhedral,subhedral,andanhedraldolomitecrystalsorcrystalclustersoccur
inthemicriticfabricelements,testifyingtomicriteselectivedolomitization(Figure2c).
Coarselycrystallinemosaicofcalciteand/orcoarselycrystallinedolomiteoccursinthe
centralpartofvugs(Figure2f).Intheentirelydolomitizedintervals,fabricdestructive
dolomiteprevails,althoughghostsofsomecalcitegrainsarelocallyrecognizable.This
dolomiteistypicallyfinetomediumcrystalline,exhibitingplanarsubhedralandnon
planaranhedraltexturewithcoarselycrystallinedolomitecementinvugs.Saddledolo
miteoccurslocallyasthelastcementphaseinthesevugs.Thecarbonatemineralsinthe
matrixofthebrecciahavealsosufferedcomplicateddolomitization/dedolomitizationpro
cess(Figure2g),wherethesaddledolomiteisdedolomitized.Furthermore,thepresence
offinegrainedcalcitewasalsoobservedamongthefluoritegrainsaswellasinhealed
microfracturesoffluorite(Figure2g,h).
Resultsofpetrographysuggestthatthesequenceofprecipitationofthemineralswas
asfollows:fluoriteanddolomitewerecrystallizedtogetherattheearlystagesofveining,
buttheformationofdolomitelastedlonger,andthentheresidualspaceandcrackswere
filledupbycalcite,whichalsoresultedindedolomizationofthesaddledolomite.The
veinfillingmineralsprecipitatedfromthesamefluid,whichcontributedtothecomplex
dolomitization–dedolomitizationhistoryofthepartlydolomitizedhostrocklimestone.
Minerals2021,11,6408of21
Figure2.Mineralogyandpetrographyofthefluoriteveinsandtheirhostrock.(a)Macroscopicpictureofthecontactof
thefluorite–calcite–dolomiteveinsandhostrock;(b)Microscopicpictureofthefluorite–calcite–dolomiteveins.Theveins
containfluorite,dolomite,calcite,andhematitegrains.Thepurplezonationofthefluoritegrainsisalsovisible.(c)Micro
scopicpictureofthedolomitizedlimestonehostrock;(d)microscopicimageoftheareaindicatedbyanorangesquarein
thepictureb;(e)magnifiedmicroscopicimageoftheareaindicatedbyanorangesquareinpictureb.Theisotropicfluorite
crystalsshowopticalanomaly(e.g.,lackoffullextinction)undercrossedpolarizers(+N)ofthemicroscope;therefore,the
zonationisvisible;(f)BSEimageofthehostrock;(g)BSEimageoffluoriteanditsenvironment.Thecomplexdolomitiza
tionhistoryoftheveinisalsovisible.Thefluoritegrainsareoftenfragmented,andcalcitefillsinthespacebetweenthem;
(h)BSEimageoftheveinfillingminerals;(i)SEMcathodoluminescence(CL)pictureofthefluoritegrainsandfragments;
(j)BSE,elementmappingandSEMCLimagesofthesamearea.Abbreviationsused:cal,calcite;dol,dolomite;fl,fluorite;
hem,hematite.
Minerals2021,11,6409of21
4.2.MineralChemistry
Thefluoriteischaracterizedby15–20ppmREE+Yconcentrations.AllsixPAAS
normalizedfluoriteanalysesshowsimilarREEpatterns(Figure3)thatarestronglyde
pletedinlightandheavyREEcomparedwiththemiddleREE.TheycharacterizedlowLa
andCevalues.Allanalyzedgrainscontainedseveralpurplezones;therefore,nocorrela
tioncouldbeestablishedbetweenthecolorofthezonesandtheconcentrationsofana
lyzedelements.
Figure3.PostArcheanAustralianShalenormalizedREEdistributionpatternsoffluoritesamplesfromPécsely.
4.3.CarbonandOxygenIsotopesinVeinFillingCarbonates
Theδ18OPDBvaluesrangefrom−7.79‰to−6.76‰,whiletheδ13CPDBvaluesrangefrom
7.16‰to2.12‰inthehydrothermalsaddledolomiteassociatedwithfluoriteinthe
veins(Table1).Bycomparingtheobtainedresultswiththestableisotopiccompositionof
sedimentarycarbonatesprecipitatedinequilibriumwithDIC(dissolvedinorganiccar
bon)inTriassicseawater[19],mostofthevaluesplotoutsideofthemarinecarbonatefield
(δ18OPDBvaluesrangefrom−2.18‰to−1.54‰;δ13CPDBvaluesrangefrom1.86‰to1.99‰).
Table1.StableisotopedataofveinfillingsaddledolomitefromPécsely.
