ArticlePDF Available

Optimization of Architectural Form for Thermal Comfort in Naturally Ventilated Gymnasium at Hot and Humid Climate by Orthogonal Experiment

Authors:

Abstract and Figures

As the gymnasiums in subtropical region with hot and humid climate are naturally ventilated during non-competition periods, occupants exercising indoors often feel uncomfortable, especially in summer. In order to provide thermally comfortable and healthy environment for the occupants, the design on architectural form is found to be an effective solution on improving indoor thermal comfort of naturally ventilated gymnasiums. Therefore, a new perspective regarding optimization of naturally ventilated gymnasiums is proposed in the aspect of the architectural form. This paper presents the optimization of architectural form in naturally ventilated gymnasiums in which simulation and orthogonal experiment methods are combined. Through numerical simulation with FlowDesigner software, the significance of architectural form affecting indoor thermal comfort has been given, and the optimal architectural forms of naturally ventilated gymnasium are determined. The results show that the roof insulation type is the most significant factor influencing indoor thermal comfort; thus, it should be considered primarily in optimization. Moreover, the range analysis and variance analysis reveal the rankings of the factors for the gymnasium thermal comfort. In addition, it is demonstrated that the optimal gymnasium model, when compared with the initial gymnasium model, has a satisfactory effect on improving the indoor thermal comfort, as the average value of Predicted Thermal Sensation (PTS) in August decreased from 1.11 (Slightly hot) to 0.86 (Comfortable). This study provides a new insight for the designers in optimizing the architectural form of gymnasiums for achieving the indoor thermal comfort at hot and humid climate.
Content may be subject to copyright.
Energies2021,14,3228.https://doi.org/10.3390/en14113228www.mdpi.com/journal/energies
Article
OptimizationofArchitecturalFormforThermalComfort
inNaturallyVentilatedGymnasiumatHotandHumid
ClimatebyOrthogonalExperiment
XiaodanHuang
1,2,
*,QingyuanZhang
2
andInekoTanaka
2
1
SchoolofArtandDesign,GuangdongUniversityofTechnology,Guangzhou510090,China
2
InstituteofUrbanInnovation,YokohamaNationalUniversity,Kanagawa2408501,Japan;
choseigenjc@ynu.ac.jp(Q.Z.);itanaka@ynu.ac.jp(I.T.)
*Correspondence:dandyhuang@163.com
Abstract:Asthegymnasiumsinsubtropicalregionwithhotandhumidclimatearenaturallyven
tilatedduringnoncompetitionperiods,occupantsexercisingindoorsoftenfeeluncomfortable,es
peciallyinsummer.Inordertoprovidethermallycomfortableandhealthyenvironmentforthe
occupants,thedesignonarchitecturalformisfoundtobeaneffectivesolutiononimprovingindoor
thermalcomfortofnaturallyventilatedgymnasiums.Therefore,anewperspectiveregardingopti
mizationofnaturallyventilatedgymnasiumsisproposedintheaspectofthearchitecturalform.
Thispaperpresentstheoptimizationofarchitecturalforminnaturallyventilatedgymnasiumsin
whichsimulationandorthogonalexperimentmethodsarecombined.Throughnumericalsimula
tionwithFlowDesignersoftware,thesignificanceofarchitecturalformaffectingindoorthermal
comforthasbeengiven,andtheoptimalarchitecturalformsofnaturallyventilatedgymnasiumarede
termined.Theresultsshowthattheroofinsulationtypeisthemostsignificantfactorinfluencingindoor
thermalcomfort;thus,itshouldbeconsideredprimarilyinoptimization.Moreover,therangeanalysis
andvarianceanalysisrevealtherankingsofthefactorsforthegymnasiumthermalcomfort.Inaddition,
itisdemonstratedthattheoptimalgymnasiummodel,whencomparedwiththeinitialgymnasium
model,hasasatisfactoryeffectonimprovingtheindoorthermalcomfort,astheaveragevalueofPre
dictedThermalSensation(PTS)inAugustdecreasedfrom1.11(Slightlyhot)to0.86(Comfortable).This
studyprovidesanewinsightforthedesignersinoptimizingthearchitecturalformofgymnasiumsfor
achievingtheindoorthermalcomfortathotandhumidclimate.
Keywords:thermalcomfort;architecturalform;gymnasium;hotandhumidclimate;
orthogonalexperiment
1.Introduction
Asapublicspaceforsports,exercises,andentertainments,gymnasiumsplayanim
portantroleinpeople’sdailylife.Inthesubtropicalareas,thethermalcomfortofoccupants
exercisingingymnasiumsisrelatedtotheutilizationrateofgymnasiums,energyconsump
tion,andhumanhealth.Inhotandhumidclimate,occupantspreferpursuingthermalcomfort
byairconditionerswhendoingsports.However,althoughtheairconditionersprovideacom
fortableenvironmentforoccupantsdirectly,thiswouldincreaseenergyconsumptionandcar
bondioxideemissions.Moreover,humanadaptiveabilitytothenaturalenvironmentwould
beweakened,aswellastheirhealth,whileexercisinginsuchplacesforalongtime[1].There
fore,thestudyonthethermalcomfortinnaturallyventilatedgymnasiumathotandhumid
climatehasbeensignificantlyregardedtoday[2].
Peoplecouldachievethermalcomfortmainlyfromtwoaspectsbytwomethods:One
isindividualadjustment,suchastheactivitylevel,clothing,andpsychologicalexpecta
Citation:Huang,X.;Zhang,Q.;
Tanaka,I.Optimization
ofArchitecturalFormforThermal
ComfortinNaturallyVentilated
GymnasiumatHotandHumid
ClimatebyOrthogonalExperiment.
Energies2021,14,3228.
https://doi.org/10.3390/en14113228
AcademicEditors:PatrickPhelan
andBorisIgorPalella
Received:1April2021
Accepted:29May2021
Published:31May2021
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(http://creativecommons.org/
licenses/by/4.0/).
Energies2021,14,32282of18
tion[3–6];theotheristhermalenvironmentregulating,suchastheindoorairtemperature,
relativehumidity,meanradianttemperature,andairvelocity[3,4].Althoughoccupants
couldadjustthemselvesonachievingthermalcomfort,theregulatingonthermalenviron
mentcouldbemoreeffectiveandcomprehensive[7,8].Furthermore,intheaspectofar
chitecturaldesign,improvingthethermalenvironmentbyadjustingthearchitectural
formsisoneofthemosteffectivemethodstoachievethermalcomfort.
