Available via license: CC BY 4.0
Content may be subject to copyright.
Energies2021,14,3228.https://doi.org/10.3390/en14113228www.mdpi.com/journal/energies
Article
OptimizationofArchitecturalFormforThermalComfort
inNaturallyVentilatedGymnasiumatHotandHumid
ClimatebyOrthogonalExperiment
XiaodanHuang
1,2,
*,QingyuanZhang
2
andInekoTanaka
2
1
SchoolofArtandDesign,GuangdongUniversityofTechnology,Guangzhou510090,China
2
InstituteofUrbanInnovation,YokohamaNationalUniversity,Kanagawa240‐8501,Japan;
cho‐seigen‐jc@ynu.ac.jp(Q.Z.);itanaka@ynu.ac.jp(I.T.)
*Correspondence:dandyhuang@163.com
Abstract:Asthegymnasiumsinsubtropicalregionwithhotandhumidclimatearenaturallyven‐
tilatedduringnon‐competitionperiods,occupantsexercisingindoorsoftenfeeluncomfortable,es‐
peciallyinsummer.Inordertoprovidethermallycomfortableandhealthyenvironmentforthe
occupants,thedesignonarchitecturalformisfoundtobeaneffectivesolutiononimprovingindoor
thermalcomfortofnaturallyventilatedgymnasiums.Therefore,anewperspectiveregardingopti‐
mizationofnaturallyventilatedgymnasiumsisproposedintheaspectofthearchitecturalform.
Thispaperpresentstheoptimizationofarchitecturalforminnaturallyventilatedgymnasiumsin
whichsimulationandorthogonalexperimentmethodsarecombined.Throughnumericalsimula‐
tionwithFlowDesignersoftware,thesignificanceofarchitecturalformaffectingindoorthermal
comforthasbeengiven,andtheoptimalarchitecturalformsofnaturallyventilatedgymnasiumarede‐
termined.Theresultsshowthattheroofinsulationtypeisthemostsignificantfactorinfluencingindoor
thermalcomfort;thus,itshouldbeconsideredprimarilyinoptimization.Moreover,therangeanalysis
andvarianceanalysisrevealtherankingsofthefactorsforthegymnasiumthermalcomfort.Inaddition,
itisdemonstratedthattheoptimalgymnasiummodel,whencomparedwiththeinitialgymnasium
model,hasasatisfactoryeffectonimprovingtheindoorthermalcomfort,astheaveragevalueofPre‐
dictedThermalSensation(PTS)inAugustdecreasedfrom1.11(Slightlyhot)to0.86(Comfortable).This
studyprovidesanewinsightforthedesignersinoptimizingthearchitecturalformofgymnasiumsfor
achievingtheindoorthermalcomfortathotandhumidclimate.
Keywords:thermalcomfort;architecturalform;gymnasium;hotandhumidclimate;
orthogonalexperiment
1.Introduction
Asapublicspaceforsports,exercises,andentertainments,gymnasiumsplayanim‐
portantroleinpeople’sdailylife.Inthesubtropicalareas,thethermalcomfortofoccupants
exercisingingymnasiumsisrelatedtotheutilizationrateofgymnasiums,energyconsump‐
tion,andhumanhealth.Inhotandhumidclimate,occupantspreferpursuingthermalcomfort
byairconditionerswhendoingsports.However,althoughtheairconditionersprovideacom‐
fortableenvironmentforoccupantsdirectly,thiswouldincreaseenergyconsumptionandcar‐
bondioxideemissions.Moreover,humanadaptiveabilitytothenaturalenvironmentwould
beweakened,aswellastheirhealth,whileexercisinginsuchplacesforalongtime[1].There‐
fore,thestudyonthethermalcomfortinnaturallyventilatedgymnasiumathotandhumid
climatehasbeensignificantlyregardedtoday[2].
Peoplecouldachievethermalcomfortmainlyfromtwoaspectsbytwomethods:One
isindividualadjustment,suchastheactivitylevel,clothing,andpsychologicalexpecta‐
Citation:Huang,X.;Zhang,Q.;
Tanaka,I.Optimization
ofArchitecturalFormforThermal
ComfortinNaturallyVentilated
GymnasiumatHotandHumid
ClimatebyOrthogonalExperiment.
Energies2021,14,3228.
https://doi.org/10.3390/en14113228
AcademicEditors:PatrickPhelan
andBorisIgorPalella
Received:1April2021
Accepted:29May2021
Published:31May2021
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(http://creativecommons.org/
licenses/by/4.0/).
Energies2021,14,32282of18
tion[3–6];theotheristhermalenvironmentregulating,suchastheindoorairtemperature,
relativehumidity,meanradianttemperature,andairvelocity[3,4].Althoughoccupants
couldadjustthemselvesonachievingthermalcomfort,theregulatingonthermalenviron‐
mentcouldbemoreeffectiveandcomprehensive[7,8].Furthermore,intheaspectofar‐
chitecturaldesign,improvingthethermalenvironmentbyadjustingthearchitectural
formsisoneofthemosteffectivemethodstoachievethermalcomfort.
Intheresearchofthecorrelationbetweenthearchitecturalformandthethermalcom‐
fort,Wei[9]focusedonthemainenergy‐savingmeasuresofgymnasiumbuildingsand
analyzedthesignificantsequenceoftheimpactofpassiveenergy‐savingtechnologieson
theenergyconsumptionandthecoolingload.AccordingtoWei,theexternalshadingand
naturallightingwerethemostsignificantfactors;however,theirordersweredifferent
duetotheirrespectiveinfluencecharacteristics.Yangetal.[10]investigatedtheadaptive
thermalcomfortandclimateresponsivestrategiesindry‐hotanddry‐coldareasinChina
andfoundthatthearchitecturewithasemi‐basementcouldsatisfythethermalcomfort
efficiently,followedbynightventilationinsummer.Li[11]simulatedthewindpressure
inagymnasiuminhotandhumidareainChinatoanalyzetheinfluencesofinterfaceform
onnaturalventilationandfoundthattheformofasymmetricinterfacecouldimprovethe
ventilationcapacity.Huangetal.[12]analyzedthetopandsideinterfaceformsofgym‐
nasiumsinGuangzhou,Chinaandfoundthatthedoubleskinroofandopenableside
interfacecouldenhancethehumanthermalcomfort.Althoughthestudiescorrelatedbe‐
tweenthearchitecturalformandthethermalcomfortcanbefound,mostofthemarefo‐
cusedondwelling,school,andofficebuildings[13–18].Thesestudiesrarelyfocusedon
thegymnasiumbuilding,whichplayedadistinctiveroleonthermalcomfortforthefea‐
turesoflargespace,specificfunction,andcertaingroupofpeople.Inaddition,fewre‐
searchstudiesmulti‐factorbyorthogonalexperimentmethod[19–21].Mostofthem,how‐
ever,focusonsingleinfluentialfactorofbuildingform,rarelyconductcomprehensive
andintegratedanalysisonmulti‐factor,whichhasamorepracticalandmeaningfulfor
theresearchofthermalcomfort.