Numberδ
13CPDB(‰)δ
18OPDB(‰)Numberδ
13CPDB(‰)δ
18OPDB(‰)
11.92−7.4613−4.12−7.36
21.62−7.6314−3.78−7.41
31.66−7.6615−4.07−7.39
41.57−7.6916−3.05−7.45
51.57−7.5817−7.11−6.93
6−6.91−7.1218−6.79−6.78
7−7.16−7.1519−7.15−6.92
8−1.63−7.5420−5.78−7.36
9−3.08−7.50211.85−7.17
10−5.60−7.51221.91−6.76
11−4.71−7.79232.12−7.58
12−4.24−7.44242.09−7.53
4.4.FluidInclusionPetrographyandMicrothermometry
Accordingtothepetrographicobservations,fourfluidinclusionassemblagescanbe
distinguishedinfluorite:oneofthemconsistsofprimaryandthreeotherassemblages
consistofsecondaryfluidinclusions(Table2,Figure4a–d).
Minerals2021,11,64010of21
The5–30μmlargerectangular(negativecrystal)shaped,aqueous,twophase,liquid
andvapor(L+V)primaryinclusions(P)occurinisolationorinclustersof2–3smallin
clusionsapartfromthehealedmicrocracks,alongthegrowthzonesoffluorite(Figure
4a,b).Theratioofthevaportoliquidphaseisconstantlyaround0.15atroomtemperature,
indicatingthattheseinclusionswereentrappedfromahomogenousparentfluid(Figure
4a,b).
Table2.Resultsofthefluidinclusionmicrothermometry.
PrimarySecondary
S1S2S3
Numberofmeasure
ments5521829‐
Size5–30μm5–15μm5–30μm5–10μm
Shaperectangular(nega
tivecrystalshape)angular irregularroundish
Phases85%L+15%V95%L+5%V95%L+5%V100%L
Th85–169°C42–121°C45–65°C‐
Teut−57.7to−44.0°C−58.0to−46.0°C‐ ‐
TmeltHydrohalyte−26.5to−21.5°C−25.0to−21.2°C‐ ‐
TmeltIce−21.0to−12.0°C−20.8to−13.7°C‐ ‐
Apparenttotalsalin
ity
15.91–22.46NaCl
wt%17.35–22.93wt%‐ ‐
Calculatedsalinity
0.64–9.98CaCl2
wt%+
9.59–20.64NaCl
wt%
0–8.47CaCl2wt%
+
12.4–20.01NaCl
wt%
‐ ‐
Figure4.Fluidinclusionsinfluorite.(a)TwophasedPinclusionnearanS1inclusionplane;(b)twophasedPinclusion
closetoagrainboundarynearanS1inclusionplane;(c)S2twophasedinclusiongeneration;(d)onephasedS3inclusion
generation;(e)thebehaviorofanS1inclusionduringfreezing.Abbreviationsused:P,primaryinclusion;S,secondary
inclusion;L,liquidphase;V,vaporphase;HH,hydrohalite(NaCl2H2O);AA,antarticite(CaCl26H2O);I,ice.
Thehomogenizationtemperatures(Th(LV)L)ofprimaryfluidinclusionsofthevein
fillingfluoritecrystalsarebetween85°Cand169°C(average=112°C,standarddeviation
=20.7°C,numberofanalyses=55)(Figure5a).Theaverageeutecticmeltingtemperature
(Teut)oftheprimaryinclusionsis−49.8°C,correspondingtoNaCl–CaCl2–H2Otypemodel
composition(Figure5c–e).Meltingofhydrohalite(NaCl2H2O)occurredbetween−26.5
°Cand−21.5°Candthemeltingpointoficefrom−21to−12°C,correspondingto0.64–
Minerals2021,11,64011of21
9.98CaCl2+9.59–20.64NaClwt%(n=8)salinity(Figure5e).Theapparenttotalsalinities,
calculatedfromtheicemeltingtemperaturesusingNaCl–H2Omodelcompositionand
expressedinNaClequivalentweight%,arefrom15.91to22.46(Figure5c).
Thefracture/cleavageplanehostedS1inclusionsoffluoritealsohaveanangular
shapewithabout5–15μmsizes(Figure4a,b),andtheratioofthevaportoliquidphaseis
around0.05.Theseobservationsindicateentrapmentfromahomogenousparentfluid.
Theirhomogenizationtemperature(Th(LV)L)isbetween42–121°C(average=71°C,
standarddeviation=11°C,numberofmeasurements=218)(Figure5b).Theaverageeu
tecticmeltingtemperature(Teut)ofS1inclusionswas−51.4°C,sotheircompositioncan
alsobemodelledintheNaCl–CaCl2–H2Osystem(Figure4e,Figure5c–e).Themelting
temperatureofhydrohaliteisfrom−25°Cto−21.2°C,andthemeltingtemperatureofice
isfrom−20.8°Cto−13.7°C.ThesedataindicatethattheCaCl2contentoftheseinclusions
isbetween0–8.47wt%,whereastheNaClcontentisbetween12.4–20.01wt%(Figure5e).
Theapparenttotalsalinitycalculatedfrommeltingtemperatureoficeandexpressedin
NaClequivalentweight%usingtheNaCl–H2Omodelsystemis17.35–22.93(Figure5c).
