Content uploaded by Gabriella B. Kiss
Author content
All content in this area was uploaded by Gabriella B. Kiss on Jun 16, 2021
Content may be subject to copyright.
Minerals2021,11,640.https://doi.org/10.3390/min11060640www.mdpi.com/journal/minerals
Article
Epigenetic‐HydrothermalFluoriteVeinsinaPhosphorite
DepositfromBalatonHighland(PannonianBasin,Hungary):
SignaturesofaRegionalFluidFlowSysteminanAlpine
TriassicPlatform
ZsuzsaMolnár
1,
*,GabriellaB.Kiss
1,
*,FerencMolnár
2
,TamásVáczi
1,3
,GyörgyCzuppon
4
,IstvánDunkl
5
,
FedericaZaccarini
6
andIstvánDódony
1
1
DepartmentofMineralogy,EötvösLorándUniversity,PázmányP.Street1/C,H‐1117Budapest,Hungary;
vaczi.tamas@wigner.mta.hu(T.V.);dodony@t‐online.hu(I.D.)
2
GeologicalSurveyofFinland,Vuorimiehentie5,P.O.Box96,FI‐02151Espoo,Finland;ferenc.molnar@gtk.fi
3
WignerResearchCentreforPhysics,EötvösLorándResearchNetwork,Konkoly‐ThegeMiklósStreet29–33,
H‐1124Budapest,Hungary
4
ResearchCentreforAstronomyandEarthSciences,InstituteforGeologicalandGeochemicalResearch,
EötvösLorándResearchNetwork,BudaörsiStreet45,H‐1112Budapest,Hungary;czuppon@geochem.hu
5
GeoscienceCenter,DepartmentofSedimentologyandEnvironmentalGeology,UniversityofGöttingen,
Goldschmidtstrasse3,D‐37077Göttingen,Germany;istvan.dunkl@geo.uni‐goettingen.de
6
DepartmentofAppliedGeosciencesandGeophysics,UniversityofLeoben,PeterTunnerStreet5,
A‐8700Leoben,Austria;federica.zaccarini@unileoben.ac.at
*Correspondence:molnarzsuzsa89@gmail.com(Z.M.);gabriella.b.kiss@ttk.elte.hu(G.B.K.)
Abstract:ThemiddleAnisianextensionaltectonicsoftheNeotethyanrealmdevelopedasmall,iso‐
latedcarbonateplatforminthemiddlepartoftheBalatonHighland(westernHungary),resultedin
thedepositionofuranium‐bearingseamountphosphoriteonthetopofthedrownedplatformand
producedsomeepigeneticfluoriteveinsintheMiddleTriassicsequence.ThestableC‐Oisotope
dataofcarbonatesareshiftedfromthetypicalTriassiccarbonateranges,confirmingtheepigenetic‐
hydrothermaloriginofveining.Primaryfluidinclusionsinfluoriteindicatethattheseveinswere
formedfromlowtemperature(85–169°C)andhighsalinityNaCl+CaCl
2
+H
2
Otype(apparenttotal
salinity:15.91–22.46NaClwt%)hydrothermalfluids,similartoparentfluidsoftheAlpine‐typePb‐
Zndeposits.ThesefindingsindicatethattheTriassicregionalfluidcirculationsystemsintheAlpine
platformcarbonatesalsoaffectedtheareaoftheBalatonHighland.Thisisalsoinagreementwith
thepreviouslyestablishedpalinspatictectonicreconstructionsindicatingthattheTriassiccarbonate
andbasementunitsintheBalatonHighlandareawereapartoftheSouthernAlpine.Similarfluorite
veininginphosphoritedepositsisalsoknownintheSouthernAlpineareas(e.g.,MonteSanGiorgi,
Italy).RamanspectroscopicanalysesdetectedH
2
gasinthevaporphaseofthefluidinclusionsand
adefect‐richfluoritestructureinviolettoblackcoloredgrowthzones.Thisuniquephenomenonis
assumedtobetheresultofinteractionbetweentheuranium‐richphosphoriteandtheparentfluids
oftheepigeneticfluoriteveins.
Keywords:fluidinclusions;H
2
gas;Ramanspectroscopy;C‐Oisotopesincarbonate;structurally
disorderedzonesinfluoritecrystals;AlpinetypePb‐Znindication
Citation:Molnár,Z.;Kiss,G.B.;
Molnár,F.;Váczi,T.;Czuppon,G.;
Dunkl,I.;Zaccarini,F.;Dódony,I.
Epigenetic‐HydrothermalFluorite
VeinsinaPhosphoriteDepositfrom
BalatonHighland(PannonianBasin,
Hungary):SignaturesofaRegional
FluidFlowSysteminanAlpine
TriassicPlatform.Minerals2021,11,
640.https://doi.org/10.3390/min
11060640
AcademicEditor:JoelE.Gagnon
Received:19April2021
Accepted:12June2021
Published:16June2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2021bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Minerals2021,11,6402of21
1.Introduction
TheregularlyrevisedrawmaterialpolicyoftheEuropeanUnioncallsattentionto
theimportanceofcertainmetalsandminerals(e.g.,criticalrawmaterials)forthesustain‐
abledevelopmentofEuropeanindustry.Severalmineralandoreoccurrencesthathave
notbeenpreviouslystudiedindetailhavesignificantpotentialforsomecriticalelements
throughouttheCircum‐PannonianBasin.Re‐evaluationofhistoricallyknownmineraloc‐
currencesmayleadtorecognitionoftheirpreviouslyignoredrawmaterialcontentaswell
astore‐considerationofthemineralpotentialintheregion.Developmentofneworede‐
positmodelsbyre‐investigationofthoseoccurrencesbyapplicationofmodernconcepts
andresearchmethodsmayrevealpreviouslyhiddenexplorationpossibilities.
Thepresentstudyfocusesonapreviouslyknownuranium‐bearingphosphoriteoc‐
currenceatPécselyvillage[1,2],whichislocatedintheBalatonHighlandarea,inwestern
Hungary.ThismineraloccurrenceislocatedintheNorthernTransdanubiumUnit,which
isanallochthonousunitoriginatedfromtheSouthernAlps[3–5].Thephosphorite‐bear‐
ingsedimentaryhorizonsarecutbyepigeneticfluoriteveins.Fluoriteandfluorite‐base
metalveinsystemswitheconomicsignificanceinthepastalsooccurinotherpartsofthe
Transdanubianterrain[6].Therefore,theoccurrenceofthefluoriteveinsatPécselymay
havesignificanceinaregionalmetallogeneticcontext.Thislocalityalsooffersaunique
opportunitytoinvestigatethemineralogicalandgeochemicalconsequencesoftheinter‐
actionbetweenthephosphoriteandthesuperimposinghydrothermalprocessesrespon‐
siblefortheformationofthefluoriteveins.
Resultsofresearchpresentedinthispaperandcomparisonofresultswithsimilar
occurrencesoffluorite‐bearingveinsintheregionprovideanewbackgroundfortheeval‐
uationofthemetallogeneticcontextofthepeculiarmineralizationatPécselyandhighlight
thepotentialroleoftheoverprintingregionalscaleAlpinefluidflowsystemsonolder
mineraldepositsinformationofunusualmetalassociationsandenrichments.Thispaper
alsopresentsanddiscussessomeunusualfeaturesobservedatthislocality,suchasthe
presenceofstructurallydisorderedzonesinfluoritecrystalsandtheoccurrenceofhydro‐
gengasinfluidinclusionsoffluorite.