Thisstudyaimstoimprovetheindoorthermalcomfortofnaturallyventilatedgym‐
nasiumsathotandhumidclimatethroughcomprehensivearchitecturalformoptimiza‐
tion.Basingonthefieldinvestigationin15gymnasiumsinGuangzhouChina,whichisa
typicalcityinsubtropicalregionwithhotandhumidclimate[22],aninitialmodelofgym‐
nasiumwasestablishedtoanalyzetheindoorthermalcomfortandexploretheoptimizing
orientation.Anorthogonalexperimentwithvarietyoffactorsandlevelschosenbyana‐
lyzingthefieldinvestigationwasthenconductedandsimulatedwiththeFlowDesigner
software.Basedonthesimulationresults,thesignificantfactorsofarchitecturalformon
thermalcomfortwereidentified.Furthermore,theoptimalcombinationofarchitectural
formsofgymnasiumwassuggestedtoprovidereferenceforthegymnasiumsdesignat
hotandhumidclimate.
2.MaterialsandMethods
Inordertoanalyzethethermalcomfortwithmultiplefactorsandtheoptimization
ofarchitecturalformingymnasiums,ahybridmethodthatcombinestheorthogonalex‐
perimentandcomputersimulationisconductedinthisstudy,showninFigure1.
Energies2021,14,32283of18
Figure1.Flowchartofthehybridmethodforsimulationandoptimization.
2.1.SimulationToolandItsValidation
Thefirststepaimstoconsiderasuitabletoolforthermalenvironmentsimulation.In
ordertoachieveaccuratecalculation,simulationtoolshavebeendevelopedbyresearch‐
ersandengineers,suchasEcotect,TRNSYS,PHOENICS,Fluent,andFlowDesigner.Con‐
sideringthattheairtemperature,relativehumidity,airvelocity,andthethermalcomfort
inthedynamicthermalenvironmentarethemainfactorsinvolvedinthisstudy,
FlowDesigner,atypeofcomputationalfluiddynamics(CFD)simulationsoftwarewas
usedinthisstudyforthethermalandfluidsimulationsofgymnasiums.Thissoftwarecan
enablewindandthermalanalysisbyeasilyimporting3Dmodelsofbuildingsorurban
blocksdevelopedbymodelingtools,whichcouldprovideearlyanalysisandreducethe
designtime.Therefore,itisfriendlytousedandverifiedinmanystudies[23–25].
InordertoverifytheaccuracyoftheresultsfromtheFlowDesigner,thethermalen‐
vironmentbetweensimulationandthatfromfieldmeasurementsarecompared.Thefield
measurementwasconductedinagymnasiumlocatedatthedowntownareaofGuang‐
zhou,China,between28Julyand10August2016.Thegymnasiumwascompletedin1996
withthestructureofsteel.Itisopenonthesouth,east,andnorthsides,withasizeof57.6
m×31.2m×10.8minlength,width,andheight.Thereare3basketballcourtsinthe
gymnasiumsandaremainlyusedforathletes’dailytrainingandexercises.Thegymna‐
siumisindoorgymnasiumsandnaturalventilatedduringthemeasurement.Thevalues
oftheindoorairtemperature,indoorrelativehumidityandindoorairvelocityweremeas‐
uredinthecompetitionfieldofgymnasiumat30‐mininterval,from9:00to18:00.The
physicalmeasuringinstrumentswerearrangedinfivepoints,asshowninFigure2,
aroundthecompetitionfieldataheightof1.1minlinewiththerelevantstandards[26].
Inturnsofsimulation,thegymnasiumwassimulatedusingtheFlowDesignerwiththe
weatherdataforthesimulationisobtainedfromTheUnitedStatesNationalClimaticData
Center[27],whichprovidesglobalhistoricalweatherandclimatedatafromobservations.
Preliminary analysis
Determining optimization target and method
Suggesting the initial model
Simulations and orthogonal experiment
Selecting orthogonal table, factors and levels
Establishing numerical simulation models on FlowDesigner
Conducting orthogonal experiments (numerical simulations)
Optimization analysis
Range analysis
Variance analysis
Proposing optimal architectural form of gymnasium
Energies2021,14,32284of18
Figure2.Theinteriorviewandplanofthemeasuredgymnasiums(Points○1to○5representthe
locationsofthemeasuringinstruments).
Figure3showsthevariationsofindoorairtemperature,relativehumidity,andair
velocitybetweenmeasurementandsimulation,eachvaluerepresentsasinglepointat
each30min.Thevariationtendenciesofairtemperatureinmeasurementandsimulation,
asshowninFigure3a,areconsistentwitheachother,aswellasthetendencyofrelative
humidity,asshowninFigure3b.Thebiggestdifferencebetweenmeasureddataandsim‐
ulateddataofairtemperatureis2.92°Cappearingat14:30on10August,andtheleast
differenceis0.01°Cat10:30on4August.Asfarasrelativehumidity,thebiggestdiffer‐
enceis24.78%at14:30on28Julyandtheleastdifferenceis0.02%at16:30on29July.While
thevariationofairvelocitybetweenmeasurementandsimulationarelessconsistent,as
showninFigure3c,theaveragevaluesofmeasurementandsimulationare0.31m/sand
0.43m/s,respectively,whichshowslittledifference.