Figure5.Resultsofthemicrothermometrystudyofprimary(P)andS1(secondary)fluidinclusions.(a)Frequencydistri
butiondiagramofthehomogenizationtemperatureofPinclusions;(b)frequencydistributiondiagramofthehomogeni
zationtemperatureofS1inclusions;(c)homogenizationtemperaturevs.totalsalinitydiagramofPandS1inclusions;(d)
vaporsaturatedliquidusphaserelationsintheH2O–NaCl–CaCl2system[28,29];(e)salinitycompositionsofaqueousin
clusionstrappedinfluoritefromPécsely.
Thetwophase(L+V)S2inclusionsoccurinfracturesthathavedifferentorientations
comparedtothehealedfractureswiththeS1typeofinclusions.OccurrenceofS2type
inclusionsistypicalinfanlikeinclusionplanes.InclusionsinS2fractureshaveirregular
shapeswith5–30μmsizes(Figure4c).Thevaportoliquidratioisalwayslessthan0.05;
thissuggeststhattheseinclusionsalsoentrappedahomogeneousparentfluid.Theho
mogenizationtemperatureoftheS2inclusionassemblageisfrom45to65°C(average=
55°C,standarddeviation=5.24°C)(n=29).Duetotheobservedmetastabilityduringthe
Minerals2021,11,64012of21
microthermometrystudies(e.g.,disappearanceofthevaporphaseduringfreezingand
meltingofice/hydrohaliteintheabsenceofvaporphase),compositionandsalinitiesfor
theseinclusionscannotbedetermined.
TheS3inclusionsarefilledupbyaliquidphaseatroomtemperatureandtheirsizes
areabout5–10μm(Figure4d)withroundishshapes.Thisgenerationofinclusionsap
pearsalonglarge,intersectingfractureplanes.Nomicrothermometrymeasurementswere
performedontheseinclusions.
4.5.RamanSpectroscopyofFluidInclusionsandFluorite
ThefluidinclusionmicrothermometrystudywascompletedbyRamanspectros
copy.ThismethodhelpedtocheckthecalculatedsalinityvaluesofthePandS1inclusions
(incaseswhereonlyalowamountofmicrothermometrydatawasavailableduetometa
stability)aswellasaimedtodeterminethegascontentofthevaporphase.
Basedon[30,31],theOHstretchingregion(2800–3800cm1)inRamanspectraof
aqueoussolutionsissensitivetochangesinthesaltconcentration.Thispermitsdetermi
nationofthesalinityintheaqueousphaseoffluidinclusions(atroomtemperature)by
calculatingskewingparametersfromRamanmicroprobespectra.Inthisstudy,theOH
RamansignalisfittedusingtwoGaussiansubbands,theconcentrationequilibriumcon
stantwasdetermined,thenthecalibrationequationofClmolaritywasdetermined[31].
ThecalculatedtotalsalinityofthePinclusionswas13.9and19.0NaClequivalentwt%,
andtheS1inclusionswere13.0and17.2NaClequivalentwt%.Theseresultsareingood
agreementwiththemicrothermometrydata.
AccordingtotheRamanspectraoftheVphaseofPandS1inclusions,theycontain
H2gas.ThecharacteristicbandsofH2gasareat355,588,816,and1037cm1(Figure6),
whicharerelatedtotherotationaltransitionsofthegasmolecule.
Minerals2021,11,64013of21
Figure6.ResultsofRamanspectroscopyoffluidinclusionsandfluorite.(a)Ramanspectrumoforderedfluorite;(b)Ra
manspectrumoftheliquidphaseinaPinclusioninfluorite;(c)RamanspectrumofthevaporphaseofaPinclusion
showingthecomplexrotationalbandstructureofH2.TheRamanbandoforderedfluoriteisstillpresent,whilefourother
intensitiesindicatestructurallydisorderedfluorite(indicatedbyredarrows);(d)Ramanspectrumofthevaporphaseof
anS1inclusion.TheH2rotationalbandsarealsoobservable.
UsingRamanspectroscopy,wealsoaimedtoinvestigatetherelationshipsbetween
finecolorzoning,aswellastheanomalousopticalbehaviorandthestructuralstateofthe
fluoritecrystals.Colorlesstransparentfluoriteischaracterizedbyasingle,sharpbandat
318cm1.Inthedarkvioletzones,whichalsoshowanomalousopticalbehavior,broad
bandsappearbetween80–480cm1,andthebaselineofthespectraisalsoelevated.This
phenomenonmaybeexplainedbythechangesinthestructureoffluorite:thedarker
zonesoffluoritearepartlyorextensivelydisordered,whereasthecolorlessandclear
zoneshaveanorderedstructure(Figure7).Thisphenomenonsystematicallyoccurs
withinthefluoritecrystals.Thesamephenomenonwaspreviouslydescribedforpurple
fluoriteusedashistoricpigments[32].Thecauseofthedisorderwasnotidentifiedduring
therecentinvestigation.Note,however,thatthewidthofindividualcoloredzonesisin
casesverysmall,approachingorpossiblybelowthelateralopticalresolution(<1μm)of
theRamanmicroscope.Spectrashowingmixedcrystallineanddisorderedfluoritesigna
turesmaythereforearisefromthepresenceofdamagedandorderedstructuresinthe
excitationvolume.TheFWHM(FullWidthatHalfMaximum)offluoritebandswasalso
examined.Thereisnoobservablebandbroadeningnearthedisorderedzones;hence,
thereisasharpboundarybetweentheorderedandthedisorderedstructures.