2.GeologicalBackground
2.1.RegionalGeology
ThestudyareaislocatedinthesouthernpartoftheALCAPA(Alpine,Carpathian,
Pannonian)Megaunit[4,7]alongthenorthernsideofthePeriadriaticBalatonLineament
System(PABL)inwesternHungary(Figure1a).TheALCAPAMegaunitiscomposedof
metamorphosedProterozoictoMesozoicblocksoftheEasternAlpsandofPaleozoiclow‐
grademetamorphicandSouthernAlpine‐typeMesozoiccarbonaceoussequencesofthe
TransdanubianMountainRange(TDMR),theBükkMountains,aswellasthecrystalline
blocksoftheInnerWesternCarpathians[5,7,8].ThecurrentlocationoftheALCAPA
MegaunitwithintheAlp‐Carpathianrealmistheresultofitsnortheastwarddirectedlat‐
eralescapementfromtheEasternAlpinecollisionzone[4,5,7–9].Thetotal350–400km
presentdayoffsetcanbeattributedtothePaleogenetoMid‐LateMioceneextension,lat‐
eralextrusion,andcounter‐clockwiserotationoftheALCAPAMegaunit[9–11].There‐
fore,thePaleozoic,Mesozoic,andPaleogeneunitsalongthePABLcanberegardedas
allochthonousblocksinatectonicmega‐mélange,betweentheALCAPAandZagorje‐
Mid‐TransdanubianZone[12,13].
Theuranium‐bearingphosphoriteoccurrenceatPécselyislocatedinthemiddlepart
oftheBalatonHighland,onthesoutheasternflankoftheNE–SWtrendingsynformof
TDMR.IntheMiddleTriassicsequenceofthisareathePelsonianhemipelagicbasinal
strataoftheFelsőörsLimestonearereplacedherebycoevalplatformcarbonatesofthe
TagyonFormation[14](Figure1b).Thislateralfacieschangeisexplainedbysynsedimen‐
taryextensionaltectonismthathasformedhalf‐grabentypehemipelagicbasinsandiso‐
latedcarbonateplatforms[15].Astheresultofarelativesea‐levelrise,thePelsonian
Minerals2021,11,6403of21
TagyonPlatformwasdrownedandtransformedtoasubmarinemount(theTagyon
High);thefirstoverlyinglayersaboveitbelongtotheupperIllyrianCamunumSubzone
[16].ThiseventwasfollowedbydepositionoftheupperAnisian–Ladiniansequencewith
phosphoritehorizonsandradiolaritelayersonthetopofthesubmarinemount.Phospho‐
ritesareknownonlyatthenortheasternmarginoftheTagyonHigh,atÖregHill,near
thevillageofVászoly[17].Incontrast,radiolaritesandradiolarian‐richcarbonatesoccur
morewidely:inadditiontotheareaoftheTagyonHigh,theyarealsoknownfromthe
easternpartoftheFelsőörsBasinlocatedintheproximityofthehighatAszófő.Theoc‐
currenceofanupperLadinianammonoidassemblageinaneptuniandykecutting
throughtheMiddleTriassicplatformcarbonatesinthenortheasternpartoftheBalaton
Highland[16]indicatestheprolongationoftheextensionaltectonicregimeatleastuntil
theendoftheMiddleTriassic.
Minerals2021,11,6404of21
Figure1.Locationandgeologicalstructureofthestudyarea.(a)MajorstructuralunitsoftheEasternAlps—Pannonian
Basinregion(modifiedafter[18])withthepositionsofmajorPb‐Zndeposits;(b)faciesarrangementofMiddleTriassic
FormationsalongthestrikeoftheBalatonHighland[16].TheformationsfoundintheareaofPécselyaremarkedwitha
yellowrectangle;(c)schematicgeologicalsectionofthePécsely‐11explorationtrench(modifiedafter[1]).
Minerals2021,11,6405of21
2.2.GeologyofthePécselyLocality
ThephosphoritedepositislocatedatÖregHill,betweenthevillagesofPécsely,
Vászoly,andÖrvényes(Figure1b);GPScoordinatesofthesamplingsiteinWGS’84(DM):
N46°55.764′E17°47.147′).Thisdepositwasstudiedindetailduringthe1950s[1]dueto
theobservedradioactiveanomalycausedbytheuraniumcontentofthesedimentary
phosphoriteoccurrence.
Thephosphoritelayers,togetherwiththecross‐cuttingfluoriteveins,arelocatedin
Triassiclimestoneanddolostone(Figure1c).ThehostrockofthephosphoriteistheLadin‐
ianpelagicVászolyLimestoneFormation[17].Thisformationisunconformablyoverlying
theAnisianplatformcarbonateTagyonLimestoneFormationdepositedinalocalbasin
andintercalatedwithfelsictuffintheupperAnisian[14,16].
Thebrownish‐greyU‐bearingphosphoritelayersinthesedimentarysequenceofthe
ÖregHillappearinthreehorizons[2]inalessthan1km2area.Thelowermostandthickest
(max.1.2m)horizonoccursatthedrowningsurfaceoftheTagyonFormationandthe
overlyingtuffaceouscarbonatebedsoftheVászolyFormation.Themiddlesectionwith
varyingthickness(5–20cm)depositedaftertheformationoforganic‐richlimestoneofthe
lowermemberoftheVászolyFormation.Theuppermostthinnestphosphoritehorizon
(max5cm)formsadark,greenish‐greycrustonthebeddingsurfaceoftheVászolyFor‐
mation.Asdescribedby[1],fluorite‐calciteveinsappearalongnormalfaultsandcut
acrossthephosphorite‐richcarbonatesequence(Figure1c).
Thedetailedmineralogicalandgeochemicalcharacteristicsofthephosphoritelayers
arepresentedin[2].Thedominantmineralassemblageinthephosphoriticlayersconsists
ofcarbonate‐bearingfluorapatite(CFA)andcalcite,buthematite,pyrite,andzirconare
alsopresentrarely.TheCFAcontains137–612ppmUand113–261ppmtotalREE+Y.The
UenrichmentisrelatedtotheCFA;individualuranium‐mineralswerenotidentified.The
carbonandoxygenisotopiccompositionsofthehostlimestone(δ18OPDB=from−2.18‰to
−1.54‰;δ13CPDB=from1.86‰to1.99‰)overlapwiththestableisotopefieldofthetypical
MiddleTriassicmarinecarbonates[19],whilethestableisotopevaluesofcarbonatesfrom
veinsaregenerallycharacterizedbydifferentvalues(δ18OPDB=from−8.12‰to−6.42‰;
δ13CPDB=from–5.50‰to1.55‰)suggestingepigenetic‐hydrothermalorigin[2].
Earlierstudies[1]suggestedanepigeneticoriginforthefluoriteveins;however,they
haveleftseveralopenquestionsregardingtheformationprocessesoftheseveins,thein‐
teractionbetweenthephosphoritelayers,andthesuperimpositionofhydrothermalpro‐
cessesaswellastheregionalcorrelationwithsimilarveinsintheTransdanubianUnit.
3.MaterialsandMethods
Inordertoachievetheobjectivessetupduringtheresearchwork,hostrock,phos‐
phorite,andfluoriteveinsampleswerecollectedfromtheareaofÖregHillatPécsely
(Figure1b).Petrographyofsampleswascarriedoutonstandardpolishedthinsections
usingNikonAlphaphotandZeissAxioplanpolarizingmicroscopes.QualitativeSEM‐
EDSanalysesofmineralswerecompletedbyanAMRAY1830Iscanningelectronmicro‐
scope.Theobservationswereperformedwith20kVacceleratingvoltageand1nAbeam
current.Cathodoluminescence(CL)imagingoffluoritewasperformedwiththesame
equipmentusingaGatanMiniCLdetector,with10kVacceleratingvoltageand3nAbeam
current.Quantitativeelectronmicroprobeanalysesofthefluoritegrainswerecompleted
bymeansofaJEOLSuperprobeJXA8200‐typeelectronmicroprobe.Wavelengthdisper‐
sivemodewasused,with15kVacceleratingvoltageand10nAbeamcurrent.Thedetec‐
tionlimitsforeachelementareshownintherelatedtables.