Intheresearchofthecorrelationbetweenthearchitecturalformandthethermalcom
fort,Wei[9]focusedonthemainenergysavingmeasuresofgymnasiumbuildingsand
analyzedthesignificantsequenceoftheimpactofpassiveenergysavingtechnologieson
theenergyconsumptionandthecoolingload.AccordingtoWei,theexternalshadingand
naturallightingwerethemostsignificantfactors;however,theirordersweredifferent
duetotheirrespectiveinfluencecharacteristics.Yangetal.[10]investigatedtheadaptive
thermalcomfortandclimateresponsivestrategiesindryhotanddrycoldareasinChina
andfoundthatthearchitecturewithasemibasementcouldsatisfythethermalcomfort
efficiently,followedbynightventilationinsummer.Li[11]simulatedthewindpressure
inagymnasiuminhotandhumidareainChinatoanalyzetheinfluencesofinterfaceform
onnaturalventilationandfoundthattheformofasymmetricinterfacecouldimprovethe
ventilationcapacity.Huangetal.[12]analyzedthetopandsideinterfaceformsofgym
nasiumsinGuangzhou,Chinaandfoundthatthedoubleskinroofandopenableside
interfacecouldenhancethehumanthermalcomfort.Althoughthestudiescorrelatedbe
tweenthearchitecturalformandthethermalcomfortcanbefound,mostofthemarefo
cusedondwelling,school,andofficebuildings[13–18].Thesestudiesrarelyfocusedon
thegymnasiumbuilding,whichplayedadistinctiveroleonthermalcomfortforthefea
turesoflargespace,specificfunction,andcertaingroupofpeople.Inaddition,fewre
searchstudiesmultifactorbyorthogonalexperimentmethod[19–21].Mostofthem,how
ever,focusonsingleinfluentialfactorofbuildingform,rarelyconductcomprehensive
andintegratedanalysisonmultifactor,whichhasamorepracticalandmeaningfulfor
theresearchofthermalcomfort.
Thisstudyaimstoimprovetheindoorthermalcomfortofnaturallyventilatedgym
nasiumsathotandhumidclimatethroughcomprehensivearchitecturalformoptimiza
tion.Basingonthefieldinvestigationin15gymnasiumsinGuangzhouChina,whichisa
typicalcityinsubtropicalregionwithhotandhumidclimate[22],aninitialmodelofgym
nasiumwasestablishedtoanalyzetheindoorthermalcomfortandexploretheoptimizing
orientation.Anorthogonalexperimentwithvarietyoffactorsandlevelschosenbyana
lyzingthefieldinvestigationwasthenconductedandsimulatedwiththeFlowDesigner
software.Basedonthesimulationresults,thesignificantfactorsofarchitecturalformon
thermalcomfortwereidentified.Furthermore,theoptimalcombinationofarchitectural
formsofgymnasiumwassuggestedtoprovidereferenceforthegymnasiumsdesignat
hotandhumidclimate.
2.MaterialsandMethods
Inordertoanalyzethethermalcomfortwithmultiplefactorsandtheoptimization
ofarchitecturalformingymnasiums,ahybridmethodthatcombinestheorthogonalex
perimentandcomputersimulationisconductedinthisstudy,showninFigure1.
Energies2021,14,32283of18
Figure1.Flowchartofthehybridmethodforsimulationandoptimization.
2.1.SimulationToolandItsValidation
Thefirststepaimstoconsiderasuitabletoolforthermalenvironmentsimulation.In
ordertoachieveaccuratecalculation,simulationtoolshavebeendevelopedbyresearch
ersandengineers,suchasEcotect,TRNSYS,PHOENICS,Fluent,andFlowDesigner.Con
sideringthattheairtemperature,relativehumidity,airvelocity,andthethermalcomfort
inthedynamicthermalenvironmentarethemainfactorsinvolvedinthisstudy,
FlowDesigner,atypeofcomputationalfluiddynamics(CFD)simulationsoftwarewas
usedinthisstudyforthethermalandfluidsimulationsofgymnasiums.Thissoftwarecan
enablewindandthermalanalysisbyeasilyimporting3Dmodelsofbuildingsorurban
blocksdevelopedbymodelingtools,whichcouldprovideearlyanalysisandreducethe
designtime.Therefore,itisfriendlytousedandverifiedinmanystudies[23–25].
InordertoverifytheaccuracyoftheresultsfromtheFlowDesigner,thethermalen
vironmentbetweensimulationandthatfromfieldmeasurementsarecompared.Thefield
measurementwasconductedinagymnasiumlocatedatthedowntownareaofGuang
zhou,China,between28Julyand10August2016.Thegymnasiumwascompletedin1996
withthestructureofsteel.Itisopenonthesouth,east,andnorthsides,withasizeof57.6
m×31.2m×10.8minlength,width,andheight.Thereare3basketballcourtsinthe
gymnasiumsandaremainlyusedforathletes’dailytrainingandexercises.Thegymna
siumisindoorgymnasiumsandnaturalventilatedduringthemeasurement.Thevalues
oftheindoorairtemperature,indoorrelativehumidityandindoorairvelocityweremeas
uredinthecompetitionfieldofgymnasiumat30mininterval,from9:00to18:00.The
physicalmeasuringinstrumentswerearrangedinfivepoints,asshowninFigure2,
aroundthecompetitionfieldataheightof1.1minlinewiththerelevantstandards[26].
Inturnsofsimulation,thegymnasiumwassimulatedusingtheFlowDesignerwiththe
weatherdataforthesimulationisobtainedfromTheUnitedStatesNationalClimaticData
Center[27],whichprovidesglobalhistoricalweatherandclimatedatafromobservations.
Preliminary analysis
Determining optimization target and method
Suggesting the initial model
Simulations and orthogonal experiment
Selecting orthogonal table, factors and levels
Establishing numerical simulation models on FlowDesigner
Conducting orthogonal experiments (numerical simulations)
Optimization analysis
Range analysis
Variance analysis
Proposing optimal architectural form of gymnasium
Energies2021,14,32284of18
Figure2.Theinteriorviewandplanofthemeasuredgymnasiums(Points1to5representthe
locationsofthemeasuringinstruments).