(a)Variationofindoorairtemperature
(b)Variationofindoorrelativehumidity
25
27
29
31
33
35
37
39
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
28th July 29th July 2nd August 4th August 8th August 10th August
Air temperature (
o
C)
Measured data Simulated data
30
40
50
60
70
80
90
100
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
28th July 29th July 2nd August 4th August 8th August 10th August
Relative humidity (%)
Measured data Simulated data
Energies2021,14,32285of18
(c)Variationofindoorairvelocity
Figure3.Comparisonofthethermalenvironmentvariationsbetweenmeasurementandsimulation.
Thereasonforthediscrepancybetweenthesimulateddataandthemeasureddatais
thatthebuildingenvironmentisidealinsimulation,whilethebuildingenvironmentis
complexandchangeableinpractice.Forexample,theperformanceofthematerialiscon‐
stantinthesimulatedenvironmentbutischangeableintheactualenvironmentwiththe
changeofthethermalenvironment;theparametersofinsolationaresimpleinthesimu‐
lation,buttheconditionsofinsolationintheactualenvironmentarecomplex,which,toa
certainextent,affectstheairtemperatureandradiation.Ontheotherhand,thesimulation
accuracyislimited;forinstance,theaccuracyofthegridsettinginthesimulationsoftwareis
limited,andtheparameterconditionsofthespecialmodelarelimited,whichleadstothedif‐
ferencebetweenthesimulationdataandthemeasureddata.Althoughtherearesomeerrors
betweenthem,thetrendsandaveragevaluesshowninFigure3arestillrelativelyconsistent.
Therefore,webelievethattheFlowDesignersoftwarecanbeusedinthisstudy.
2.2.SelectionofThermalComfortModel
Sincethethermalcomfortisthemainissuediscussedinthisstudy,athermalcomfort
modelwouldbeselected.Thethermalcomfortmodels,suchasPMVandSET,arewidely
usedaroundtheworld;however,noneofthemispropertoevaluatethethermalcomfort
formovingsubjects,suchasathletes[3,4,28].Forexample,PMVislimitedtothesteady
stateenvironment,andSETcouldbeappliedinthenaturallyventilatedenvironment;
however,itcouldonlybeusedforthepeopleinlowmetabolicrate.Becausetheresearch
objectinthisstudyisthethermalcomfortinthestateofexerciseinnaturallyventilated
gymnasiums,athermalcomfortmodelthatisapplicablefortheoccupantsinhighmeta‐
bolicratesingymnasiumsisrequired.Throughthefieldsurveyonthethermalsensation
ofexercisingoccupantsingymnasiumsinhot‐humidareaofChina,amodelcalledthe
PredictedThermalSensation(PTS)wasproposedinapreviousstudy[29].Thismodelis
availableforaccuratelyestimatingthethermalsensationofoccupantswithexercisesin
gymnasiumsathotandhumidclimateinChina.ThePTSmodelisformulatedinEquation
(1),andthescaleisshowninTable1.
PTS=−5.127+0.201Top+0.001Wa−0.045v+0.002M−1.184Icl(R2=0.814),(1)
wherePTSisthePredictedThermalSensation,whosevaluesrangesfrom−3to3asthe
TSVdoes;Topistheoperativetemperaturein°Crangesfrom10°Cto40°C;Waisthe
humidityratioing/kg’variesfrom8g/kg’to25g/kg’;vistheairvelocityinm/s;Misthe
metabolicrateinW/m2,whosevaluesrangesfrom250W/m2to350W/m2;Iclistheclothing
insulationinclovariesfrom0.22cloto0.29clo.
0.0
0.5
1.0
1.5
2.0
2.5
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
28th July 29th July 2nd August 4th August 8th August 10th August
Air velocity (m/s)
Measured data Simulated data
Energies2021,14,32286of18
Table1.ScaleofPTSmodel.
−3−2−10+1+2+3
ExtremelycoldColdSlightlycoldComfortableSlightlyhotHotExtremelyhot
2.3.PrincipleofOrthogonalExperiment
Orthogonalexperimentisasystematicandstatisticalmethodforachievingtheopti‐
mizationofmultiplefactorswithdifferentlevelsofvalues[20].Thesestandardarrays
providethewayofconductingtheminimalnumberofexperimentswhichcouldgivethe
fullinformationofallthefactorsthataffecttheperformanceparameter.Theorthogonal
tableisthefoundationoftheorthogonalexperiment,asshowninEquation(2).
Ln(mk),(2)
whereListhesymboloftheorthogonaltable;nisthenumberoftrialsarrangedinthe
orthogonalexperiment;misthenumberoflevels;kisthenumberoffactors.
2.3.1.RangeAnalysis
Astheappropriateanalysismethodsfortheorthogonalexperiment,twomethodsare
introduced,rangeanalysisandvarianceanalysis[21].Rangeanalysisaimstodetectthe
levelsofdifferentinfluentialfactorsonindices,asshowninEquation(3).Inthisanalysis,
thelargervalueofRj,thegreaterimportanceofthefactor.
Rj=max(kji)−min(kji),(3)
whereRjistherangeofvaluesbetweenthemaximumandminimumvaluesofKji.Kjiis
theaveragevalueofthesumoftheexperimentalresultsatalllevels(i,i=1,2,3)ofeach
factor(j,j=A,B,C,D,E,F).
2.3.2.VarianceAnalysis
Forfurtheranalysis,thevarianceanalysiscanbeusedtodeterminetheinfluences
fromexperimentalconditions,errorsandthesignificantoffactors.Inthevarianceanaly‐
sis,thesumofthesquareddeviation(SS),thedegreeoffreedom(df),andthevarianceof
thefactororerror(V)areexpressedasEquations(4)and(5).TheFvalueiscomparedto
acriticalvalueofasignificantlevel,whichisnormallysetat0.05.Theimpactofthese‐
lectedfactoronthetestresultsisconsideredtobesignificantifitisgreaterthanthecritical
value,andviceversa.
SS ∑
W
w,(4)
V=SS/df,(5)
whereSSisthesumofthesquareddeviation;Wkistheresultsofeachtrial(k,k=1,2,3,
……,n);wisthearithmeticaverageofWk;dfisthedegreeoffreedom;Visthevariance
ofthefactor.