Minerals2021,11,64014of21
Figure7.ResultsofaRamanlinescan.(a)Inthecolorlessorpalepurplezones,onlyasharpfluoritebandappearsinthe
spectrum;(b)inthemediumpurplezone,thefluoritebandandthestructuraldamagearealsovisible;(c)theintensive
Ramanfeaturefromdarkpurplezonesobscuresthefluoriteband.
5.Discussion
5.1.FormationConditionsoftheFluoriteVeins
Fieldandpetrographicobservationssupportthatthefluoriteveinscuttingthephos
phoritelayerswereformedduringlowtemperatureepigenetichydrothermalprocesses.
Theresultsoffluidinclusionpetrographyandmicrothermometryindicatethatthepri
maryandtheS1generationofsecondaryfluidinclusionsoffluoritehaveasimilarap
pearance(size,shape,phaseratio),andtheirentrapmenttookplacefromahomogeneous
fluid.Therefore,thehomogenizationtemperaturesfortheprimaryfluidinclusionsof
fluoritecanbeevaluatedasminimumformationtemperatureofveins,e.g.,theminimum
temperatureofveinformationwasmostprobablybetween90and130°C(Figure5).Much
highertemperaturesforveinformationaregeologicallyunreasonable,astheisochorsof
thesesalinefluidinclusionsarefairlysteep,andthehostrockisnonmetamorphosed.The
scatteringofdatatowardhighertemperaturesmayreflectsomeunrecognized“necking
down”[33]processes,ortemperaturefluctuationduringthegrowthofzonedcrystals.
However,thecorrodedcontourandfragmentationofthefluorite(anddolomite)crystals
maysuggestthatthedeformationeventsresultingintheopeningoftheveinscontinued
alsoaftertheformationoffluorite.
TheΣREEcontentsarelowinthefluoritesamplesofthestudyarea.Fluoriteswith
lowΣREEarebelievedtobederivedfromasedimentaryenvironment[34].ThelowCe
valuesinthestudiedfluoritesindicatethatthehighoxygenfugacityinthesourceofthe
hydrothermalfluidshasledtotheCe3+oxidationandCe4+immobilization[35].Addition
ally,thenegativeCeanomalycanbeinheritedfromseawater[36].Thisisbecausemarine
carbonatesshownegativeCeanomaly[37].InadditiontolowCevalues,thesamples
showlowREEconcentrations.Accordingly,itcanbeconcludedthatREEpatternsof
Minerals2021,11,64015of21
Pécselyfluoritesshowthatthehydrothermalfluidinteractswithmarinecarbonates,i.e.,
wemayassumethatbasinalbrinesarethemainsourceofthemineralizationfluids.
TherelativelylowhomogenizationtemperatureswithCaenriched,highsalinity
compositionsaresimilartofluidinclusioncharacteristicsofsalinebasinalfluidsandes
peciallytoMississippiValleyorIrishTypesedimenthostedepigeneticPbZnoredeposits
[38](Figure8).
Figure8.Salinityvs.Thillustratingtypicalrangesforinclusionsfromdifferenttypesofdeposits
[38].Forcomparisonpurposes,fluidinclusiondatafortwoAlpinetypeepigeneticleadzincdepos
itsintheDrauRange(Bleiberg,Mežica)[39],thePbZnfluoritemineralizationoftheVelenceMts.
[6],andtheprimaryfluidinclusionsfromPécsely(greendots)arealsoshown.Fluidinclusionsfrom
PécselyplotwithintheMVTfieldandoverlapwithdatafromMežica,Bleiberg,andVelenceMts.
ThemicrothermometricresultsoftheS1inclusiongenerationsuggestthatthefor
mationoffluoritecontainingveinswasoverprintedbyasubsequent,lowertemperature
fluidflow.ThecompositionofS1fluidinclusionsisalmostidenticaltothoseofthepri
maryinclusions,whilethehomogenizationtemperaturesareslightlylower(with70–
80°Casthemostcommonvalues)withalmostidealandrelativelynarrownormaldistri
bution(Figure5).ThesepropertiessuggestthatS1inclusionswereformedduringthe
waning,lowertemperaturestageofthesamehydrothermalactivity,whentheinfiltrations
ofanewpulseofthesametypeoffluidwasgeneratedbyfracturingoftherocks.