Figure3showsthevariationsofindoorairtemperature,relativehumidity,andair
velocitybetweenmeasurementandsimulation,eachvaluerepresentsasinglepointat
each30min.Thevariationtendenciesofairtemperatureinmeasurementandsimulation,
asshowninFigure3a,areconsistentwitheachother,aswellasthetendencyofrelative
humidity,asshowninFigure3b.Thebiggestdifferencebetweenmeasureddataandsim
ulateddataofairtemperatureis2.92°Cappearingat14:30on10August,andtheleast
differenceis0.01°Cat10:30on4August.Asfarasrelativehumidity,thebiggestdiffer
enceis24.78%at14:30on28Julyandtheleastdifferenceis0.02%at16:30on29July.While
thevariationofairvelocitybetweenmeasurementandsimulationarelessconsistent,as
showninFigure3c,theaveragevaluesofmeasurementandsimulationare0.31m/sand
0.43m/s,respectively,whichshowslittledifference.
(a)Variationofindoorairtemperature
(b)Variationofindoorrelativehumidity
25
27
29
31
33
35
37
39
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
28th July 29th July 2nd August 4th August 8th August 10th August
Air temperature (
o
C)
Measured data Simulated data
30
40
50
60
70
80
90
100
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
28th July 29th July 2nd August 4th August 8th August 10th August
Relative humidity (%)
Measured data Simulated data
Energies2021,14,32285of18
(c)Variationofindoorairvelocity
Figure3.Comparisonofthethermalenvironmentvariationsbetweenmeasurementandsimulation.
Thereasonforthediscrepancybetweenthesimulateddataandthemeasureddatais
thatthebuildingenvironmentisidealinsimulation,whilethebuildingenvironmentis
complexandchangeableinpractice.Forexample,theperformanceofthematerialiscon
stantinthesimulatedenvironmentbutischangeableintheactualenvironmentwiththe
changeofthethermalenvironment;theparametersofinsolationaresimpleinthesimu
lation,buttheconditionsofinsolationintheactualenvironmentarecomplex,which,toa
certainextent,affectstheairtemperatureandradiation.Ontheotherhand,thesimulation
accuracyislimited;forinstance,theaccuracyofthegridsettinginthesimulationsoftwareis
limited,andtheparameterconditionsofthespecialmodelarelimited,whichleadstothedif
ferencebetweenthesimulationdataandthemeasureddata.Althoughtherearesomeerrors
betweenthem,thetrendsandaveragevaluesshowninFigure3arestillrelativelyconsistent.
Therefore,webelievethattheFlowDesignersoftwarecanbeusedinthisstudy.
2.2.SelectionofThermalComfortModel
Sincethethermalcomfortisthemainissuediscussedinthisstudy,athermalcomfort
modelwouldbeselected.Thethermalcomfortmodels,suchasPMVandSET,arewidely
usedaroundtheworld;however,noneofthemispropertoevaluatethethermalcomfort
formovingsubjects,suchasathletes[3,4,28].Forexample,PMVislimitedtothesteady
stateenvironment,andSETcouldbeappliedinthenaturallyventilatedenvironment;
however,itcouldonlybeusedforthepeopleinlowmetabolicrate.Becausetheresearch
objectinthisstudyisthethermalcomfortinthestateofexerciseinnaturallyventilated
gymnasiums,athermalcomfortmodelthatisapplicablefortheoccupantsinhighmeta
bolicratesingymnasiumsisrequired.Throughthefieldsurveyonthethermalsensation
ofexercisingoccupantsingymnasiumsinhothumidareaofChina,amodelcalledthe
PredictedThermalSensation(PTS)wasproposedinapreviousstudy[29].Thismodelis
availableforaccuratelyestimatingthethermalsensationofoccupantswithexercisesin
gymnasiumsathotandhumidclimateinChina.ThePTSmodelisformulatedinEquation
(1),andthescaleisshowninTable1.
PTS=5.127+0.201Top+0.001Wa−0.045v+0.002M−1.184Icl(R2=0.814),(1)
wherePTSisthePredictedThermalSensation,whosevaluesrangesfrom−3to3asthe
TSVdoes;Topistheoperativetemperaturein°Crangesfrom10°Cto40°C;Waisthe
humidityratioing/kg’variesfrom8g/kg’to25g/kg’;vistheairvelocityinm/s;Misthe
metabolicrateinW/m2,whosevaluesrangesfrom250W/m2to350W/m2;Iclistheclothing
insulationinclovariesfrom0.22cloto0.29clo.
0.0
0.5
1.0
1.5
2.0
2.5
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
9:00
11:00
13:00
15:00
17:00
28th July 29th July 2nd August 4th August 8th August 10th August
Air velocity (m/s)
Measured data Simulated data
Energies2021,14,32286of18
Table1.ScaleofPTSmodel.
3−2−10+1+2+3
ExtremelycoldColdSlightlycoldComfortableSlightlyhotHotExtremelyhot
2.3.PrincipleofOrthogonalExperiment
Orthogonalexperimentisasystematicandstatisticalmethodforachievingtheopti
mizationofmultiplefactorswithdifferentlevelsofvalues[20].Thesestandardarrays
providethewayofconductingtheminimalnumberofexperimentswhichcouldgivethe
fullinformationofallthefactorsthataffecttheperformanceparameter.Theorthogonal
tableisthefoundationoftheorthogonalexperiment,asshowninEquation(2).
Ln(mk),(2)
whereListhesymboloftheorthogonaltable;nisthenumberoftrialsarrangedinthe
orthogonalexperiment;misthenumberoflevels;kisthenumberoffactors.
2.3.1.RangeAnalysis
Astheappropriateanalysismethodsfortheorthogonalexperiment,twomethodsare
introduced,rangeanalysisandvarianceanalysis[21].Rangeanalysisaimstodetectthe
levelsofdifferentinfluentialfactorsonindices,asshowninEquation(3).Inthisanalysis,
thelargervalueofRj,thegreaterimportanceofthefactor.
Rj=max(kji)−min(kji),(3)
whereRjistherangeofvaluesbetweenthemaximumandminimumvaluesofKji.Kjiis
theaveragevalueofthesumoftheexperimentalresultsatalllevels(i,i=1,2,3)ofeach
factor(j,j=A,B,C,D,E,F).