2.4.StatisticalAnalysis
Inthisstudy,theresearchprocessbeginswiththeorthogonalexperimentaldesign,
thenconductsthesimulationofthetrialsinorthogonalexperiments,and,finally,analyzes
theoptimizationresultintheaspectofthermalcomfort.Asthesimulationin
FlowDesigneronlyoutputsthevaluesofairtemperature(Ta),surfacetemperature(Tk),
relativehumidity(RH),andairvelocity(v),afurthercalculationshouldbeconductedto
obtainthePTSvalue.
ThePTSequation,asshowninEquation(1),containsfiveparameters:operativetem‐
perature(Top),humidityratio(x),airvelocity(v),metabolicrate(M),andclothinginsula‐
tion(Icl).Theoperativetemperature(Top)canbecalculatedwithEquation(6)[3],andthe
meanradianttemperature(Tr)iscalculatedwithEquation(7)[4,30].Thehumidityratio
Energies2021,14,32287of18
(Wa)iscalculatedbytherelativehumidity(RH),asshowninEquation(8).Themetabolic
rateiscalculatedbasinguponthemeasurementofheartrateproposedintheISO8996[31].
Sincetheexercisingstateingymnasiumisthepremiseofthestudy,theaveragevalueof
300W/m2collectedfromthepreviousfieldsurveyisappliedinthispaper.Theclothing
insulation,calculatedfromASHRAEStandard55‐2017[3],is0.22clofortheoccupants
exercisingingymnasiumathotandhumidclimate.
Top=ATa+(1−A)Tr,(6)
T
∑
T
F ,(7)
𝑊
0.622
,(8)
whereTopistheoperativetemperaturein°C;Aisacoefficientasafunctionoftheaverage
airvelocity[3];Taistheairtemperaturein°C;Tristhemeanradianttemperaturein°C;
TNisthesurfacetemperatureofsurface(N)in°C;Fp‐Nistheanglefactorbetweenaperson
(p)andsurface(N);Waisthehumidityratioing/kg’;RHistherelativehumidityin%;pas
isthesaturatedwatervaporpressureinPa;pistheatmosphericpressureinPa.
3.TheInitialModelofGymnasiuminHotandHumidArea
3.1.TheSituationofGymnasiumsinGuangzhouCity
Thebasicforoptimizingthearchitecturalformofgymnasiumisfirsttorealizethe
situationofgymnasiumsexhaustively.Toobtainthearchitecturalparametersofgymna‐
siums,investigationwascarriedoutaround15naturallyventilatedgymnasiumsin
Guangzhou.Theinvestigationincludesthebuildingsize,audiencecapacity,auditorium
layout,buildingmaterial,andthecharacteristicsofthearchitecturalforms.Table2gives
thebuildinginformationofinvestigatedgymnasiums,presentingthatthegymnasium
sizesaremediuminmajorwitharound3000~6000seatsandtwo‐sidedauditorium.Most
ofthegymnasiumsarebuiltbythematerialofreinforcedconcrete.Intermsofthewindow
position,mostofthewindowsininvestigatedgymnasiumsareattheheightofthewalls.
Asthewindow‐to‐wallratio(WWR)stipulatinglessthan0.7inpublicbuildingsaccording
totherelevantregulationsofChina[32],theWWRinmostinvestigatedgymnasiums
achievethisstandard,and10ofthemevenlessthan0.3.Intheaspectofroofslope,8
gymnasiumsarehorizontalroofs,and7aresloperoofs.Sincetheshadingisimportantin
southernChina,overhangingeavesarebuiltinmostofthegymnasiumswithdifferent
depths.
Table2.InformationofnaturallyventilatedgymnasiumsinGuangzhouCity.
ParameterSituationPercentage
SizeMedium8/15
Small7/15
Audiencecapacity(seat)3000~60008/15
≤30007/15
Auditoriumlayout(side)
≤29/15
>26/15
BuildingmaterialReinforcedconcrete14/15
steel1/15
Buildingheight(meter)
≤1510/15
>155/15
Mainwindowposition
Heightofthewalls8/15
Bottomofthewalls2/15
Bothheightandbottomofthewalls2/15
Ontheroo
f
3/15
Energies2021,14,32288of18
window‐to‐wallratio(WWR)
≤0.310/15
0.3~0.75/15
Roofslope
Horizontalroof8/15
Singleslope3/15
Multi‐slope4/15
OverhangingeaveWithoutoverhangingeave2/15
Withoverhangingeave13/15
3.2.PlanLayoutoftheInitialModelofGymnasium
AbstractingthemainparametersfromtheinvestigatedgymnasiumsinGuangzhou,
aninitialmodelofgymnasiumisbuiltupasabasisforsimulationandoptimizationin
thenextstep,theplanlayoutandperspectiveoftheinitialgymnasiummodelareshown
inFigure4.Thegymnasiummodelissettledinmediumsizewithatotalareaof3150m
2
.
Therearetwosidesauditoriuminit,with3688seats.Thebuildingmaterialisreinforced
concrete,andtheexternalwallsare0.3minthickness.Windowsarebuiltonthehigh
positionofthesouthwallandnorthwall.AlthoughtheWWRoftheinvestigatedgymna‐
siumsarearound0.3,theopenableandtransparentwindowsarefew.Thus,theWWRof
initialmodelissetin0.1asthewindowsareallopenableandtransparent.Inaddition,the
roofofinitialmodelishorizontal,whilethedepthofoverhangingeaveis1m.
Figure4.Planlayoutandperspectiveoftheinitialgymnasiummodel.
3.3.SimulationoftheInitialModelofGymnasium
TheFlowDesignerisusedtosimulatethethermalparametersoftheinitialmodel
overaperiodofonemonth(August)onanhourlybasis.Theweatherdataforsimulation
isobtainedfromtheEnergyPlus[33].Asthegymnasiumisaplaceforsport,thesimula‐
tionzoneofinitialmodelisthecompetitionfield,asshownintheredarea(48.6m×32.4
m×1.1m)ofFigure3.Thenaturalventilationmodeisadoptedinthissimulation,with
theinfluenceofsolarradiationconsideredinthesimulation.Inthecalculationprocess,
theHypothesisofBoussinesqisused,whichmeansthechangeoffluiddensityonlywould
affectthebuoyancy.Moreover,thedetaileddesignparameterinformationaboutthe
buildingenvelopeisdescribedinTable3.Thesimulatedresultsofoperativetemperature,
relativehumidity,airvelocity,andthePTSvaluesoverAugustonanhourlybasisare
Energies2021,14,32289of18
showninFigure5.Thesettingsininitialmodelsimulationareusedforfurthersimulations
ofoptimization.