Althoughthecarbonandoxygenisotopedataobtainedfromthecarbonatesassoci
atedwithfluoriteveinsaredifferentfromthesedimentarycarbonateofthehostrock(Fig
ure9),itisassumedthatthefluidultimatelyoriginatedfromPermianorTriassicburied
seawater(δ18OSMOW≈0‰,[19]),asnodirectmagmaticactivityhasbeenidentifiedinthis
period[2,40].Evenduringtheformationofphosphoritebearinglayers,whichpreceded
thedevelopmentofthefluoriteveinsandwerecontemporarywithvolcanicactivity[2],
themagmaticcontributionwasinsignificanttotheparentfluid[2].Nevertheless,thesta
bleisotopecompositionsofthedolomitesassociatedwithfluoriteveinsoverlapwiththe
datafromthefracturefillingandbrecciacementingcarbonateofthephosphoritedeposit
[2](Figure9).Thenegativeδ18Ovaluesmightindicatearelativelyelevatedformationtem
perature,asutilizingthedolomite–wateroxygenfractionequationby[41]andassuming
seawateroxygenisotopecomposition(δ18OSMOW≈0‰,[19])fortheparentfluid,thefor
mationtemperatureisabout70–75°C.Thisobservationfitswellwiththeassumedevolu
tionofthishydrothermalsystembecausethecarbonatesrepresentalaterstageinthemin
eralparagenesis.Inaddition,thegeneralmorphologyofthecrystalalsosuggestsslightly
Minerals2021,11,64016of21
elevatedtemperature,assaddledolomiteisbelievedtoformabove60°C[27].Alterna
tively,itshouldbeassumedanexoticfluidcharacterizedbynegativeoxygenisotopecom
position.However,thislaterscenarioisnotsupportedbyanyevidence.
Incontrasttotheoxygenisotopecomposition,theδ13Cvaluescoveraverywide
rangefrom+2.12‰to−7.16‰.Thenegativevaluemightberelatedtoorganicderived
carbon,whichcanhavemultiplesources.Thefirstsourcecouldbetheorganicrichphos
phoritelayers(theirTOC—totalorganiccarbon—are0.58–0.77%[42]),whicharecutby
thefluoriteveins.AnothersourcecouldbetheunderlyingPermianredsandstone,which
isinterpretedasapotentialsourceofveinformingfluid,containingburiedplantresiduals
inaddition.Theinteractionofthefluoriteformingfluidwiththeseformations(Figure1c)
islikelytoberesponsiblefortheobservednegativeδ13Cvalues.Inaddition,theobserved
variabilityincarbonisotopecompositionisprobablyassociatedwiththedegreeofthis
interaction.
Figure9.Stableisotopedataofcalcitegrainsfromfluoriteveinsaresimilartothecarbonandoxygen
isotopiccompositionsoftheepigeneticcalcitecrystalsfoundinphosphorite,suggestingtheircom
mon,hydrothermalorigin[2].InthefiguretherangeofMiddleTriassiccarbonatesisalsoshown
[19].
5.2.TheOriginofH2inFluidInclusionsofFluorite
FluoritecrystalsfromtheareaofPécselyhaveauniquecharacteristic:thepresence
ofH2gasinthevaporphaseofPandS1fluidinclusions.Theauthorsof[43,44]examined
fluidinclusionsinquartzanddolomitegrainsfromPrecambrianuraniumdepositsby
Ramanspectroscopy,wheretheinclusionscontainedH2withorwithoutO2.Concerning
theoriginofthegas,ithasbeenconcludedthatchemicalreactionsofwaterororganic
matter,nuclearreactions,andindirectchemicalreactionsofradiolysisprocessesleadto
theenrichmentofH2andothergasesinhydrothermalfluids.
IntheBalatonHighlandarea,thePermian–Triassicsandstonelayersinthebasement
containtracesofredoxfrontcontrolleduraniumenrichments[18,45],andthephosphorite
layersatPécselyarealsoenrichedinuranium.Therefore,itisplausibletoestimatethat
thehydrothermalfluidsresponsibleforthefluoritemineralizationwerealsointeracting
withthoseuraniumrichzonesandwereenrichedinhydrogen.However,amodelfavor
inglocalconditionswouldbemoreacceptableregardingtheoriginofthegascontentof
theinclusionsbecausefluidinclusionswithsimilargascontentwerenotdescribedfrom
thePbZndepositsalongthePABL(seee.g.,[6]).FluoriteandthehostrocksatPécsely
Minerals2021,11,64017of21
haveelevateduraniumcontent;therefore,thepresenceofhydrogeninfluidinclusions
couldmoreprobablyberelatedtotheinsitu(withininclusion)radiolysisofwater.
Presumably,thephosphoritestrataareresponsibleforthehydrogengasinfluidin
clusionsoffluoriteandthestructuraldegradationofthecrystals,whichweredetected
duringRamanspectroscopicinvestigation.Duetothedirectstratigraphicrelationshipbe
tweenfluoriteandphosphorite,theradiolysisoffluoritefluidinclusionshasbeencontin
uousfor~235millionyears,whichallowedthedetectionofH2despitepossiblediffusion.
