Piping and instrumentation diagrams (P&IDs) are commonly used in the process industry as a transfer medium for the fundamental design of a plant and for detailed design, purchasing, procurement, construction, and commissioning decisions. The present study proposes a method for symbol and text recognition for P&ID images using deep-learning technology. Our proposed method consists of P&ID image pre-processing, symbol and text recognition, and the storage of the recognition results. We consider the recognition of symbols of different sizes and shape complexities in high-density P&ID images in a manner that is applicable to the process industry. We also standardize the training dataset structure and symbol taxonomy to optimize the developed deep neural network. A training dataset is created based on diagrams provided by a local Korean company. After training the model with this dataset, a recognition test produced relatively good results, with a precision and recall of 0.9718 and 0.9827 for symbols and 0.9386 and 0.9175 for text, respectively.