Fluidinclusionpetrographyandmicrothermometrywerecarriedouton100–120μm
thick,double‐polishedsectionsofhydrothermalfluoriteandcalcite,usingaLinkamFT‐
IR600typeheating–freezingstagemountedonanOlympusBX‐51typepolarizingmicro‐
scopeprovidingupto1000timesopticalmagnification.Thecalibrationofthestagewas
donebyanalysesofCO2andpurewatersyntheticfluidinclusions.Theprecisionofthe
Minerals2021,11,6406of21
microthermometricmeasurementswas±0.1°Cbelow0°C,and±1°Cathighertempera‐
tures.Interpretationofthemicrothermometricdatawascarriedoutbyamacroprogram
inMSExcel,developedinaVisualBasicenvironmentbyG.B.Kiss,usingthecalculation
methodsofsalinitiesandisochorsin[20–23].
Ramanmicroanalysesoffluoritestructureandfluidinclusionsinfluoritewerecom‐
pletedusingaHoribaJobinYvonLabRAMHR800UVedgefilterbasedconfocaldisper‐
siveRamanspectrometercoupledwithanOlympusBXFMtypemicroscope.Duringthe
measurements,the532nmemissionofafrequency‐doubledNd:YAGlaser,a600
grooves/mmgrating,50μmconfocalaperture,and50xlongworkingdistanceobjective
wereused.
ThetraceelementcontentoffluoritesampleswasdeterminedbyICP‐MS.Twenty‐
eightelementswereanalyzedusingexternalcalibrationandUandThbyisotopedilution
[24].Singlecrystalsof0.5–2mmsizeweregentlycrushedand0.1–0.2mm(ca.100–200
μg),inclusionfreefragmentswithdifferentcolorswerecarefullyselectedanddissolved
inhot,ultrapureHCl.Thus,thesensitivityandspatialresolutionofthistechniquewas
betweentheclassicalwetchemicalanalysisperformedonpulverizedandhomogenized
samplesofseveralhundredsofmginmassandthelaserablationtechniquethatrepre‐
sentsasmallervolume,butwithconsiderablyhigheruncertainty.Additionally,laserab‐
lationistypicallynotviableonfluoritebecauseofthelowabsorptionofUVlightandthe
frequentfragmentationandsmallexplosionsduringablation.TheREEdistributionpat‐
ternsoffluoritewerecomparedwithCIcarbonaceouschondrite(CI)andPostArchean
AustralianShale(PAAS)[25,26].
Carbonandoxygenisotopeanalysesofcarbonatemineralsassociatedwithfluorite
werecarriedoutbyinsitusamplingofcarbonatesusinganelectricmicrodrillwithabit
diameterof0.6mm.Theresulting150–200μgsamplesweredissolvedbycarbonate‐or‐
thophosphoricacidreactionat72°C[27],andthealiquotswereanalyzedusinganauto‐
matedGASBENCHIIsamplepreparationdeviceattachedtoaThermoFinniganDelta
PlusXPmassspectrometer.Theisotopecompositionsareexpressedasδ13Candδ18Oin
‰relativetoV‐PDB(ViennaPeeDeeBelemnite),accordingtotheequation:δ=
(Rsample/Rstandard−1)×1000,whereRisthe13C/12Cor18O/16Oratiointhesampleorinthe
internationalstandard.Theprecisionwasbetterthan0.15‰forCandOisotopedata,
basedonreplicatemeasurementsofinternationalstandards(NBS‐19;NBS‐18)andin‐
housereferencematerials.
4.Results
4.1.FieldDescription,Mineralogy,andPetrographyoftheFluoriteVeinsandtheirHostRock
Duringthefieldwork,fluorite–dolomite–calciteveinsweresampledinanaban‐
donedpitaswellasinthewastedumpofthatpitintheareaofÖregHillatPécsely(Figure
1b).ThelocationofveinsiscontrolledbyNW–SEorientednormalfaultsdippingby70°
totheNEinwhitepinkishandwhiteyellowishlimestone,dolomitizedlimestone,and
dolomite.Theveinscanbefollowedinaseveralmeterslong,~10cmwidezonesalong
thefaults.Thehostrocksarebrecciatedalongthefaults(Figure2c).Thethicknessofthe
faultbrecciais~5cm.Theclastsinthemonomictbrecciaaretypicallyangular,rarely
rounded,elongatedinshape,2mmto3cminsize,whichindicatesmovementwithina
shortdistance.Theratiooffragmenttocementis4to1.Thecrystalsoffluorite,dolomite,
andcalcitearelocatedaroundtheclastsofthebrecciaaswellasinsatelliteveins(Figure
2a,b).Fluoriteanddolomiteinthematrixofthebrecciaalsoappearinnestsandcavities,
inwhichtheamountofdolomiteishigher(Figure2a,b).Thefluoritegrainsarecharacter‐
izedby0.1–2mmsizeanddarkpurplecolor,andthezonationofthecrystalscanoftenbe
observedmacroscopically.Thesaddledolomiteinthesebrecciaveinsisoftentranslucent
andcolorlessorwhite,butinthenests,itisalwaysnottransparent,withwhiteorpale
rosecolor.Texturalfeaturesindicatethatdepositionofdolomiteandcalciteoutlastedthe
crystallizationoffluoriteinthebrecciamatrixandalsointheconnectedveinlets.
Minerals2021,11,6407of21
Observationsinthepolarizingmicroscopeconfirmedthatthelightpinkishcolorof
thehostrockcanberelatedtothepresenceofdisseminationofsmallflakes(2–5μm)of
hematitecrystals(Figure2a).Theindividualhematiteflakesarerectangularandhexago‐
nalinshapewithcherryredcolor.Dolomiteprismsarecommonlycorrodedbyhematite
flakes(Figure2b,d,e)andshowunduloseextinction.Microscopicobservationsonfluorite
anddolomiteshowedthattheoutlinesofthesecrystalsareoftencorroded,andthegrains
aremostlycrushedorfragmented.Individualfluoritecrystalsshowfromdarkpurpleto
colorlessgrowthzoneswithallshadesofpurple.TheSEM‐CLimagesoffluoritealso
showaveryfineandcomplicatedzonation(Figure2i,j).
Themacroscopicallyvisibledarkbandsconsistofseveralthin(10–100μm)darkpur‐
plezones(Figure2d,e).Undercrossedpolarizers(+N),incontrasttothenormalisotropic
behavior,thesecrystalsdonotshowfullextinction,andzoningindarkgreycolorisstill
visible(Figure2e).
ObservationsintheSEMrevealedthatthehostrocklimestoneofphosphoritehori‐
zonsandfluoriteveins(VászolyLimestoneFm.)ispartlyorentirelydolomitized.Inthe
partlydolomitizedrockbodies,variousfabric‐selectivedolomitetypeswereobserved.In
thebeds,scattered,irregularaggregatesofveryfinelycrystallinedolomiteand/or15to
200μmsizedeuhedral,subhedral,andanhedraldolomitecrystalsorcrystalclustersoccur
inthemicriticfabricelements,testifyingtomicrite‐selectivedolomitization(Figure2c).
Coarselycrystallinemosaicofcalciteand/orcoarselycrystallinedolomiteoccursinthe
centralpartofvugs(Figure2f).Intheentirelydolomitizedintervals,fabric‐destructive
dolomiteprevails,althoughghostsofsomecalcitegrainsarelocallyrecognizable.This
dolomiteistypicallyfine‐to‐mediumcrystalline,exhibitingplanar‐subhedralandnon‐
planar‐anhedraltexturewithcoarselycrystallinedolomitecementinvugs.Saddledolo‐
miteoccurslocallyasthelastcementphaseinthesevugs.Thecarbonatemineralsinthe
matrixofthebrecciahavealsosufferedcomplicateddolomitization/dedolomitizationpro‐
cess(Figure2g),wherethesaddledolomiteisdedolomitized.Furthermore,thepresence
offine‐grainedcalcitewasalsoobservedamongthefluoritegrainsaswellasinhealed
microfracturesoffluorite(Figure2g,h).