Table3.Designparameterinformationofthebuildingenvelope.
ComponentMaterialsU‐Value(W/(m
2
·K))
Exteriorwall13mmdecorativebrick+20mmlimemortar+10mmExpandedPolystyrene(EPS)
insulation+240mmaeratedconcrete+20mmlimemortar0.5
Roof
40mmC20fineaggregateconcrete+20mmcementmortar+5mmwaterproof
membrane+30mmcementmortar+60mmExtrudedPolystyrene(XPS)insulation
+20mmcementmortar+120mmreinforcedconcrete+20mmcementmortar
0.35
WindowAluminiumframe+6mmclearsingleglazing6.073
Floor20mmcementmortar+100mmreinforcedconcrete+20mmcementmortar2.813
Foundation20mmcementmortar+80mmfineaggregateconcrete+500mmrammedclay0.887
Figure5presentsthattheindooroperativetemperatureofinitialmodelrangesfrom
27.02°Cto32.27°CinAugust,withanaveragevalueof29.29°Candtherelativehumidity
changesfrom73.64%to89.87%,withanaveragevalueof82.41%,whichisconsistentwith
thefeaturesofthehot‐humidclimate.Inaddition,theaverageairvelocityis0.21m/s,
meetingtherequirementofwindspeedforsports[34].IntheaspectofPTSvalue,the
averagePTSis1.11,whichrepresents“slightlyhot”inthermalsensation.Furthermore,
themaximumvaluereaches1.71,whichiscloseto“hot”inthermalsensation,indicating
thattheindoorthermalcomfortofinitialmodelisnoteffective,andthemeasuresshould
betakentoimprovethethermalcomfortinsummerdays.
(a)(b)(c)(d)
Figure5.Simulatedresultsofinitialmodelofgymnasium.(a)TherangeofoperativetemperatureofinitialmodelinAu‐
gust;(b)TherangeofrelativehumidityofinitialmodelinAugust;(c)TherangeofairvelocityofinitialmodelinAugust;
(d)TherangeofPredictedThermalSensationofinitialmodelinAugust.
4.SimulationResultsandOptimizationAnalysis
Inordertoproposeanoptimalstrategyofarchitecturalformforindoorthermalcom‐
fortofgymnasiums,thefactorsandcorrespondinglevelsofarchitecturalformthataffect‐
ingthermalcomfortofgymnasiumareselectedbasedontheinitialmodelinthissection.
Later,thesimulationsareconductedinFlowDesignerfollowedbythetrialsgenerated
fromtheorthogonalexperimentaldesign.Afterobtainingthethermalenvironmentdata
fromsimulations,thePTSvaluescanbecalculated.Throughtherangeanalysisandvari‐
anceanalysisofPTSvalues,theoptimizedarchitecturalformofgymnasiumissuggested.
Energies2021,14,322810of18
4.1.SimulationFactorsandLevelsofOrthogonalExperiment
Therearemanyfactorsofarchitecturalformthatinfluenceindoorthermalcomfort
ofgymnasium.Accordingtotheinitialmodelandthepreviousresearch,sixparameters
ofarchitecturalformareaddressedinthisstudy,namelythemainwindowposition(A),
southWWR(B),northWWR(C),roofinsulationtype(D),roofslope(E),anddepthofover‐
hangingeave(F).Thesesixparametersaretakenasthefactorsoforthogonalexperiment,and
threelevelsarechosenforeachfactor.TheorthogonalexperimentisshowninTable4.
Table4.Factorsandcorrespondinglevelsoforthogonalexperiment.
FactorLevel1Level2Level3
(A)MainwindowpositionHighatthesouthand
northwall
Lowatthesouthwallandhighatthe
northwall
Highatthesouthwallandlowat
thenorthwall
(B)SouthWWR10%20%30%
(C)NorthWWR10%20%30%
(D)RoofinsulationtypeSingleskinroofDoubleskinroofInsulatedroof
(E)RoofslopeHorizontalroofRisefromsouthtonorthRisefromnorthtosouth
(F)Depthofoverhangingeave1m5m9m
FactorA:Thewindowpositionaffectsthenaturalventilationandthermalcomfort,
aswellasevenenergyconsumption.Inpreviousresearch,Prakash[35]identifieda
newsetofstrategiestolocatethewindowopeningswhichcouldreducethePMVby
0.12%.Kimetal.[36]demonstratedthatthebuildingsachievethelowestenergycon‐
sumptionwhenthewindowswerelocatedinthemiddleheightinallorientations.
AsthewinddirectioninGuangzhouismainlyfromsoutheasttonorthwest,thewin‐
dowpositiononsouthandnorthismorevaluabletostudythanthatoneastand
west.ThethreelevelsinfactorAinthisstudyaredifferentpositionsofmainwin‐
dowsthatwereselectedfromtheresultofinvestigationandtherelevantresearch.
FactorBandC:Asasignificantfactoraffectingonindoorthermalenvironment,the
WWRplaysanimportantroleinarchitecturaldesign.Thereareextensiveresearch
andeffortsfocusedontheWWRuptonow.Kahsayetal.[37]triedtoanalyzethe
optimizationofwindowconfigurationforahigh‐risebuildingtominimizeitsenergy
consumption,andheobtainedtheoptimumWWRof30%,48%,and30%foraroom
locatedonthe2nd,15th,and29thfloor,respectively.Wenetal.[38]tooktheindoor
airtemperatureastheparametertoevaluatetheoptimalWWRandproposedaWWR
mapsforthearchitecturaldesignintheearlystages.Accordingtotherelevantre‐
searchandregulationsofChina,aswellastheinvestigationinGuangzhou,theWWR
inthestudyarechoseninthreelevels,10%,20%,and30%.