2.3.2.VarianceAnalysis
Forfurtheranalysis,thevarianceanalysiscanbeusedtodeterminetheinfluences
fromexperimentalconditions,errorsandthesignificantoffactors.Inthevarianceanaly
sis,thesumofthesquareddeviation(SS),thedegreeoffreedom(df),andthevarianceof
thefactororerror(V)areexpressedasEquations(4)and(5).TheFvalueiscomparedto
acriticalvalueofasignificantlevel,whichisnormallysetat0.05.Theimpactofthese
lectedfactoronthetestresultsisconsideredtobesignificantifitisgreaterthanthecritical
value,andviceversa.
SS
 W
w,(4)
V=SS/df,(5)
whereSSisthesumofthesquareddeviation;Wkistheresultsofeachtrial(k,k=1,2,3,
……,n);wisthearithmeticaverageofWk;dfisthedegreeoffreedom;Visthevariance
ofthefactor.
2.4.StatisticalAnalysis
Inthisstudy,theresearchprocessbeginswiththeorthogonalexperimentaldesign,
thenconductsthesimulationofthetrialsinorthogonalexperiments,and,finally,analyzes
theoptimizationresultintheaspectofthermalcomfort.Asthesimulationin
FlowDesigneronlyoutputsthevaluesofairtemperature(Ta),surfacetemperature(Tk),
relativehumidity(RH),andairvelocity(v),afurthercalculationshouldbeconductedto
obtainthePTSvalue.
ThePTSequation,asshowninEquation(1),containsfiveparameters:operativetem
perature(Top),humidityratio(x),airvelocity(v),metabolicrate(M),andclothinginsula
tion(Icl).Theoperativetemperature(Top)canbecalculatedwithEquation(6)[3],andthe
meanradianttemperature(Tr)iscalculatedwithEquation(7)[4,30].Thehumidityratio
Energies2021,14,32287of18
(Wa)iscalculatedbytherelativehumidity(RH),asshowninEquation(8).Themetabolic
rateiscalculatedbasinguponthemeasurementofheartrateproposedintheISO8996[31].
Sincetheexercisingstateingymnasiumisthepremiseofthestudy,theaveragevalueof
300W/m2collectedfromthepreviousfieldsurveyisappliedinthispaper.Theclothing
insulation,calculatedfromASHRAEStandard552017[3],is0.22clofortheoccupants
exercisingingymnasiumathotandhumidclimate.
Top=ATa+(1−A)Tr,(6)
T
 T
F ,(7)
𝑊
0.622  
,(8)
whereTopistheoperativetemperaturein°C;Aisacoefficientasafunctionoftheaverage
airvelocity[3];Taistheairtemperaturein°C;Tristhemeanradianttemperaturein°C;
TNisthesurfacetemperatureofsurface(N)in°C;FpNistheanglefactorbetweenaperson
(p)andsurface(N);Waisthehumidityratioing/kg’;RHistherelativehumidityin%;pas
isthesaturatedwatervaporpressureinPa;pistheatmosphericpressureinPa.
3.TheInitialModelofGymnasiuminHotandHumidArea
3.1.TheSituationofGymnasiumsinGuangzhouCity
Thebasicforoptimizingthearchitecturalformofgymnasiumisfirsttorealizethe
situationofgymnasiumsexhaustively.Toobtainthearchitecturalparametersofgymna
siums,investigationwascarriedoutaround15naturallyventilatedgymnasiumsin
Guangzhou.Theinvestigationincludesthebuildingsize,audiencecapacity,auditorium
layout,buildingmaterial,andthecharacteristicsofthearchitecturalforms.Table2gives
thebuildinginformationofinvestigatedgymnasiums,presentingthatthegymnasium
sizesaremediuminmajorwitharound3000~6000seatsandtwosidedauditorium.Most
ofthegymnasiumsarebuiltbythematerialofreinforcedconcrete.Intermsofthewindow
position,mostofthewindowsininvestigatedgymnasiumsareattheheightofthewalls.
Asthewindowtowallratio(WWR)stipulatinglessthan0.7inpublicbuildingsaccording
totherelevantregulationsofChina[32],theWWRinmostinvestigatedgymnasiums
achievethisstandard,and10ofthemevenlessthan0.3.Intheaspectofroofslope,8
gymnasiumsarehorizontalroofs,and7aresloperoofs.Sincetheshadingisimportantin
southernChina,overhangingeavesarebuiltinmostofthegymnasiumswithdifferent
depths.
Table2.InformationofnaturallyventilatedgymnasiumsinGuangzhouCity.
ParameterSituationPercentage
SizeMedium8/15
Small7/15
Audiencecapacity(seat)3000~60008/15
30007/15
Auditoriumlayout(side)
29/15
>26/15
BuildingmaterialReinforcedconcrete14/15
steel1/15
Buildingheight(meter)
1510/15
>155/15
Mainwindowposition
Heightofthewalls8/15
Bottomofthewalls2/15
Bothheightandbottomofthewalls2/15
Ontheroo
f
3/15
Energies2021,14,32288of18
windowtowallratio(WWR)
0.310/15
0.3~0.75/15
Roofslope
Horizontalroof8/15
Singleslope3/15
Multislope4/15
OverhangingeaveWithoutoverhangingeave2/15
Withoverhangingeave13/15
3.2.PlanLayoutoftheInitialModelofGymnasium
AbstractingthemainparametersfromtheinvestigatedgymnasiumsinGuangzhou,
aninitialmodelofgymnasiumisbuiltupasabasisforsimulationandoptimizationin
thenextstep,theplanlayoutandperspectiveoftheinitialgymnasiummodelareshown
inFigure4.Thegymnasiummodelissettledinmediumsizewithatotalareaof3150m
2
.
Therearetwosidesauditoriuminit,with3688seats.Thebuildingmaterialisreinforced
concrete,andtheexternalwallsare0.3minthickness.Windowsarebuiltonthehigh
positionofthesouthwallandnorthwall.AlthoughtheWWRoftheinvestigatedgymna
siumsarearound0.3,theopenableandtransparentwindowsarefew.Thus,theWWRof
initialmodelissetin0.1asthewindowsareallopenableandtransparent.Inaddition,the
roofofinitialmodelishorizontal,whilethedepthofoverhangingeaveis1m.
Figure4.Planlayoutandperspectiveoftheinitialgymnasiummodel.