Resultsofpetrographysuggestthatthesequenceofprecipitationofthemineralswas
asfollows:fluoriteanddolomitewerecrystallizedtogetherattheearlystagesofveining,
buttheformationofdolomitelastedlonger,andthentheresidualspaceandcrackswere
filledupbycalcite,whichalsoresultedindedolomizationofthesaddledolomite.The
veinfillingmineralsprecipitatedfromthesamefluid,whichcontributedtothecomplex
dolomitization–dedolomitizationhistoryofthepartlydolomitizedhostrocklimestone.
Minerals2021,11,6408of21
Figure2.Mineralogyandpetrographyofthefluoriteveinsandtheirhostrock.(a)Macroscopicpictureofthecontactof
thefluorite–calcite–dolomiteveinsandhostrock;(b)Microscopicpictureofthefluorite–calcite–dolomiteveins.Theveins
containfluorite,dolomite,calcite,andhematitegrains.Thepurplezonationofthefluoritegrainsisalsovisible.(c)Micro‐
scopicpictureofthedolomitizedlimestonehostrock;(d)microscopicimageoftheareaindicatedbyanorangesquarein
thepictureb;(e)magnifiedmicroscopicimageoftheareaindicatedbyanorangesquareinpictureb.Theisotropicfluorite
crystalsshowopticalanomaly(e.g.,lackoffullextinction)undercrossedpolarizers(+N)ofthemicroscope;therefore,the
zonationisvisible;(f)BSEimageofthehostrock;(g)BSEimageoffluoriteanditsenvironment.Thecomplexdolomitiza‐
tionhistoryoftheveinisalsovisible.Thefluoritegrainsareoftenfragmented,andcalcitefillsinthespacebetweenthem;
(h)BSEimageofthevein‐fillingminerals;(i)SEM‐cathodoluminescence(CL)pictureofthefluoritegrainsandfragments;
(j)BSE,elementmappingandSEM‐CLimagesofthesamearea.Abbreviationsused:cal,calcite;dol,dolomite;fl,fluorite;
hem,hematite.
Minerals2021,11,6409of21
4.2.MineralChemistry
Thefluoriteischaracterizedby15–20ppmREE+Yconcentrations.AllsixPAAS
normalizedfluoriteanalysesshowsimilarREEpatterns(Figure3)thatarestronglyde‐
pletedinlightandheavyREEcomparedwiththemiddleREE.TheycharacterizedlowLa
andCevalues.Allanalyzedgrainscontainedseveralpurplezones;therefore,nocorrela‐
tioncouldbeestablishedbetweenthecolorofthezonesandtheconcentrationsofana‐
lyzedelements.
Figure3.PostArcheanAustralianShalenormalizedREEdistributionpatternsoffluoritesamplesfromPécsely.
4.3.CarbonandOxygenIsotopesinVein‐FillingCarbonates
Theδ18OPDBvaluesrangefrom−7.79‰to−6.76‰,whiletheδ13CPDBvaluesrangefrom
−7.16‰to2.12‰inthehydrothermalsaddledolomiteassociatedwithfluoriteinthe
veins(Table1).Bycomparingtheobtainedresultswiththestableisotopiccompositionof
sedimentarycarbonatesprecipitatedinequilibriumwithDIC(dissolvedinorganiccar‐
bon)inTriassicseawater[19],mostofthevaluesplotoutsideofthemarinecarbonatefield
(δ18OPDBvaluesrangefrom−2.18‰to−1.54‰;δ13CPDBvaluesrangefrom1.86‰to1.99‰).
Table1.StableisotopedataofveinfillingsaddledolomitefromPécsely.
Numberδ
13CPDB(‰)δ
18OPDB(‰)Numberδ
13CPDB(‰)δ
18OPDB(‰)
11.92−7.4613−4.12−7.36
21.62−7.6314−3.78−7.41
31.66−7.6615−4.07−7.39
41.57−7.6916−3.05−7.45
51.57−7.5817−7.11−6.93
6−6.91−7.1218−6.79−6.78
7−7.16−7.1519−7.15−6.92
8−1.63−7.5420−5.78−7.36
9−3.08−7.50211.85−7.17
10−5.60−7.51221.91−6.76
11−4.71−7.79232.12−7.58
12−4.24−7.44242.09−7.53
4.4.FluidInclusionPetrographyandMicrothermometry
Accordingtothepetrographicobservations,fourfluidinclusionassemblagescanbe
distinguishedinfluorite:oneofthemconsistsofprimaryandthreeotherassemblages
consistofsecondaryfluidinclusions(Table2,Figure4a–d).
Minerals2021,11,64010of21
The5–30μmlargerectangular(negativecrystal)shaped,aqueous,two‐phase,liquid
andvapor(L+V)primaryinclusions(P)occurinisolationorinclustersof2–3smallin‐
clusionsapartfromthehealedmicrocracks,alongthegrowthzonesoffluorite(Figure
4a,b).Theratioofthevaportoliquidphaseisconstantlyaround0.15atroomtemperature,
indicatingthattheseinclusionswereentrappedfromahomogenousparentfluid(Figure
4a,b).
Table2.Resultsofthefluidinclusionmicrothermometry.
PrimarySecondary
S1S2S3
Numberofmeasure‐
ments5521829‐
Size5–30μm5–15μm5–30μm5–10μm
Shaperectangular(nega‐
tivecrystalshape)angular irregularroundish
Phases85%L+15%V95%L+5%V95%L+5%V100%L
Th85–169°C42–121°C45–65°C‐
Teut−57.7to−44.0°C−58.0to−46.0°C‐ ‐
TmeltHydrohalyte−26.5to−21.5°C−25.0to−21.2°C‐ ‐
TmeltIce−21.0to−12.0°C−20.8to−13.7°C‐ ‐
Apparenttotalsalin‐
ity
15.91–22.46NaCl
wt%17.35–22.93wt%‐ ‐
Calculatedsalinity
0.64–9.98CaCl2
wt%+
9.59–20.64NaCl
wt%
0–8.47CaCl2wt%
+
12.4–20.01NaCl
wt%
‐ ‐
Figure4.Fluidinclusionsinfluorite.(a)Two‐phasedPinclusionnearanS1inclusionplane;(b)two‐phasedPinclusion
closetoagrainboundarynearanS1inclusionplane;(c)S2two‐phasedinclusiongeneration;(d)one‐phasedS3inclusion
generation;(e)thebehaviorofanS1inclusionduringfreezing.Abbreviationsused:P,primaryinclusion;S,secondary
inclusion;L,liquidphase;V,vaporphase;HH,hydrohalite(NaCl∙2H2O);AA,antarticite(CaCl2∙6H2O);I,ice.
Thehomogenizationtemperatures(Th(L‐V)L)ofprimaryfluidinclusionsofthevein
fillingfluoritecrystalsarebetween85°Cand169°C(average=112°C,standarddeviation
=20.7°C,numberofanalyses=55)(Figure5a).Theaverageeutecticmeltingtemperature
(Teut)oftheprimaryinclusionsis−49.8°C,correspondingtoNaCl–CaCl2–H2Otypemodel
composition(Figure5c–e).Meltingofhydrohalite(NaCl∙2H2O)occurredbetween−26.5
°Cand−21.5°Candthemeltingpointoficefrom−21to−12°C,correspondingto0.64–
Minerals2021,11,64011of21
9.98CaCl2+9.59–20.64NaClwt%(n=8)salinity(Figure5e).Theapparenttotalsalinities,
calculatedfromtheicemeltingtemperaturesusingNaCl–H2Omodelcompositionand
expressedinNaClequivalentweight%,arefrom15.91to22.46(Figure5c).
Thefracture/cleavageplanehostedS1inclusionsoffluoritealsohaveanangular
shapewithabout5–15μmsizes(Figure4a,b),andtheratioofthevaportoliquidphaseis
around0.05.Theseobservationsindicateentrapmentfromahomogenousparentfluid.