FactorD:Theheatgainfromthesolarradiationisakeyprobleminthebuildingsin
southofChina.Sincetheroofsurfacesarethemainpositionsabsorbingradiantheat,
theinsulationmeasuresofroofsarecritical.Zingreetal.[39]comparedthethermal
performancesbetweenthedoubleskinroofandtheinsulatedroofinSingapore,
foundthatthedoubleroofperformsbetterinreducingheatgainintothebuilding
duringdaytimes.Yangetal.[15]analyzedthecorrelationsbetweenindoorthermal
comfortandDouble‐SkinFaçadesindifferentclimaticconditionsandfoundthatthe
solarheatgaincoefficientoftheexternalwindowoftheDouble‐SkinFaçadespos‐
sessedthehighestimportanceaffectingindoorthermalcomfort.Inthisstudy,three
typesofroofareselectedtodiscusstheoptimumforthegymnasiumsinhotand
humidclimate.Thesingleskinroofistheordinaryreinforcedconcreteroofwithout
anypassivecooling;thedoubleskinroofiswithanaircavityof500mmthickness
inside;theinsulatedroofcomposesofreinforcedconcreteandaninsulationboardof
20mmthickness.
FactorE:Roofslopecanregulatethenaturalventilationandcoolingeffect.Maoand
Yang[40]investigatedtheheattransferperformanceofdouble‐slopehollowglazed
Energies2021,14,322811of18
roofwithdifferentslopeanglesinhotsummerandcoldwinterregions,andthere‐
sultsindicatethattheinnersurfacetemperatureoftheroofreducedobviouslywith
theroofslopedecreases.SincethewinddirectioninGuangzhouissoutheast‐to‐
northwest,thethreelevelsofroofslopeinthisstudyaremainlyconsiderthesouth‐
northdirection.
FactorF:Theoverhangingeaveinfluencesnaturalventilationandshading,aswell
asheatinsulation.Li[11]simulatedthesymmetricalandasymmetricalmodelsofa
gymnasiuminGuangzhouandrecommendedadjustingthewidthandangleofthe
overhangingeavesofthegymnasiumstoimprovethethermalperformance.Dueto
mostoftheinvestigatedgymnasiumsinGuangzhouownoverhangingeavesonthe
roofs,thethreelevelsoffactorFaredifferentinthedepthofoverhangingeave.
4.2.RangeAnalysis
Sincethesixfactors(A~F)andthreelevels(1~3)foreachfactorareselectedforthe
orthogonalexperiment,theorthogonaltableL18(37)isadoptedaccordingtotheprinciple
oforthogonalexperiment.Then,the18testsaregeneratedandsimulatedinFlowDesigner
toobtainthethermalenvironmentdataandthePTSdata.Table5illustratestherange
analysisresultsfortheinfluenceofdifferentfactorsonthethermalcomfort(PTS).Bycom‐
paringtheRjvaluesofeachfactor,theinfluenceofthesixfactorsonPTSarerankedas
follows:D>A=E>F>C>B.Themostinfluentialfactoronthermalcomfortingymnasium
istheroofinsulationtype.Then,itisfollowedbythemainwindowposition,roofslope,
depthofoverhangingeave,northWWR,andsouthWWR.
Theroofinsulationtypebecomesthemostimportantfactorbecausetheclimatecon‐
ditionsofhightemperatureandhighradiationinGuangzhoumakethebuildingroofre‐
ceivemoreheatthanotherinterfaces.Therefore,differentroofinsulationtypeswouldob‐
viouslyanddirectlyaffecttheheatgainoftheroof,furtherinfluencingtheindoorairtem‐
peratureandmeanradianttemperaturewhichdirectlyaffecttheindoorthermalcomfort.
Inaddition,themainwindowpositionandroofsloperanksecond,probablybecausethey
couldinfluencethewindenvironmenttoacertainextent,whichfurtheraffecttheindoor
thermalcomfort.
Table5.Resultsandrangeanalysisoftheorthogonalexperiments.
TestNumberFactorResultofPTS
ABCDEF
11111111.110
21222220.924
31333330.984
42131221.119
52212330.892
62323110.965
73122130.913
83233211.065
93311321.299
101123321.182
111231131.022
121312210.961
132132310.907
142213121.03
152321231.053
163113231.087
173221311.227
183332120.912
Energies2021,14,322812of18
K
1
6.1836.3186.3796.8305.9526.235
K
2
5.9666.1606.2645.5096.2096.466
K
3
6.5036.1746.0096.3136.4915.951
k
1
1.0311.0531.0631.1380.9921.039
k
2
0.9941.0271.0440.9181.0351.078
k
3
1.0841.0291.0021.0521.0820.992
R0.0900.0260.0620.2200.0900.086
FactorrankingD>A=E>F>C>B
4.3.CorrelationsbetweenFactorsandIndicator
Thecorrelationsbetweentheindexofinterest(PTS)andthesixcorrespondingfactors
(A~F)arepresentedinFigure6.Itillustratestheinfluencerulesoffactorslevelsonthe
PTSintheprocessofoptimizationofarchitecturalform.TakingFactorAasanexample,
thePTSvalueinLevel1,2,and3is1.031,0.994,and1.084,respectively.Asthevaluein
Level2achievesthelowest,Level2istheoptimumforFactorA.Inthesameway,Factor
B,C,D,E,andFachievethelowestPTSvaluesinLevel3,Level3,Level2,Level1,and
Level3,respectively.Thus,combiningtheoptimallevelofeachfactors,theoptimumcom‐
binationofarchitecturalformisA
2
B
2
C
3
D
2
E
1
F
3
,whichrepresentsthewindowsareatthe
lowpositiononthesouthwallandatthehighpositiononthenorthwall;thesouthWWR
is20%,andnorthWWRis30%;theroofishorizontalanddoubleskin,andthedepthof
overhangingeaveis9m.
Figure6.CorrelationsbetweenthefactorsandthePTS.
BecauseoftheprevailingsoutheastwindinsummerinGuangzhou,thelowwindow
onthesouthwallintroducesthesoutherlywindtothegreatestextent.Meanwhile,thanks
tothethermalpressuredifferenceandthewindpressuredifferencebetweenthewind‐
wardsideandtheleewardside,theindoorhotairflowsoutthroughthehighwindowon
thenorthwall,formingagoodnaturallyventilatedenvironment.Furthermore,alarge
WWRalsoimprovesthenaturalventilation.Asfarasthegymnasiumroofisconcerned,
thedoubleskinroofwouldbenefitfromtheairgap,whichactsasaninsulationlayerto
allowtheairflowtoeffectivelytakeawaytheheattooutdoorenvironment,reducingheat
gainfromtheindoorenvironmentthroughtheprimaryroof.Inaddition,the9‐mover‐
hangingeavecanobtainabettershadingeffect,whichplaysanimportantroleinreducing
solarradiationandindoortemperature.