3.3.SimulationoftheInitialModelofGymnasium
TheFlowDesignerisusedtosimulatethethermalparametersoftheinitialmodel
overaperiodofonemonth(August)onanhourlybasis.Theweatherdataforsimulation
isobtainedfromtheEnergyPlus[33].Asthegymnasiumisaplaceforsport,thesimula
tionzoneofinitialmodelisthecompetitionfield,asshownintheredarea(48.6m×32.4
m×1.1m)ofFigure3.Thenaturalventilationmodeisadoptedinthissimulation,with
theinfluenceofsolarradiationconsideredinthesimulation.Inthecalculationprocess,
theHypothesisofBoussinesqisused,whichmeansthechangeoffluiddensityonlywould
affectthebuoyancy.Moreover,thedetaileddesignparameterinformationaboutthe
buildingenvelopeisdescribedinTable3.Thesimulatedresultsofoperativetemperature,
relativehumidity,airvelocity,andthePTSvaluesoverAugustonanhourlybasisare
Energies2021,14,32289of18
showninFigure5.Thesettingsininitialmodelsimulationareusedforfurthersimulations
ofoptimization.
Table3.Designparameterinformationofthebuildingenvelope.
ComponentMaterialsUValue(W/(m
2
·K))
Exteriorwall13mmdecorativebrick+20mmlimemortar+10mmExpandedPolystyrene(EPS)
insulation+240mmaeratedconcrete+20mmlimemortar0.5
Roof
40mmC20fineaggregateconcrete+20mmcementmortar+5mmwaterproof
membrane+30mmcementmortar+60mmExtrudedPolystyrene(XPS)insulation
+20mmcementmortar+120mmreinforcedconcrete+20mmcementmortar
0.35
WindowAluminiumframe+6mmclearsingleglazing6.073
Floor20mmcementmortar+100mmreinforcedconcrete+20mmcementmortar2.813
Foundation20mmcementmortar+80mmfineaggregateconcrete+500mmrammedclay0.887
Figure5presentsthattheindooroperativetemperatureofinitialmodelrangesfrom
27.02°Cto32.27°CinAugust,withanaveragevalueof29.29°Candtherelativehumidity
changesfrom73.64%to89.87%,withanaveragevalueof82.41%,whichisconsistentwith
thefeaturesofthehothumidclimate.Inaddition,theaverageairvelocityis0.21m/s,
meetingtherequirementofwindspeedforsports[34].IntheaspectofPTSvalue,the
averagePTSis1.11,whichrepresents“slightlyhot”inthermalsensation.Furthermore,
themaximumvaluereaches1.71,whichiscloseto“hot”inthermalsensation,indicating
thattheindoorthermalcomfortofinitialmodelisnoteffective,andthemeasuresshould
betakentoimprovethethermalcomfortinsummerdays.

(a)(b)(c)(d)
Figure5.Simulatedresultsofinitialmodelofgymnasium.(a)TherangeofoperativetemperatureofinitialmodelinAu
gust;(b)TherangeofrelativehumidityofinitialmodelinAugust;(c)TherangeofairvelocityofinitialmodelinAugust;
(d)TherangeofPredictedThermalSensationofinitialmodelinAugust.
4.SimulationResultsandOptimizationAnalysis
Inordertoproposeanoptimalstrategyofarchitecturalformforindoorthermalcom
fortofgymnasiums,thefactorsandcorrespondinglevelsofarchitecturalformthataffect
ingthermalcomfortofgymnasiumareselectedbasedontheinitialmodelinthissection.
Later,thesimulationsareconductedinFlowDesignerfollowedbythetrialsgenerated
fromtheorthogonalexperimentaldesign.Afterobtainingthethermalenvironmentdata
fromsimulations,thePTSvaluescanbecalculated.Throughtherangeanalysisandvari
anceanalysisofPTSvalues,theoptimizedarchitecturalformofgymnasiumissuggested.

Energies2021,14,322810of18
4.1.SimulationFactorsandLevelsofOrthogonalExperiment
Therearemanyfactorsofarchitecturalformthatinfluenceindoorthermalcomfort
ofgymnasium.Accordingtotheinitialmodelandthepreviousresearch,sixparameters
ofarchitecturalformareaddressedinthisstudy,namelythemainwindowposition(A),
southWWR(B),northWWR(C),roofinsulationtype(D),roofslope(E),anddepthofover
hangingeave(F).Thesesixparametersaretakenasthefactorsoforthogonalexperiment,and
threelevelsarechosenforeachfactor.TheorthogonalexperimentisshowninTable4.
Table4.Factorsandcorrespondinglevelsoforthogonalexperiment.
FactorLevel1Level2Level3
(A)MainwindowpositionHighatthesouthand
northwall
Lowatthesouthwallandhighatthe
northwall
Highatthesouthwallandlowat
thenorthwall
(B)SouthWWR10%20%30%
(C)NorthWWR10%20%30%
(D)RoofinsulationtypeSingleskinroofDoubleskinroofInsulatedroof
(E)RoofslopeHorizontalroofRisefromsouthtonorthRisefromnorthtosouth
(F)Depthofoverhangingeave1m5m9m
FactorA:Thewindowpositionaffectsthenaturalventilationandthermalcomfort,
aswellasevenenergyconsumption.Inpreviousresearch,Prakash[35]identifieda
newsetofstrategiestolocatethewindowopeningswhichcouldreducethePMVby
0.12%.Kimetal.[36]demonstratedthatthebuildingsachievethelowestenergycon
sumptionwhenthewindowswerelocatedinthemiddleheightinallorientations.
AsthewinddirectioninGuangzhouismainlyfromsoutheasttonorthwest,thewin
dowpositiononsouthandnorthismorevaluabletostudythanthatoneastand
west.ThethreelevelsinfactorAinthisstudyaredifferentpositionsofmainwin
dowsthatwereselectedfromtheresultofinvestigationandtherelevantresearch.
FactorBandC:Asasignificantfactoraffectingonindoorthermalenvironment,the
WWRplaysanimportantroleinarchitecturaldesign.Thereareextensiveresearch
andeffortsfocusedontheWWRuptonow.Kahsayetal.[37]triedtoanalyzethe
optimizationofwindowconfigurationforahighrisebuildingtominimizeitsenergy
consumption,andheobtainedtheoptimumWWRof30%,48%,and30%foraroom
locatedonthe2nd,15th,and29thfloor,respectively.Wenetal.[38]tooktheindoor
airtemperatureastheparametertoevaluatetheoptimalWWRandproposedaWWR
mapsforthearchitecturaldesignintheearlystages.Accordingtotherelevantre
searchandregulationsofChina,aswellastheinvestigationinGuangzhou,theWWR
inthestudyarechoseninthreelevels,10%,20%,and30%.