5.3.MetallogenicImplications
TheAlpineBalkanCarpathianDinaride(ABCD)metallogenicandgeodynamic
provincesincludephasesofearlyintracontinentalrifting,advancedrifting,oceanization,
subduction,andemplacementofophiolites;collisionalandpostcollisionaldeformation
eventswithsynkinematicgraniteplutonismandvolcanism;andpostcollisionaligneous
activity[46].Theoccurrenceofphosphoritelayersandfluoriteveinsarelocatedinthe
TransdanubianMountainRange,whichisboundedbythePeriadriaticBalatonLineament
System(PABL),themostsignificantshearzoneoftheABCDregion.Thestructurallyde
formedzoneofthePABLhasbeenthemainchannelformagmaandfluidflowsinvarious
geotectonicenvironmentsduringandsincetheMesozoicera.TheformationofCretaceous
lamprophyricmagmatism(e.g.,Eisenkappel),PaleogeneandNeogeneintermediatemag
matism(e.g.,Recsk,VelenceMts.),dioriteintrusionsandstratovolcanoes(e.g.,Adamello,
Bergerplutons,Pohorjeintrusions)aswellasvarioustypesofmineralization(Cu
porphyry,epithermal,epigeneticPbZn)areclearlyorapparentlycontrolledbythere
peatedreactivationofthisfaultsystem[6,13,46].TheTriassicriftingandoceanization—
associatingintensivesubmarinevolcanism—processestookplacealmostsynchronously
withintheABCDregion,creatingcarbonateplatformsonthepassivecontinentalmargin.
AlongthePABL,anumberofepigenetichydrothermalPbZnoredepositsoccurinthe
TriassicsedimentaryrocksoftheNorthernandSouthernCalcareousAlps(e.g.,Bleiberg,
Mežica,Topla,Raibl,Salafossa)(Figure10a,b),andapartfromthe“majors”,thereare
morethan200smallerbutsimilarPbZnoccurrencesknownintheregion[46].Theore
formingfluidsofthesedepositsarecharacterizedby122–200°Candhighsalinity(7–
25NaClequivalentwt%)(Figure8)wherethemetalswereleachedandtransportedbyCl
richfluids[39,47].Theauthorof[48]hadrecognizedlowtemperatureandhighsalinity
calciumchlorideenrichedsecondaryfluidinclusionsinregionalscaledistributioninthe
rockformingquartzofgraniteintheVelenceMts.,whicharelocatedabout50kmtothe
eastofthecurrentstudyarea(Figure1a).Parentfluidsofthoseinclusionswereinter
pretedas“basinalfluids”,andlaterresearchby[6]showedthattheyrecordaregional
fluidflowsystemofTriassicage,whichalsoproducedPbZnmineralizationintheVar
iscangraniteoftheVelenceMts.Fluoriteisalsoacommonmineralinthosebasemetal
richveins[6]alsoemphasizingthesimilaritiesbetweenthosefluidsandoreformingflu
idsofthecarbonatehostedlead–zincmineralizationsintheAlps(Figure8)[39].
Theauthorsof[49,50]investigatedtheREEgeochemistryoffluoritefromtheAlpine
PbZndeposits.ComparingtheREEcontentoffluoritefromPécselywiththeirresults,it
canbestatedthatthefluoritegrainscontainrareearthelementstoasimilarextentand
distributionastheAlpinespecimens(Figure10c).
ThephosphoriteoccurrenceandfluoriteveinsatPécselyalsoshowsimilaritiestothe
MonteSanGiorgo(~70kmfromMilanototheNNW)occurrenceintheSouthernAlps.
Thetwoareasshowsimilaritynotonlyinthestratigraphicpositionandformationageof
phosphoritehorizonsbutalsointhepresenceofhydrothermalfluorite(galenabarite)
veinmineralization.Galena,barite,andfluoriteoccurinMonteSanGiorgioalongfaults
anddykes,embeddedinthevolcanicrocksofthePermianandintheoverlyingLower
andMiddleTriassicsediments.ThedepositswereenrichedduringtheMiddleTriassicby
hydrothermalfluidsmovingalongtectonicfaults[51].
Minerals2021,11,64018of21
Figure10.(a)SimplifiedgeologicalmapoftheDrauRangeafter[18,52]showingthepositionsofthemajorAlpinetype
PbZndeposits;(b)schematicprofileshowingthepositionsoftheorehorizons(redlines)inthedifferentstratigraphic
niveous(modifiedafter[53]);(c)comparisonoftheREEcontentoffluoritefromPécselywithAlpineoccurrences[49,50].
TheTransdanubianMountainRangeescaped450–500kmeastfromtheAlpinecolli
sionzoneduringtheLatePaleogene–EarlyNeogene[9].Accordingly,itsoriginalposition
waslocatedbetweentheSouthAlpineandUpperEastAlpinerealmintheTriassic,asa
segmentoftheAdriaticmarginoftheNeotethysOcean[54–56].Ourresultsareconsistent
withthepaleogeographicandgeologicalreconstructions[7,56]too.Therearestrikingsim
ilaritiesbetweenthefluoriteveinsofPécselyandcertainepigeneticPbZndepositsinthe
AlpsalongthePABL,especiallyregardingfluidinclusionsignatures.Allthisopensup
thepossibilitythatasimilartypeofAlpinetypePbZndepositsmaybeconcealedinthe
carboniferoussequenceoftheTransdanubianMountainRange.However,byfarinthe
absenceofawellestablishedmodel,thisrawmaterialexplorationopportunityhasnot
beenstudiedbefore.