Theirhomogenizationtemperature(Th(L‐V)L)isbetween42–121°C(average=71°C,
standarddeviation=11°C,numberofmeasurements=218)(Figure5b).Theaverageeu‐
tecticmeltingtemperature(Teut)ofS1inclusionswas−51.4°C,sotheircompositioncan
alsobemodelledintheNaCl–CaCl2–H2Osystem(Figure4e,Figure5c–e).Themelting
temperatureofhydrohaliteisfrom−25°Cto−21.2°C,andthemeltingtemperatureofice
isfrom−20.8°Cto−13.7°C.ThesedataindicatethattheCaCl2contentoftheseinclusions
isbetween0–8.47wt%,whereastheNaClcontentisbetween12.4–20.01wt%(Figure5e).
Theapparenttotalsalinitycalculatedfrommeltingtemperatureoficeandexpressedin
NaClequivalentweight%usingtheNaCl–H2Omodelsystemis17.35–22.93(Figure5c).
Figure5.Resultsofthemicrothermometrystudyofprimary(P)andS1(secondary)fluidinclusions.(a)Frequencydistri‐
butiondiagramofthehomogenizationtemperatureofPinclusions;(b)frequencydistributiondiagramofthehomogeni‐
zationtemperatureofS1inclusions;(c)homogenizationtemperaturevs.totalsalinitydiagramofPandS1inclusions;(d)
vapor‐saturatedliquidusphaserelationsintheH2O–NaCl–CaCl2system[28,29];(e)salinitycompositionsofaqueousin‐
clusionstrappedinfluoritefromPécsely.
Thetwo‐phase(L+V)S2inclusionsoccurinfracturesthathavedifferentorientations
comparedtothehealedfractureswiththeS1typeofinclusions.OccurrenceofS2type
inclusionsistypicalinfan‐likeinclusionplanes.InclusionsinS2fractureshaveirregular
shapeswith5–30μmsizes(Figure4c).Thevaportoliquidratioisalwayslessthan0.05;
thissuggeststhattheseinclusionsalsoentrappedahomogeneousparentfluid.Theho‐
mogenizationtemperatureoftheS2inclusionassemblageisfrom45to65°C(average=
55°C,standarddeviation=5.24°C)(n=29).Duetotheobservedmetastabilityduringthe
Minerals2021,11,64012of21
microthermometrystudies(e.g.,disappearanceofthevaporphaseduringfreezingand
meltingofice/hydrohaliteintheabsenceofvaporphase),compositionandsalinitiesfor
theseinclusionscannotbedetermined.
TheS3inclusionsarefilledupbyaliquidphaseatroomtemperatureandtheirsizes
areabout5–10μm(Figure4d)withroundishshapes.Thisgenerationofinclusionsap‐
pearsalonglarge,intersectingfractureplanes.Nomicrothermometrymeasurementswere
performedontheseinclusions.
4.5.RamanSpectroscopyofFluidInclusionsandFluorite
ThefluidinclusionmicrothermometrystudywascompletedbyRamanspectros‐
copy.ThismethodhelpedtocheckthecalculatedsalinityvaluesofthePandS1inclusions
(incaseswhereonlyalowamountofmicrothermometrydatawasavailableduetometa‐
stability)aswellasaimedtodeterminethegascontentofthevaporphase.
Basedon[30,31],theO‐Hstretchingregion(2800–3800cm−1)inRamanspectraof
aqueoussolutionsissensitivetochangesinthesaltconcentration.Thispermitsdetermi‐
nationofthesalinityintheaqueousphaseoffluidinclusions(atroomtemperature)by
calculatingskewingparametersfromRamanmicroprobespectra.Inthisstudy,theOH
RamansignalisfittedusingtwoGaussiansub‐bands,theconcentrationequilibriumcon‐
stantwasdetermined,thenthecalibrationequationofCl−molaritywasdetermined[31].
ThecalculatedtotalsalinityofthePinclusionswas13.9and19.0NaClequivalentwt%,
andtheS1inclusionswere13.0and17.2NaClequivalentwt%.Theseresultsareingood
agreementwiththemicrothermometrydata.
AccordingtotheRamanspectraoftheVphaseofPandS1inclusions,theycontain
H2gas.ThecharacteristicbandsofH2gasareat355,588,816,and1037cm−1(Figure6),
whicharerelatedtotherotationaltransitionsofthegasmolecule.
Minerals2021,11,64013of21
Figure6.ResultsofRamanspectroscopyoffluidinclusionsandfluorite.(a)Ramanspectrumoforderedfluorite;(b)Ra‐
manspectrumoftheliquidphaseinaPinclusioninfluorite;(c)RamanspectrumofthevaporphaseofaPinclusion
showingthecomplexrotationalbandstructureofH2.TheRamanbandoforderedfluoriteisstillpresent,whilefourother
intensitiesindicatestructurallydisorderedfluorite(indicatedbyredarrows);(d)Ramanspectrumofthevaporphaseof
anS1inclusion.TheH2rotationalbandsarealsoobservable.
UsingRamanspectroscopy,wealsoaimedtoinvestigatetherelationshipsbetween
finecolorzoning,aswellastheanomalousopticalbehaviorandthestructuralstateofthe
fluoritecrystals.Colorlesstransparentfluoriteischaracterizedbyasingle,sharpbandat
318cm−1.Inthedarkvioletzones,whichalsoshowanomalousopticalbehavior,broad
bandsappearbetween80–480cm−1,andthebaselineofthespectraisalsoelevated.This
phenomenonmaybeexplainedbythechangesinthestructureoffluorite:thedarker
zonesoffluoritearepartlyorextensivelydisordered,whereasthecolorlessandclear
zoneshaveanorderedstructure(Figure7).Thisphenomenonsystematicallyoccurs
withinthefluoritecrystals.Thesamephenomenonwaspreviouslydescribedforpurple
fluoriteusedashistoricpigments[32].Thecauseofthedisorderwasnotidentifiedduring
therecentinvestigation.Note,however,thatthewidthofindividualcoloredzonesisin
casesverysmall,approachingorpossiblybelowthelateralopticalresolution(<1μm)of
theRamanmicroscope.Spectrashowingmixedcrystallineanddisorderedfluoritesigna‐
turesmaythereforearisefromthepresenceofdamagedandorderedstructuresinthe
excitationvolume.TheFWHM(FullWidthatHalfMaximum)offluoritebandswasalso
examined.Thereisnoobservablebandbroadeningnearthedisorderedzones;hence,
thereisasharpboundarybetweentheorderedandthedisorderedstructures.
Minerals2021,11,64014of21
Figure7.ResultsofaRamanlinescan.(a)Inthecolorlessorpalepurplezones,onlyasharpfluoritebandappearsinthe
spectrum;(b)inthemediumpurplezone,thefluoritebandandthestructuraldamagearealsovisible;(c)theintensive
Ramanfeaturefromdarkpurplezonesobscuresthefluoriteband.
5.Discussion
5.1.FormationConditionsoftheFluoriteVeins
Fieldandpetrographicobservationssupportthatthefluoriteveinscuttingthephos‐
phoritelayerswereformedduringlowtemperatureepigenetichydrothermalprocesses.
Theresultsoffluidinclusionpetrographyandmicrothermometryindicatethatthepri‐
maryandtheS1generationofsecondaryfluidinclusionsoffluoritehaveasimilarap‐
pearance(size,shape,phaseratio),andtheirentrapmenttookplacefromahomogeneous
fluid.Therefore,thehomogenizationtemperaturesfortheprimaryfluidinclusionsof
fluoritecanbeevaluatedasminimumformationtemperatureofveins,e.g.,theminimum
temperatureofveinformationwasmostprobablybetween90and130°C(Figure5).Much
highertemperaturesforveinformationaregeologicallyunreasonable,astheisochorsof
thesesalinefluidinclusionsarefairlysteep,andthehostrockisnon‐metamorphosed.The
scatteringofdatatowardhighertemperaturesmayreflectsomeunrecognized“necking
down”[33]processes,ortemperaturefluctuationduringthegrowthofzonedcrystals.