FactorD:Theheatgainfromthesolarradiationisakeyprobleminthebuildingsin
southofChina.Sincetheroofsurfacesarethemainpositionsabsorbingradiantheat,
theinsulationmeasuresofroofsarecritical.Zingreetal.[39]comparedthethermal
performancesbetweenthedoubleskinroofandtheinsulatedroofinSingapore,
foundthatthedoubleroofperformsbetterinreducingheatgainintothebuilding
duringdaytimes.Yangetal.[15]analyzedthecorrelationsbetweenindoorthermal
comfortandDoubleSkinFaçadesindifferentclimaticconditionsandfoundthatthe
solarheatgaincoefficientoftheexternalwindowoftheDoubleSkinFaçadespos
sessedthehighestimportanceaffectingindoorthermalcomfort.Inthisstudy,three
typesofroofareselectedtodiscusstheoptimumforthegymnasiumsinhotand
humidclimate.Thesingleskinroofistheordinaryreinforcedconcreteroofwithout
anypassivecooling;thedoubleskinroofiswithanaircavityof500mmthickness
inside;theinsulatedroofcomposesofreinforcedconcreteandaninsulationboardof
20mmthickness.
FactorE:Roofslopecanregulatethenaturalventilationandcoolingeffect.Maoand
Yang[40]investigatedtheheattransferperformanceofdoubleslopehollowglazed
Energies2021,14,322811of18
roofwithdifferentslopeanglesinhotsummerandcoldwinterregions,andthere
sultsindicatethattheinnersurfacetemperatureoftheroofreducedobviouslywith
theroofslopedecreases.SincethewinddirectioninGuangzhouissoutheastto
northwest,thethreelevelsofroofslopeinthisstudyaremainlyconsiderthesouth
northdirection.
FactorF:Theoverhangingeaveinfluencesnaturalventilationandshading,aswell
asheatinsulation.Li[11]simulatedthesymmetricalandasymmetricalmodelsofa
gymnasiuminGuangzhouandrecommendedadjustingthewidthandangleofthe
overhangingeavesofthegymnasiumstoimprovethethermalperformance.Dueto
mostoftheinvestigatedgymnasiumsinGuangzhouownoverhangingeavesonthe
roofs,thethreelevelsoffactorFaredifferentinthedepthofoverhangingeave.
4.2.RangeAnalysis
Sincethesixfactors(A~F)andthreelevels(1~3)foreachfactorareselectedforthe
orthogonalexperiment,theorthogonaltableL18(37)isadoptedaccordingtotheprinciple
oforthogonalexperiment.Then,the18testsaregeneratedandsimulatedinFlowDesigner
toobtainthethermalenvironmentdataandthePTSdata.Table5illustratestherange
analysisresultsfortheinfluenceofdifferentfactorsonthethermalcomfort(PTS).Bycom
paringtheRjvaluesofeachfactor,theinfluenceofthesixfactorsonPTSarerankedas
follows:D>A=E>F>C>B.Themostinfluentialfactoronthermalcomfortingymnasium
istheroofinsulationtype.Then,itisfollowedbythemainwindowposition,roofslope,
depthofoverhangingeave,northWWR,andsouthWWR.
Theroofinsulationtypebecomesthemostimportantfactorbecausetheclimatecon
ditionsofhightemperatureandhighradiationinGuangzhoumakethebuildingroofre
ceivemoreheatthanotherinterfaces.Therefore,differentroofinsulationtypeswouldob
viouslyanddirectlyaffecttheheatgainoftheroof,furtherinfluencingtheindoorairtem
peratureandmeanradianttemperaturewhichdirectlyaffecttheindoorthermalcomfort.
Inaddition,themainwindowpositionandroofsloperanksecond,probablybecausethey
couldinfluencethewindenvironmenttoacertainextent,whichfurtheraffecttheindoor
thermalcomfort.
Table5.Resultsandrangeanalysisoftheorthogonalexperiments.
TestNumberFactorResultofPTS
ABCDEF
11111111.110
21222220.924
31333330.984
42131221.119
52212330.892
62323110.965
73122130.913
83233211.065
93311321.299
101123321.182
111231131.022
121312210.961
132132310.907
142213121.03
152321231.053
163113231.087
173221311.227
183332120.912
Energies2021,14,322812of18
K
1
6.1836.3186.3796.8305.9526.235
K
2
5.9666.1606.2645.5096.2096.466
K
3
6.5036.1746.0096.3136.4915.951
k
1
1.0311.0531.0631.1380.9921.039
k
2
0.9941.0271.0440.9181.0351.078
k
3
1.0841.0291.0021.0521.0820.992
R0.0900.0260.0620.2200.0900.086
FactorrankingD>A=E>F>C>B
4.3.CorrelationsbetweenFactorsandIndicator
Thecorrelationsbetweentheindexofinterest(PTS)andthesixcorrespondingfactors
(A~F)arepresentedinFigure6.Itillustratestheinfluencerulesoffactorslevelsonthe
PTSintheprocessofoptimizationofarchitecturalform.TakingFactorAasanexample,
thePTSvalueinLevel1,2,and3is1.031,0.994,and1.084,respectively.Asthevaluein
Level2achievesthelowest,Level2istheoptimumforFactorA.Inthesameway,Factor
B,C,D,E,andFachievethelowestPTSvaluesinLevel3,Level3,Level2,Level1,and
Level3,respectively.Thus,combiningtheoptimallevelofeachfactors,theoptimumcom
binationofarchitecturalformisA
2
B
2
C
3
D
2
E
1
F
3
,whichrepresentsthewindowsareatthe
lowpositiononthesouthwallandatthehighpositiononthenorthwall;thesouthWWR
is20%,andnorthWWRis30%;theroofishorizontalanddoubleskin,andthedepthof
overhangingeaveis9m.
Figure6.CorrelationsbetweenthefactorsandthePTS.