6.Conclusions
Epigenetichydrothermalfluorite–carbonateveinsandbrecciascutacrosssedimen
taryphosphoritelayersatPécselyintheTransdanubianMountainRangeUnitofSouth
AlpineaffiliationinwesternHungary.Theresultsofthisstudyoftheseveinssupportthe
followingconclusions:
Theδ18OPDBandδ13CPDBvaluesofcarbonatemineralsfromveinsconfirmtheirepige
netichydrothermalorigin.
Minerals2021,11,64019of21
FluoritefromtheveinscontainsREEsinsubppmconcentration.Thislowcontentof
REEandtheirrelativeconcentrationsshowagoodmatchwiththepropertiesof
fluoriteintheAlpinetypePbZnoredeposits.
Colorzoningoffluoriteisassociatedwithdefectsinthecrystalstructure.
TheresultsoffluidinclusionstudiesindicatethattheprimaryandtheS1generation
ofsecondaryfluidinclusionsoffluoritehaveasimilarappearance(size,shape,phase
ratio),andtheirentrapmenttookplacefromahomogeneousfluid.Therelativelylow
homogenizationtemperatureswithCaenriched,highsalinitycompositionsaresim
ilartofluidinclusioncharacteristicsofsalinebasinalfluidsthatwerealsorecorded
inotherareasofthePannonianBasinandintheAlpinetypePbZndepositsalong
thePeriadriaticBalatonLineament
Fluidinclusionsoffluoritecontainhydrogengas;thisratheruniquefeaturecanbe
relatedtotheinteractionoftheparentfluidsofthefluoritebearingveinswiththe
interactionbetweenthefluoriteveinformingepigeneticprocessandtheuranium
bearingphosphoritelayersofthehoststrataanduraniumenrichmentsinthebase
mentrocksandalsotothepossiblyinsituradiolysisofwaterwithinthefluidinclu
sions.
AuthorContributions:Conceptualization,Z.M.,G.B.K.,F.M.,andI.D.(IstvánDódony);methodol
ogy,T.V.,I.D.(IstvánDunkl),F.Z.,G.C.,andG.B.K.;formalanalysis,Z.M.,T.V.,I.D.(IstvánDunkl),
F.Z.,andG.C.;investigation,Z.M.,T.V.,I.D.(IstvánDunkl),F.Z.,G.C.,andG.B.K.;writing—original
draftpreparation,Z.M.andG.B.K.;writing—reviewandediting,F.M,T.V.,I.D.(IstvánDunkl),F.Z.,
G.C.,andI.D.(IstvánDódony);visualization,Z.M.,I.D.(IstvánDunkl),F.M.,G.B.K.,T.V.,F.Z.,and
G.C.;supervision,G.B.K.,I.D.(IstvánDódony)andF.M.;fundingacquisition,G.B.K.,Z.M.,andF.M.
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisstudywaspartlysupportedbyTÁMOP3.3.2115/1researchgrantno.NTPNFTÖ
161032.FinalizationandpublicationofthisresearchissupportedbytheENeRAGproject,which
hasreceivedfundingfromtheEuropeanUnion’sHorizon2020researchandinnovationprogram
undergrantagreementNo810980.
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailablewithinthisarticle.
Acknowledgments:Wewishtosaythankstoallcolleagueswhocontributedtothiswork:Zsolt
Bendő,ÁgnesTakács,andSándorKlaj.Theauthorsaregratefultothreeanonymousreviewersfor
thecarefulandcriticalreviewofthemanuscriptandfortheirusefulsuggestions.TheUniversity
CentrumofAppliedGeosciences(UCAG)isthankedfortheaccesstotheE.F.StumpflElectron
MicroprobeLaboratory,Leoben.TheELTEFacultyofScienceResearchInstrumentCoreFacilityis
thankedfortheaccesstotheRamanlaboratory.TheLAICPMSmeasurementswereperformedat
theUniversityofGöttingen.TheInstituteforGeologicalandGeochemicalResearchCentreforAs
tronomyandEarthSciences,whichispartoftheEötvösLorándResearchNetwork,isthankedfor
thestableisotopeanalyses.TheSEMCLimagingwasavailablethankstotheKMOP4.2.1/B10
20110002grantbytheEuropeanUnion,cofinancedbytheEuropeanSocialFund.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthe
designofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanu
script,orinthedecisiontopublishtheresults.
References
1. Kiss,J.;Virágh,K.AuraniumbearingphosphaticrockintheTriassicoftheBalatonUplandsaroundPécsely.Bull.Hung.Geol.
Soc.1959,89,85–97.