However,thecorrodedcontourandfragmentationofthefluorite(anddolomite)crystals
maysuggestthatthedeformationeventsresultingintheopeningoftheveinscontinued
alsoaftertheformationoffluorite.
TheΣREEcontentsarelowinthefluoritesamplesofthestudyarea.Fluoriteswith
lowΣREEarebelievedtobederivedfromasedimentaryenvironment[34].ThelowCe
valuesinthestudiedfluoritesindicatethatthehighoxygenfugacityinthesourceofthe
hydrothermalfluidshasledtotheCe3+oxidationandCe4+immobilization[35].Addition‐
ally,thenegativeCeanomalycanbeinheritedfromseawater[36].Thisisbecausemarine
carbonatesshownegativeCeanomaly[37].InadditiontolowCevalues,thesamples
showlowREEconcentrations.Accordingly,itcanbeconcludedthatREEpatternsof
Minerals2021,11,64015of21
Pécselyfluoritesshowthatthehydrothermalfluidinteractswithmarinecarbonates,i.e.,
wemayassumethatbasinalbrinesarethemainsourceofthemineralizationfluids.
TherelativelylowhomogenizationtemperatureswithCa‐enriched,highsalinity
compositionsaresimilartofluidinclusioncharacteristicsofsalinebasinalfluidsandes‐
peciallytoMississippiValleyorIrishTypesediment‐hostedepigeneticPb‐Znoredeposits
[38](Figure8).
Figure8.Salinityvs.Thillustratingtypicalrangesforinclusionsfromdifferenttypesofdeposits
[38].Forcomparisonpurposes,fluidinclusiondatafortwoAlpine‐typeepigeneticlead‐zincdepos‐
itsintheDrauRange(Bleiberg,Mežica)[39],thePb‐Zn‐fluoritemineralizationoftheVelenceMts.
[6],andtheprimaryfluidinclusionsfromPécsely(greendots)arealsoshown.Fluidinclusionsfrom
PécselyplotwithintheMVTfieldandoverlapwithdatafromMežica,Bleiberg,andVelenceMts.
ThemicrothermometricresultsoftheS1inclusiongenerationsuggestthatthefor‐
mationoffluorite‐containingveinswasoverprintedbyasubsequent,lowertemperature
fluidflow.ThecompositionofS1fluidinclusionsisalmostidenticaltothoseofthepri‐
maryinclusions,whilethehomogenizationtemperaturesareslightlylower(with70–
80°Casthemostcommonvalues)withalmostidealandrelativelynarrownormaldistri‐
bution(Figure5).ThesepropertiessuggestthatS1inclusionswereformedduringthe
waning,lowertemperaturestageofthesamehydrothermalactivity,whentheinfiltrations
ofanewpulseofthesametypeoffluidwasgeneratedbyfracturingoftherocks.
Althoughthecarbonandoxygenisotopedataobtainedfromthecarbonatesassoci‐
atedwithfluoriteveinsaredifferentfromthesedimentarycarbonateofthehostrock(Fig‐
ure9),itisassumedthatthefluidultimatelyoriginatedfromPermianorTriassicburied
seawater(δ18OSMOW≈0‰,[19]),asnodirectmagmaticactivityhasbeenidentifiedinthis
period[2,40].Evenduringtheformationofphosphorite‐bearinglayers,whichpreceded
thedevelopmentofthefluoriteveinsandwerecontemporarywithvolcanicactivity[2],
themagmaticcontributionwasinsignificanttotheparentfluid[2].Nevertheless,thesta‐
bleisotopecompositionsofthedolomitesassociatedwithfluoriteveinsoverlapwiththe
datafromthefracturefillingandbrecciacementingcarbonateofthephosphoritedeposit
[2](Figure9).Thenegativeδ18Ovaluesmightindicatearelativelyelevatedformationtem‐
perature,asutilizingthedolomite–wateroxygenfractionequationby[41]andassuming
seawateroxygenisotopecomposition(δ18OSMOW≈0‰,[19])fortheparentfluid,thefor‐
mationtemperatureisabout70–75°C.Thisobservationfitswellwiththeassumedevolu‐
tionofthishydrothermalsystembecausethecarbonatesrepresentalaterstageinthemin‐
eralparagenesis.Inaddition,thegeneralmorphologyofthecrystalalsosuggestsslightly
Minerals2021,11,64016of21
elevatedtemperature,assaddledolomiteisbelievedtoformabove60°C[27].Alterna‐
tively,itshouldbeassumedanexoticfluidcharacterizedbynegativeoxygenisotopecom‐
position.However,thislaterscenarioisnotsupportedbyanyevidence.
Incontrasttotheoxygenisotopecomposition,theδ13Cvaluescoveraverywide
rangefrom+2.12‰to−7.16‰.Thenegativevaluemightberelatedtoorganicderived
carbon,whichcanhavemultiplesources.Thefirstsourcecouldbetheorganicrichphos‐
phoritelayers(theirTOC—totalorganiccarbon—are0.58–0.77%[42]),whicharecutby
thefluoriteveins.AnothersourcecouldbetheunderlyingPermianredsandstone,which
isinterpretedasapotentialsourceofvein‐formingfluid,containingburiedplantresiduals
inaddition.Theinteractionofthefluorite‐formingfluidwiththeseformations(Figure1c)
islikelytoberesponsiblefortheobservednegativeδ13Cvalues.Inaddition,theobserved
variabilityincarbonisotopecompositionisprobablyassociatedwiththedegreeofthis
interaction.
Figure9.Stableisotopedataofcalcitegrainsfromfluoriteveinsaresimilartothecarbonandoxygen
isotopiccompositionsoftheepigeneticcalcitecrystalsfoundinphosphorite,suggestingtheircom‐
mon,hydrothermalorigin[2].InthefiguretherangeofMiddleTriassiccarbonatesisalsoshown
[19].
5.2.TheOriginofH2inFluidInclusionsofFluorite
FluoritecrystalsfromtheareaofPécselyhaveauniquecharacteristic:thepresence
ofH2gasinthevaporphaseofPandS1fluidinclusions.Theauthorsof[43,44]examined
fluidinclusionsinquartzanddolomitegrainsfromPrecambrianuraniumdepositsby
Ramanspectroscopy,wheretheinclusionscontainedH2withorwithoutO2.Concerning
theoriginofthegas,ithasbeenconcludedthatchemicalreactionsofwaterororganic
matter,nuclearreactions,andindirectchemicalreactionsofradiolysisprocessesleadto
theenrichmentofH2andothergasesinhydrothermalfluids.
IntheBalatonHighlandarea,thePermian–Triassicsandstonelayersinthebasement
containtracesofredox‐frontcontrolleduraniumenrichments[18,45],andthephosphorite
layersatPécselyarealsoenrichedinuranium.Therefore,itisplausibletoestimatethat
thehydrothermalfluidsresponsibleforthefluoritemineralizationwerealsointeracting
withthoseuraniumrichzonesandwereenrichedinhydrogen.However,amodelfavor‐
inglocalconditionswouldbemoreacceptableregardingtheoriginofthegascontentof
theinclusionsbecausefluidinclusionswithsimilargascontentwerenotdescribedfrom
thePb‐ZndepositsalongthePABL(seee.g.,[6]).FluoriteandthehostrocksatPécsely
Minerals2021,11,64017of21
haveelevateduraniumcontent;therefore,thepresenceofhydrogeninfluidinclusions
couldmoreprobablyberelatedtotheinsitu(withininclusion)radiolysisofwater.