BecauseoftheprevailingsoutheastwindinsummerinGuangzhou,thelowwindow
onthesouthwallintroducesthesoutherlywindtothegreatestextent.Meanwhile,thanks
tothethermalpressuredifferenceandthewindpressuredifferencebetweenthewind
wardsideandtheleewardside,theindoorhotairflowsoutthroughthehighwindowon
thenorthwall,formingagoodnaturallyventilatedenvironment.Furthermore,alarge
WWRalsoimprovesthenaturalventilation.Asfarasthegymnasiumroofisconcerned,
thedoubleskinroofwouldbenefitfromtheairgap,whichactsasaninsulationlayerto
allowtheairflowtoeffectivelytakeawaytheheattooutdoorenvironment,reducingheat
gainfromtheindoorenvironmentthroughtheprimaryroof.Inaddition,the9mover
hangingeavecanobtainabettershadingeffect,whichplaysanimportantroleinreducing
solarradiationandindoortemperature.

Energies2021,14,322813of18
4.4.VarianceAnalysis
Table6presentstheresultsofthevarianceanalysis.Thesumofthesquareddeviation
(SS),thedegreeoffreedom(df),thevarianceofthefactor(V)andFvalue(F)havebeen
calculatedaccordingtotheregulationofvarianceanalysisinorthogonalexperiment.By
comparingtheFvaluesofeachfactortothecriticalvalueF(0.05),Roofinsulationtypeisthe
mostsignificantfactorinfluencingthethermalcomfort.Thefactorsofmainwindowpo
sition,roofslope,depthofoverhangingeave,northWWR,andsouthWWRarelesssig
nificantthanthefactorofroofinsulationtype.
Table6.VarianceanalysisofthePTS.
FactorSSdfVFF(0.05)Significance
A0.02420.0120.7213.74*
B0.00320.0020.0903.74
C0.01220.0060.3613.74
D0.14820.0744.4463.74**
E0.02420.0120.7213.74*
F0.02220.0110.6613.74
Deviation0.231140.016 
Note1:*representsthesignificanceofthedifferentfactor.Themorethe**areshown,thehigherthe
significanceofthecorrespondingfactoris.
5.DiscussionontheOptimizationEffects
5.1.OptimizedModelvs.InitialModel
Comparingwiththeinitialmodelofgymnasium,theoptimizedmodelofgymna
siumimprovesalot,aslistedinTable7.Thechangeofwindowposition,aswellasWWR,
improvesthenaturalventilationastheindooraverageairvelocityincreasesfrom0.21m/s
to0.77m/sonsummerdays.Asasignificantfactor,thedoubleskinroofinoptimalmodel
improvesthethermalperformances,theindooraverageoperativetemperaturedecreases
from29.3°Cto28.21°C,andthePTSdropsfrom1.11(slightlyhot)to0.86(comfortable).
Table7.Comparisonofarchitecturalformsandthermalperformancesbetweentheinitialmodelandtheoptimizedmodel.
ParametersInitialModelOptimizedModel
WindowpositionHightothesouthandnorthLowtothesouthandhightothenorth
WWRSouthandnorthfor10%Southfor20%andnorthfor30%
RoofinsulationtypeSingleskinreinforcedconcreteDoubleskinreinforcedconcrete
RoofslopeHorizontalroo
f
Horizontalroo
f
Depthofoverhangingeave(m)19
Indooravg.operativetemperature(°C)29.3028.21
Indooravg.humidityratio(g/kg’)20.1620.15
Indooravg.airvelocity(m/s)0.210.77
Indooravg.PTS1.110.86
Figure7showsthevariationofhourlyaveragePTSoftheinitialmodelandtheopti
mizedmodelinAugust.TheaveragePTSvaluesintheoptimizedmodelareslightlylower
thanthoseintheinitialmodelbefore11am.Then,thegapbetweenthemgrowstoaround
0.7untilmidnight.ThegapofPTSismainlyreflectedintheafternoonbecausethewall
andthegroundhadacertainheatstoragecapacity,whiletheheataccumulatesinthe
daytimestartstodissipateintheafternoonduetothetimegap.Therefore,theindoor
temperatureandradiationofthegymnasiumwithoutoptimizationincreasesrapidly,
whichresultsinanincreaseofthePTSvalue.Onthecontrary,theoptimizedgymnasium
formimprovestheindoorthermalenvironmentandwindenvironment,thusslowing
Energies2021,14,322814of18
downtheincreaseoftheindoortemperatureandradiation,increasingtheindoorairflow
rate,butreducingthePTSvalue.Thisphenomenonindicatesthattheoptimizedgymna
siumformcouldimprovetheindoorthermalcomforttosomeextent,andsuchoptimized
gymnasiumswouldbebeneficialtopeopleandthecities.
Figure7.VariationofhourlyaveragePTSbetweentheinitialmodelandtheoptimizedmodelin
August.
5.2.ComparingwithOtherStudies
Thisstudyprovesthattheroofinsulationtypeisthemostsignificantarchitectural
formaffectingindoorthermalcomfortofgymnasiumsathothumidclimates.Meanwhile,
thedoubleskinroof,benefitingfromtheeffectofthermalinsulationofairgap,obtainsa
betterthermalcomfortthanthesingleskinroofandinsulatedroof.Similarresultshave
beenfoundinotherrelevantstudies.Gaglianoetal.[41]foundthatthedoubleskinroof
couldconstituteaninterestingsysteminordertoreduceheattransferfromtheroofinto
thebuilding,allowingsignificantheatfluxreduction(upto50%)duringsummer.Omar
etal.[42]investigatedthebenefitsofusingdoubleskinventilatedroofsforreducingcool
ingloadsanddiscoveredthatusingthedoubleskinroofcouldenhancealmost50%ofthe
energysavingrateratherthanusingthesingleskinroof.Moreover,theenergysaving
efficiencycouldbeevenbetter,upto85%,incasetheroofhasaninsulatedlayer.Zingre
etal.[39]foundthatperformanceofthedoubleskinroofwas28–34%betterthanthatof
theinsulatedroofinreducingheatgainintothebuildingduringdaytimeandallowed3–
5timesmoreheatlossfromthebuildingduringnighttime.Theseresultsreflectthatthe
doubleskinroof,astheoptimumtypeofroofinsulation,playsanimportantroleinim
provingthethermalenvironmentandthermalcomfort.Meanwhile,theresultsalsoillus
tratethattheoptimizationofarchitecturalformshasagreatimpactontheindoorthermal
environmentandthermalcomfort.Inthepreviousresearch,Huangetal.[12]foundthat
thegymnasiumwithlargeopeningonthesideinterfaceandmultistoryroofachieved
lowerindoortemperatureandbetterventilationefficiency.Besides,Li[11]studiedthe
influenceoftheoverhangingeaveofgymnasiumonthermalcomfortinhothumidre
gionsandfoundthatadeepoverhangingeaveandsloperoofwereinstrumentalinin
creasingthedifferenceofwindpressurebetweenthewindwardsideandtheleewardside,
whichenhancedtheairvelocityby57%comparedtotheformofflatroofandwithout
overhangingeaves.TheresultoftheroofslopeinLi’sstudyisdifferentfromthatinthis
study,whichfoundthatthehorizontalroofwastheoptimumform,probablybecauseof
thedifferencesintheselectionoffactors,optimizationmethods,andmicroenvironment
conditions.However,theresearchideasandtheresultsofoverhangingeavesaresimilar
tothoseinthisstudy.Inaddition,althoughtheWWRforpublicbuildingsshouldnot
Energies2021,14,322815of18
exceed70%,asshownintheDesignStandardforEnergyEfficiencyofPublicBuildings
[32],thisstudyobtainsamoredetailedandtargetedoptimalWWRforgymnasiums(20%
forsouthWWRand30%fornorthWWR)throughinvestigationandoptimization.