2. Molnár,Z.;Kiss,B.G.;Dunkl,I.;Czuppon,G.;Zaccarini,F.;Dódony,I.GeochemicalcharacteristicsofTriassicandCretaceous
phosphoritehorizonsfromtheTransdanubianMountainRange(westernHungary):Geneticimplications.Mineral.Mag.2018,
82(S1),S147–S171.
3. Frisch,W.;Kuhlemann,J.;Dunkl,I.;Brügel,A.PalinspasticreconstructionandtopographicevolutionoftheEasternAlpsduring
lateTertiaryextrusion.Tectonophysics1998,297,1–15.
4. Fodor,L.;Csontos,L.;Bada,G.;Györfi,I.;Benkovics,L.TertiarytectonicevolutionofthePannonianbasinsystemandneigh
bouringorogens:Anewsynthesisofpaleostressdata.InTheMediterraneanBasins:TertiaryExtensionwithintheAlpine;Orogen,
Minerals2021,11,64020of21
B.,Durand,L.,Jolivet,F.,Horváth,M.,Séranne,Eds.;GeologicalSocietySpecialPublications:London,UK,1999;Volume156,
pp.295–334.
5. Haas,J.;Mioč,P.;Tomljenović,B.;Árkai,P.;BérczinéMakk,A.;Koroknai,B.;Kovács,S.;RálischFelgenhauer,E.Complex
structuralpatternoftheAlpineDinaridic–Pannoniantriplejunction.Int.J.EarthSci.2000,89,377–389.
6. Benkó,Z.;Molnár,F.;Lespinasse,M.;Billström,K.;Pécskay,Z.;Németh,T.Triassicfluidmobilizationandepigeneticleadzinc
sulphidemineralizationintheTransdanubianShearZone(PannonianBasin,Hungary).Geol.Carpath.2014,65,177–194.
7. Kázmér,M.;Kovács,S.PermianPaleogenepaleogeographyalongtheeasternpartoftheInsubricPeriadriaticlineamentsys
tem:EvidenceforcontinentalescapeoftheBakonyDrauzugunit.ActaGeol.Hung.1985,28,71–84.
8. Csontos,L.;Nagymarosy,A.;Horváth,F.;Kovác,M.TertiaryevolutionoftheIntracarpathianarea:Amodel.Tectonophysics
1992,208,221–241.
9. Tari,G.;Bada,G.;Beidinger,A.;Csizmeg,J.;Danišik,M.;Gjerazi,I.;Grasemann,B.;Kováč,M.;Plašienka,D.;Šujan,M.;etal.
TheconnectionbetweentheAlpsandtheCarpathiansbeneaththePannonianBasin:SelectivereactivationofAlpinenappe
contactsduringMioceneextension.Glob.Planet.Chang.2021,197,103401.
10. Tari,G.NeoalpinetectonicsoftheDanubeBasin(NWPannonianBasin,Hungary).InPeriTethysMemoir2:StructureandPro
spectsofAlpineBasinsandForelands;Ziegler,P.A.,Horváth,F.,Eds.;MémoiresduMuséumNationald’histoireNaturelle:Wash
ington,DC,USA,1996;Volume170,pp.439–454.
11. Csontos,L.;rös,A.MesozoicplatetectonicreconstructionoftheCarpathianregion.Palaeogeogr.Palaeoclimatol.Palaeoecol.
2004,210,1–56.
12. Kovács;I.;Szabó,Cs.;Bali,E.;Falus,Gy.;Benedek,K.;Zajacz,Z.Palaeogene—EarlyMioceneigneousrocksandgeodynamics
oftheAlpine—CarpathianDinaricregion:Anintegratedapproach.Geol.Soc.Am.Spec.Pap.2007,418,93–112.
13. Köppel,V.SummaryofleadisotopedatafromoredepositsoftheEasternandSouthernAlps:Somemetallogenicandgeotec
tonicimplications.InMineralDepositsoftheAlpineEpochinEurope;Schneider,H.J.,Ed.;Springer:Berlin/Heidelberg,Germany,
1983;pp.162–269.
14. Budai,T.;Haas,J.TriassicsequencestratigraphyoftheBalatonHighland,Hungary.ActaGeol.Hung.1997,40,307–335.
15. Budai,T.;Vörös,A.MiddleTriassichistoryoftheBalatonHighland:Extensionaltectonicsandbasinevolution.ActaGeol.Hung.
1992,35,237–250.
16. Budai,T.;Vörös,A.MiddleTriassicplatformandbasinevolutionoftheSouthernBakonyMountains(TransdanubianRange,
Hungary).Riv.Ital.Paleont.Stratigr.2006,112,359–371.
17. Budai,T.;Császár,G.;Csillag,G.;Dudko,A.;Koloszár,L.;Majoros,G.GeologyoftheBalatonHighland.ExplanationtotheGeological
MapoftheBalatonHighland,1:50,000;OccasionalPapersHungarianGeologicalInstitute:Budapest,Hungary,1999;Volume197,
p.257.
18. Schroll,E.;Rantitsch,G.SulphurisotopepatternsfromtheBleibergdeposit(EasternAlps)andtheirimplicationsforgenetically