Presumably,thephosphoritestrataareresponsibleforthehydrogengasinfluidin‐
clusionsoffluoriteandthestructuraldegradationofthecrystals,whichweredetected
duringRamanspectroscopicinvestigation.Duetothedirectstratigraphicrelationshipbe‐
tweenfluoriteandphosphorite,theradiolysisoffluoritefluidinclusionshasbeencontin‐
uousfor~235millionyears,whichallowedthedetectionofH2despitepossiblediffusion.
5.3.MetallogenicImplications
TheAlpine‐Balkan‐Carpathian‐Dinaride(ABCD)metallogenicandgeodynamic
provincesincludephasesofearlyintracontinentalrifting,advancedrifting,oceanization,
subduction,andemplacementofophiolites;collisionalandpostcollisionaldeformation
eventswithsynkinematicgraniteplutonismandvolcanism;andpost‐collisionaligneous
activity[46].Theoccurrenceofphosphoritelayersandfluoriteveinsarelocatedinthe
TransdanubianMountainRange,whichisboundedbythePeriadriaticBalatonLineament
System(PABL),themostsignificantshearzoneoftheABCDregion.Thestructurallyde‐
formedzoneofthePABLhasbeenthemainchannelformagmaandfluidflowsinvarious
geotectonicenvironmentsduringandsincetheMesozoicera.TheformationofCretaceous
lamprophyricmagmatism(e.g.,Eisenkappel),PaleogeneandNeogeneintermediatemag‐
matism(e.g.,Recsk,VelenceMts.),dioriteintrusionsandstratovolcanoes(e.g.,Adamello,
Bergerplutons,Pohorjeintrusions)aswellasvarioustypesofmineralization(Cu‐
porphyry,epithermal,epigeneticPb‐Zn)areclearlyorapparentlycontrolledbythere‐
peatedreactivationofthisfaultsystem[6,13,46].TheTriassicriftingandoceanization—
associatingintensivesubmarinevolcanism—processestookplacealmostsynchronously
withintheABCDregion,creatingcarbonateplatformsonthepassivecontinentalmargin.
AlongthePABL,anumberofepigenetic‐hydrothermalPb‐Znoredepositsoccurinthe
TriassicsedimentaryrocksoftheNorthernandSouthernCalcareousAlps(e.g.,Bleiberg,
Mežica,Topla,Raibl,Salafossa)(Figure10a,b),andapartfromthe“majors”,thereare
morethan200smallerbutsimilarPb‐Znoccurrencesknownintheregion[46].Theore
formingfluidsofthesedepositsarecharacterizedby122–200°Candhighsalinity(7–
25NaClequivalentwt%)(Figure8)wherethemetalswereleachedandtransportedbyCl‐
richfluids[39,47].Theauthorof[48]hadrecognizedlow‐temperatureandhighsalinity
calcium‐chloride‐enrichedsecondaryfluidinclusionsinregional‐scaledistributioninthe
rockformingquartzofgraniteintheVelenceMts.,whicharelocatedabout50kmtothe
eastofthecurrentstudyarea(Figure1a).Parentfluidsofthoseinclusionswereinter‐
pretedas“basinalfluids”,andlaterresearchby[6]showedthattheyrecordaregional
fluidflowsystemofTriassicage,whichalsoproducedPb‐ZnmineralizationintheVar‐
iscangraniteoftheVelenceMts.Fluoriteisalsoacommonmineralinthosebase‐metal
richveins[6]alsoemphasizingthesimilaritiesbetweenthosefluidsandoreformingflu‐
idsofthecarbonatehostedlead–zincmineralizationsintheAlps(Figure8)[39].
Theauthorsof[49,50]investigatedtheREEgeochemistryoffluoritefromtheAlpine
Pb‐Zndeposits.ComparingtheREEcontentoffluoritefromPécselywiththeirresults,it
canbestatedthatthefluoritegrainscontainrareearthelementstoasimilarextentand
distributionastheAlpinespecimens(Figure10c).
ThephosphoriteoccurrenceandfluoriteveinsatPécselyalsoshowsimilaritiestothe
MonteSanGiorgo(~70kmfromMilanototheNNW)occurrenceintheSouthernAlps.
Thetwoareasshowsimilaritynotonlyinthestratigraphicpositionandformationageof
phosphoritehorizonsbutalsointhepresenceofhydrothermalfluorite(‐galena‐barite)
veinmineralization.Galena,barite,andfluoriteoccurinMonteSanGiorgioalongfaults
anddykes,embeddedinthevolcanicrocksofthePermianandintheoverlyingLower
andMiddleTriassicsediments.ThedepositswereenrichedduringtheMiddleTriassicby
hydrothermalfluidsmovingalongtectonicfaults[51].
Minerals2021,11,64018of21
Figure10.(a)SimplifiedgeologicalmapoftheDrauRangeafter[18,52]showingthepositionsofthemajorAlpine‐type
Pb‐Zndeposits;(b)schematicprofileshowingthepositionsoftheore‐horizons(redlines)inthedifferentstratigraphic
niveous(modifiedafter[53]);(c)comparisonoftheREEcontentoffluoritefromPécselywithAlpineoccurrences[49,50].
TheTransdanubianMountainRangeescaped450–500kmeastfromtheAlpinecolli‐
sionzoneduringtheLatePaleogene–EarlyNeogene[9].Accordingly,itsoriginalposition
waslocatedbetweentheSouthAlpineandUpperEastAlpinerealmintheTriassic,asa
segmentoftheAdriaticmarginoftheNeotethysOcean[54–56].Ourresultsareconsistent
withthepaleogeographicandgeologicalreconstructions[7,56]too.Therearestrikingsim‐
ilaritiesbetweenthefluoriteveinsofPécselyandcertainepigeneticPb‐Zndepositsinthe
AlpsalongthePABL,especiallyregardingfluidinclusionsignatures.Allthisopensup
thepossibilitythatasimilartypeofAlpine‐typePb‐Zndepositsmaybeconcealedinthe
carboniferoussequenceoftheTransdanubianMountainRange.However,byfarinthe
absenceofawell‐establishedmodel,thisrawmaterialexplorationopportunityhasnot
beenstudiedbefore.
6.Conclusions
Epigenetic‐hydrothermalfluorite–carbonateveinsandbrecciascutacrosssedimen‐
taryphosphoritelayersatPécselyintheTransdanubianMountainRangeUnitofSouth
AlpineaffiliationinwesternHungary.Theresultsofthisstudyoftheseveinssupportthe
followingconclusions:
Theδ18OPDBandδ13CPDBvaluesofcarbonatemineralsfromveinsconfirmtheirepige‐
netic‐hydrothermalorigin.
Minerals2021,11,64019of21
FluoritefromtheveinscontainsREEsinsub‐ppmconcentration.Thislowcontentof
REEandtheirrelativeconcentrationsshowagoodmatchwiththepropertiesof
fluoriteintheAlpine‐typePb‐Znoredeposits.
Colorzoningoffluoriteisassociatedwithdefectsinthecrystalstructure.
TheresultsoffluidinclusionstudiesindicatethattheprimaryandtheS1generation
ofsecondaryfluidinclusionsoffluoritehaveasimilarappearance(size,shape,phase
ratio),andtheirentrapmenttookplacefromahomogeneousfluid.Therelativelylow
homogenizationtemperatureswithCa‐enriched,highsalinitycompositionsaresim‐
ilartofluidinclusioncharacteristicsofsalinebasinalfluidsthatwerealsorecorded
inotherareasofthePannonianBasinandintheAlpine‐typePb‐Zndepositsalong
thePeriadriatic‐BalatonLineament
Fluidinclusionsoffluoritecontainhydrogengas;thisratheruniquefeaturecanbe
relatedtotheinteractionoftheparentfluidsofthefluorite‐bearingveinswiththe
interactionbetweenthefluoritevein‐formingepigeneticprocessandtheuranium‐
bearingphosphoritelayersofthehoststrataanduraniumenrichmentsinthebase‐
mentrocksandalsotothepossiblyinsituradiolysisofwaterwithinthefluidinclu‐
sions.