5.3.PracticalImplication
Theanalysesinthisstudyindicatethattheroofinsulationisthemostinfluentialfac
toronthermalcomfortingymnasiumsathotandhumidclimate.Furthermore,theopti
mizedarchitecturalformofgymnasiumhasbeenachievedbytheorthogonalexperiment.
Thisstudyexpandstheapplicationoforthogonalexperimenttomultifactorresearchon
gymnasiumdesign.Byconductingalimitednumberofexperimentsintheorthogonal
array,fullinformationoffactorsiseffectivelyobtained.Thismethod,asminimizingthe
effortandtimeduringanalyzes,canbeanalternativeapproachforintegratedarchitec
turaldesign.Theresultsinthisstudycanprovideatechnicalreferenceforthegymnasium
design,aswellasaguidelinefortheresearchofsimilartypeofarchitecturelocatedin
regionswithotherclimates.
5.4.Limitations
Althoughthisstudyconductedanorthogonaldesigntoprovideanoptimizationanal
ysisoftheinfluencingfactorsofthegymnasiumthermalcomfort,therearesomelimitations.
First,thesmallnumberoffactorsandlevelsofgymnasiumformsinthestudymayaffect
thereliabilityandcomprehensivenessoftheresults.Second,thestudyconsidersonlythe
superpositionoffactors,whiletheinteractionsamongthefactorsarenotinvestigated.Fi
nally,theorthogonalexperimentinthisstudyshowsaprocessofaparametricsearchwith
outanyiteration.Therefore,weconductindepthandprecisestudiesonoptimizationof
gymnasiumformforthermalcomfort,focusingonvariousinfluentialfactorsandlevelsand
thediscussionontheinteractionsamongfactorsandtherigorousofexperiment,soasto
improvethefeasibilityoftheoptimizationdevelopedinthisstudy.
6.Conclusions
Thisstudyhasconductedanorthogonaldesigntoprovideanoptimizationanalysisof
theinfluencingfactors(gymnasiumarchitecturalform)ofthegymnasiumthermalcomfort
inGuangzhouathotandhumidclimate.Theorthogonalexperimentsareappliedassisted
byfieldinvestigationandsimulationswiththeFlowDesigner.Theresultsareanalyzedus
ingrangeanalysisandvarianceanalysis,andthemainconclusionsaresummarized.
(1) Sevenhundredandtwentynineexperimentshavebeendramaticallydecreasedto
18testsbythemethodoforthogonalexperiment.
(2) Therangeanalysisandvarianceanalysisdemonstratethattheinfluenceofthesix
factorsonPTS(PredictedThermalSensation)arerankedas:Roofinsulationtype>
Mainwindowposition=Roofslope>Depthofoverhangingeave>Northwindow
towallratio>Southwindowtowallratio.
(3) Intermsofthermalcomfortofgymnasiums,theoptimizedarchitecturalformturns
outtobethecombinationofthewindowsatthelowpositionandhighpositionon
thesouthandnorthwall,respectively;thesouthandnorthwindowtowallratioof
20%and30%,respectively;ahorizontalroofwithdoubleskinandtheoverhanging
eavewiththedepthof9m.
(4) ThePTS(PredictedThermalSensation)valuedecreasesfrom1.11(slightlyhot)to0.86
(comfortable)viaoptimizationonthegymnasiumforms,andthegapofPTSvaluebe
tweeninitialmodelandoptimizedmodelismainlyreflectedintheafternoon.
(5) Thefindingsbenefitdesignersandresearcherstodeterminethekeyparametersin
thegymnasiumarchitecturaldesignandtooptimizethethermalcomfort,aswellas
energyefficiency.
Energies2021,14,322816of18
AuthorContributions:Conceptualization,X.H.,Q.Z.,andI.T.;Methodology,X.H.andQ.Z.;Inves
tigation,X.H.;Resources,Q.Z.andI.T.;Software,X.H.andI.T.;Writingoriginaldraft,X.H.;Writ
ingreviewandediting,Q.Z.andI.T.Allauthorshavereadandagreedtothepublishedversionof
themanuscript.
Funding:ThisresearchwasfundedbytheYouthFoundationofGuangdongUniversityofTechnol
ogy,China(GrantNo.17ZK0008).ThisresearchwasalsosupportedbytheresearchfundofYoko
hamaNationalUniversityin2020.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailableonrequestfromthe
correspondingauthor.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
Nomenclature
SymbolTitleUnitofMeasure
AAcoefficientasafunctionoftheairvelocity/
dfDegreeoffreedom/
FStatisticfortest/
FpNAnglefactorbetweenaperson(p)andsurface(N)/
fsSaturatedwatervaporpressurePa
IclStaticclothinginsulationclo
kNumberoffactorsinorthogonalexperiment/
KjiSumoftheexperimentalresults/
kjiAveragevalueofKji/
LSymboloftheorthogonaltable/
MMetabolicrateW/m2
mNumberoflevelsinorthogonalexperiment/
nNumberoftrialsinorthogonalexperiment/
pAtmosphericpressurePa
PTSPredictedThermalSensation/
RjRangeofvaluesbetweenthemaximumandminimumvaluesofkji/
RHRelativehumidity%
SSSum