Energies2021,14,322813of18
4.4.VarianceAnalysis
Table6presentstheresultsofthevarianceanalysis.Thesumofthesquareddeviation
(SS),thedegreeoffreedom(df),thevarianceofthefactor(V)andFvalue(F)havebeen
calculatedaccordingtotheregulationofvarianceanalysisinorthogonalexperiment.By
comparingtheFvaluesofeachfactortothecriticalvalueF(0.05),Roofinsulationtypeisthe
mostsignificantfactorinfluencingthethermalcomfort.Thefactorsofmainwindowpo‐
sition,roofslope,depthofoverhangingeave,northWWR,andsouthWWRarelesssig‐
nificantthanthefactorofroofinsulationtype.
Table6.VarianceanalysisofthePTS.
FactorSSdfVFF(0.05)Significance
A0.02420.0120.7213.74*
B0.00320.0020.0903.74
C0.01220.0060.3613.74
D0.14820.0744.4463.74**
E0.02420.0120.7213.74*
F0.02220.0110.6613.74
Deviation0.231140.016
Note1:*representsthesignificanceofthedifferentfactor.Themorethe**areshown,thehigherthe
significanceofthecorrespondingfactoris.
5.DiscussionontheOptimizationEffects
5.1.OptimizedModelvs.InitialModel
Comparingwiththeinitialmodelofgymnasium,theoptimizedmodelofgymna‐
siumimprovesalot,aslistedinTable7.Thechangeofwindowposition,aswellasWWR,
improvesthenaturalventilationastheindooraverageairvelocityincreasesfrom0.21m/s
to0.77m/sonsummerdays.Asasignificantfactor,thedoubleskinroofinoptimalmodel
improvesthethermalperformances,theindooraverageoperativetemperaturedecreases
from29.3°Cto28.21°C,andthePTSdropsfrom1.11(slightlyhot)to0.86(comfortable).
Table7.Comparisonofarchitecturalformsandthermalperformancesbetweentheinitialmodelandtheoptimizedmodel.
ParametersInitialModelOptimizedModel
WindowpositionHightothesouthandnorthLowtothesouthandhightothenorth
WWRSouthandnorthfor10%Southfor20%andnorthfor30%
RoofinsulationtypeSingleskinreinforcedconcreteDoubleskinreinforcedconcrete
RoofslopeHorizontalroo
f
Horizontalroo
f
Depthofoverhangingeave(m)19
Indooravg.operativetemperature(°C)29.3028.21
Indooravg.humidityratio(g/kg’)20.1620.15
Indooravg.airvelocity(m/s)0.210.77
Indooravg.PTS1.110.86
Figure7showsthevariationofhourlyaveragePTSoftheinitialmodelandtheopti‐
mizedmodelinAugust.TheaveragePTSvaluesintheoptimizedmodelareslightlylower
thanthoseintheinitialmodelbefore11am.Then,thegapbetweenthemgrowstoaround
0.7untilmidnight.ThegapofPTSismainlyreflectedintheafternoonbecausethewall
andthegroundhadacertainheatstoragecapacity,whiletheheataccumulatesinthe
daytimestartstodissipateintheafternoonduetothetimegap.Therefore,theindoor
temperatureandradiationofthegymnasiumwithoutoptimizationincreasesrapidly,
whichresultsinanincreaseofthePTSvalue.Onthecontrary,theoptimizedgymnasium
formimprovestheindoorthermalenvironmentandwindenvironment,thusslowing
Energies2021,14,322814of18
downtheincreaseoftheindoortemperatureandradiation,increasingtheindoorairflow
rate,butreducingthePTSvalue.Thisphenomenonindicatesthattheoptimizedgymna‐
siumformcouldimprovetheindoorthermalcomforttosomeextent,andsuchoptimized
gymnasiumswouldbebeneficialtopeopleandthecities.
Figure7.VariationofhourlyaveragePTSbetweentheinitialmodelandtheoptimizedmodelin
August.
5.2.ComparingwithOtherStudies
Thisstudyprovesthattheroofinsulationtypeisthemostsignificantarchitectural
formaffectingindoorthermalcomfortofgymnasiumsathot‐humidclimates.Meanwhile,
thedoubleskinroof,benefitingfromtheeffectofthermalinsulationofairgap,obtainsa
betterthermalcomfortthanthesingleskinroofandinsulatedroof.Similarresultshave
beenfoundinotherrelevantstudies.Gaglianoetal.[41]foundthatthedoubleskinroof
couldconstituteaninterestingsysteminordertoreduceheattransferfromtheroofinto
thebuilding,allowingsignificantheatfluxreduction(upto50%)duringsummer.Omar
etal.[42]investigatedthebenefitsofusingdoubleskin‐ventilatedroofsforreducingcool‐
ingloadsanddiscoveredthatusingthedoubleskinroofcouldenhancealmost50%ofthe
energysavingrateratherthanusingthesingleskinroof.Moreover,theenergysaving
efficiencycouldbeevenbetter,upto85%,incasetheroofhasaninsulatedlayer.Zingre
etal.[39]foundthatperformanceofthedoubleskinroofwas28–34%betterthanthatof
theinsulatedroofinreducingheatgainintothebuildingduringdaytimeandallowed3–
5timesmoreheatlossfromthebuildingduringnight‐time.Theseresultsreflectthatthe
doubleskinroof,astheoptimumtypeofroofinsulation,playsanimportantroleinim‐
provingthethermalenvironmentandthermalcomfort.Meanwhile,theresultsalsoillus‐
tratethattheoptimizationofarchitecturalformshasagreatimpactontheindoorthermal
environmentandthermalcomfort.Inthepreviousresearch,Huangetal.[12]foundthat
thegymnasiumwithlargeopeningonthesideinterfaceandmulti‐storyroofachieved
lowerindoortemperatureandbetterventilationefficiency.Besides,Li[11]studiedthe
influenceoftheoverhangingeaveofgymnasiumonthermalcomfortinhot‐humidre‐
gionsandfoundthatadeepoverhangingeaveandsloperoofwereinstrumentalinin‐
creasingthedifferenceofwindpressurebetweenthewindwardsideandtheleewardside,
whichenhancedtheairvelocityby57%comparedtotheformofflatroofandwithout
overhangingeaves.TheresultoftheroofslopeinLi’sstudyisdifferentfromthatinthis
study,whichfoundthatthehorizontalroofwastheoptimumform,probablybecauseof
thedifferencesintheselectionoffactors,optimizationmethods,andmicro‐environment
conditions.However,theresearchideasandtheresultsofoverhangingeavesaresimilar
tothoseinthisstudy.Inaddition,althoughtheWWRforpublicbuildingsshouldnot
Energies2021,14,322815of18
exceed70%,asshownintheDesignStandardforEnergyEfficiencyofPublicBuildings
[32],thisstudyobtainsamoredetailedandtargetedoptimalWWRforgymnasiums(20%
forsouthWWRand30%fornorthWWR)throughinvestigationandoptimization.