AuthorContributions:Conceptualization,Z.M.,G.B.K.,F.M.,andI.D.(IstvánDódony);methodol‐
ogy,T.V.,I.D.(IstvánDunkl),F.Z.,G.C.,andG.B.K.;formalanalysis,Z.M.,T.V.,I.D.(IstvánDunkl),
F.Z.,andG.C.;investigation,Z.M.,T.V.,I.D.(IstvánDunkl),F.Z.,G.C.,andG.B.K.;writing—original
draftpreparation,Z.M.andG.B.K.;writing—reviewandediting,F.M,T.V.,I.D.(IstvánDunkl),F.Z.,
G.C.,andI.D.(IstvánDódony);visualization,Z.M.,I.D.(IstvánDunkl),F.M.,G.B.K.,T.V.,F.Z.,and
G.C.;supervision,G.B.K.,I.D.(IstvánDódony)andF.M.;fundingacquisition,G.B.K.,Z.M.,andF.M.
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisstudywaspartlysupportedbyTÁMOP‐3.3.21‐15/1researchgrantno.NTP‐NFTÖ‐
16‐1032.FinalizationandpublicationofthisresearchissupportedbytheENeRAGproject,which
hasreceivedfundingfromtheEuropeanUnion’sHorizon2020researchandinnovationprogram
undergrantagreementNo810980.
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailablewithinthisarticle.
Acknowledgments:Wewishtosaythankstoallcolleagueswhocontributedtothiswork:Zsolt
Bendő,ÁgnesTakács,andSándorKlaj.Theauthorsaregratefultothreeanonymousreviewersfor
thecarefulandcriticalreviewofthemanuscriptandfortheirusefulsuggestions.TheUniversity
CentrumofAppliedGeosciences(UCAG)isthankedfortheaccesstotheE.F.StumpflElectron
MicroprobeLaboratory,Leoben.TheELTEFacultyofScienceResearchInstrumentCoreFacilityis
thankedfortheaccesstotheRamanlaboratory.TheLA‐ICP‐MSmeasurementswereperformedat
theUniversityofGöttingen.TheInstituteforGeologicalandGeochemicalResearchCentreforAs‐
tronomyandEarthSciences,whichispartoftheEötvösLorándResearchNetwork,isthankedfor
thestableisotopeanalyses.TheSEM‐CLimagingwasavailablethankstotheKMOP‐4.2.1/B‐10‐
2011‐0002grantbytheEuropeanUnion,co‐financedbytheEuropeanSocialFund.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthe
designofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanu‐
script,orinthedecisiontopublishtheresults.
References
1. Kiss,J.;Virágh,K.Auranium‐bearingphosphaticrockintheTriassicoftheBalatonUplandsaroundPécsely.Bull.Hung.Geol.
Soc.1959,89,85–97.
2. Molnár,Z.;Kiss,B.G.;Dunkl,I.;Czuppon,G.;Zaccarini,F.;Dódony,I.GeochemicalcharacteristicsofTriassicandCretaceous
phosphoritehorizonsfromtheTransdanubianMountainRange(westernHungary):Geneticimplications.Mineral.Mag.2018,
82(S1),S147–S171.
3. Frisch,W.;Kuhlemann,J.;Dunkl,I.;Brügel,A.PalinspasticreconstructionandtopographicevolutionoftheEasternAlpsduring
lateTertiaryextrusion.Tectonophysics1998,297,1–15.
4. Fodor,L.;Csontos,L.;Bada,G.;Györfi,I.;Benkovics,L.TertiarytectonicevolutionofthePannonianbasinsystemandneigh‐
bouringorogens:Anewsynthesisofpaleostressdata.InTheMediterraneanBasins:TertiaryExtensionwithintheAlpine;Orogen,
Minerals2021,11,64020of21
B.,Durand,L.,Jolivet,F.,Horváth,M.,Séranne,Eds.;GeologicalSocietySpecialPublications:London,UK,1999;Volume156,
pp.295–334.
5. Haas,J.;Mioč,P.;Tomljenović,B.;Árkai,P.;BérczinéMakk,A.;Koroknai,B.;Kovács,S.;Rálisch‐Felgenhauer,E.Complex
structuralpatternoftheAlpineDinaridic–Pannoniantriplejunction.Int.J.EarthSci.2000,89,377–389.
6. Benkó,Z.;Molnár,F.;Lespinasse,M.;Billström,K.;Pécskay,Z.;Németh,T.Triassicfluidmobilizationandepigeneticlead‐zinc
sulphidemineralizationintheTransdanubianShearZone(PannonianBasin,Hungary).Geol.Carpath.2014,65,177–194.
7. Kázmér,M.;Kovács,S.Permian‐PaleogenepaleogeographyalongtheeasternpartoftheInsubric‐Periadriaticlineamentsys‐
tem:EvidenceforcontinentalescapeoftheBakony‐Drauzugunit.ActaGeol.Hung.1985,28,71–84.
8. Csontos,L.;Nagymarosy,A.;Horváth,F.;Kovác,M.TertiaryevolutionoftheIntracarpathianarea:Amodel.Tectonophysics
1992,208,221–241.
9. Tari,G.;Bada,G.;Beidinger,A.;Csizmeg,J.;Danišik,M.;Gjerazi,I.;Grasemann,B.;Kováč,M.;Plašienka,D.;Šujan,M.;etal.
TheconnectionbetweentheAlpsandtheCarpathiansbeneaththePannonianBasin:SelectivereactivationofAlpinenappe
contactsduringMioceneextension.Glob.Planet.Chang.2021,197,103401.
10. Tari,G.NeoalpinetectonicsoftheDanubeBasin(NWPannonianBasin,Hungary).InPeri‐TethysMemoir2:StructureandPro‐
spectsofAlpineBasinsandForelands;Ziegler,P.A.,Horváth,F.,Eds.;MémoiresduMuséumNationald’histoireNaturelle:Wash‐
ington,DC,USA,1996;Volume170,pp.439–454.
11. Csontos,L.;Vörös,A.MesozoicplatetectonicreconstructionoftheCarpathianregion.Palaeogeogr.Palaeoclimatol.Palaeoecol.
2004,210,1–56.
12. Kovács;I.;Szabó,Cs.;Bali,E.;Falus,Gy.;Benedek,K.;Zajacz,Z.Palaeogene—EarlyMioceneigneousrocksandgeodynamics
oftheAlpine—CarpathianDinaricregion:Anintegratedapproach.Geol.Soc.Am.Spec.Pap.2007,418,93–112.
13. Köppel,V.SummaryofleadisotopedatafromoredepositsoftheEasternandSouthernAlps:Somemetallogenicandgeotec‐
tonicimplications.InMineralDepositsoftheAlpineEpochinEurope;Schneider,H.J.,Ed.;Springer:Berlin/Heidelberg,Germany,
1983;pp.162–269.
14. Budai,T.;Haas,J.TriassicsequencestratigraphyoftheBalatonHighland,Hungary.ActaGeol.Hung.1997,40,307–335.
15. Budai,T.;Vörös,A.MiddleTriassichistoryoftheBalatonHighland:Extensionaltectonicsandbasinevolution.ActaGeol.Hung.
1992,35,237–250.
16. Budai,T.;Vörös,A.MiddleTriassicplatformandbasinevolutionoftheSouthernBakonyMountains(TransdanubianRange,
Hungary).Riv.Ital.Paleont.Stratigr.2006,112,359–371.
17. Budai,T.;Császár,G.;Csillag,G.;Dudko,A.;Koloszár,L.;Majoros,G.GeologyoftheBalatonHighland.ExplanationtotheGeological
MapoftheBalatonHighland,1:50,000;OccasionalPapersHungarianGeologicalInstitute:Budapest,Hungary,1999;Volume197,
p.257.
18. Schroll,E.;Rantitsch,G.SulphurisotopepatternsfromtheBleibergdeposit(EasternAlps)andtheirimplicationsforgenetically