5.3.PracticalImplication
Theanalysesinthisstudyindicatethattheroofinsulationisthemostinfluentialfac‐
toronthermalcomfortingymnasiumsathotandhumidclimate.Furthermore,theopti‐
mizedarchitecturalformofgymnasiumhasbeenachievedbytheorthogonalexperiment.
Thisstudyexpandstheapplicationoforthogonalexperimenttomulti‐factorresearchon
gymnasiumdesign.Byconductingalimitednumberofexperimentsintheorthogonal
array,fullinformationoffactorsiseffectivelyobtained.Thismethod,asminimizingthe
effortandtimeduringanalyzes,canbeanalternativeapproachforintegratedarchitec‐
turaldesign.Theresultsinthisstudycanprovideatechnicalreferenceforthegymnasium
design,aswellasaguidelinefortheresearchofsimilartypeofarchitecturelocatedin
regionswithotherclimates.
5.4.Limitations
Althoughthisstudyconductedanorthogonaldesigntoprovideanoptimizationanal‐
ysisoftheinfluencingfactorsofthegymnasiumthermalcomfort,therearesomelimitations.
First,thesmallnumberoffactorsandlevelsofgymnasiumformsinthestudymayaffect
thereliabilityandcomprehensivenessoftheresults.Second,thestudyconsidersonlythe
superpositionoffactors,whiletheinteractionsamongthefactorsarenotinvestigated.Fi‐
nally,theorthogonalexperimentinthisstudyshowsaprocessofaparametricsearchwith‐
outanyiteration.Therefore,weconductin‐depthandprecisestudiesonoptimizationof
gymnasiumformforthermalcomfort,focusingonvariousinfluentialfactorsandlevelsand
thediscussionontheinteractionsamongfactorsandtherigorousofexperiment,soasto
improvethefeasibilityoftheoptimizationdevelopedinthisstudy.
6.Conclusions
Thisstudyhasconductedanorthogonaldesigntoprovideanoptimizationanalysisof
theinfluencingfactors(gymnasiumarchitecturalform)ofthegymnasiumthermalcomfort
inGuangzhouathotandhumidclimate.Theorthogonalexperimentsareappliedassisted
byfieldinvestigationandsimulationswiththeFlowDesigner.Theresultsareanalyzedus‐
ingrangeanalysisandvarianceanalysis,andthemainconclusionsaresummarized.
(1) Sevenhundredandtwenty‐nineexperimentshavebeendramaticallydecreasedto
18testsbythemethodoforthogonalexperiment.
(2) Therangeanalysisandvarianceanalysisdemonstratethattheinfluenceofthesix
factorsonPTS(PredictedThermalSensation)arerankedas:Roofinsulationtype>
Mainwindowposition=Roofslope>Depthofoverhangingeave>Northwindow‐
to‐wallratio>Southwindow‐to‐wallratio.
(3) Intermsofthermalcomfortofgymnasiums,theoptimizedarchitecturalformturns
outtobethecombinationofthewindowsatthelowpositionandhighpositionon
thesouthandnorthwall,respectively;thesouthandnorthwindow‐to‐wallratioof
20%and30%,respectively;ahorizontalroofwithdoubleskinandtheoverhanging
eavewiththedepthof9m.
(4) ThePTS(PredictedThermalSensation)valuedecreasesfrom1.11(slightlyhot)to0.86
(comfortable)viaoptimizationonthegymnasiumforms,andthegapofPTSvaluebe‐
tweeninitialmodelandoptimizedmodelismainlyreflectedintheafternoon.
(5) Thefindingsbenefitdesignersandresearcherstodeterminethekeyparametersin
thegymnasiumarchitecturaldesignandtooptimizethethermalcomfort,aswellas
energyefficiency.
Energies2021,14,322816of18
AuthorContributions:Conceptualization,X.H.,Q.Z.,andI.T.;Methodology,X.H.andQ.Z.;Inves‐
tigation,X.H.;Resources,Q.Z.andI.T.;Software,X.H.andI.T.;Writing‐originaldraft,X.H.;Writ‐
ing‐reviewandediting,Q.Z.andI.T.Allauthorshavereadandagreedtothepublishedversionof
themanuscript.
Funding:ThisresearchwasfundedbytheYouthFoundationofGuangdongUniversityofTechnol‐
ogy,China(GrantNo.17ZK0008).ThisresearchwasalsosupportedbytheresearchfundofYoko‐
hamaNationalUniversityin2020.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailableonrequestfromthe
correspondingauthor.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
Nomenclature
SymbolTitleUnitofMeasure
AAcoefficientasafunctionoftheairvelocity/
dfDegreeoffreedom/
FStatisticfortest/
Fp‐NAnglefactorbetweenaperson(p)andsurface(N)/
fsSaturatedwatervaporpressurePa
IclStaticclothinginsulationclo
kNumberoffactorsinorthogonalexperiment/
KjiSumoftheexperimentalresults/
kjiAveragevalueofKji/
LSymboloftheorthogonaltable/
MMetabolicrateW/m2
mNumberoflevelsinorthogonalexperiment/
nNumberoftrialsinorthogonalexperiment/
pAtmosphericpressurePa
PTSPredictedThermalSensation/
RjRangeofvaluesbetweenthemaximumandminimumvaluesofkji/
RHRelativehumidity%
SSSum