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Abstract: Dichlorvos (O,O-dimethyl O-(2,2-dichlorovinyl)phosphate, DDVP) is a widely acknowl-
edged broad-spectrum organophosphorus insecticide and acaracide. This pesticide has been used
for more than four decades and is still in strong demand in many developing countries. Extensive
application of DDVP in agriculture has caused severe hazardous impacts on living systems. The
International Agency for Research on Cancer of the World Health Organization considered DDVP
among the list of 2B carcinogens, which means a certain extent of cancer risk. Hence, removing
DDVP from the environment has attracted worldwide attention. Many studies have tested the
removal of DDVP using different kinds of physicochemical methods including gas phase surface
discharge plasma, physical adsorption, hydrodynamic cavitation, and nanoparticles. Compared to
physicochemical methods, microbial degradation is regarded as an environmentally friendly ap-
proach to solve several environmental issues caused by pesticides. Till now, several DDVP-degrading
microbes have been isolated and reported, including but not limited to Cunninghamella, Fusarium,
Talaromyces, Aspergillus, Penicillium, Ochrobium, Pseudomonas, Bacillus, and Trichoderma. Moreover,
the possible degradation pathways of DDVP and the transformation of several metabolites have
been fully explored. In addition, there are a few studies on DDVP-degrading enzymes and the
corresponding genes in microorganisms. However, further research relevant to molecular biology
and genetics are still needed to explore the bioremediation of DDVP. This review summarizes the
latest development in DDVP degradation and provides reasonable and scientific advice for pesticide
removal in contaminated environments.

Keywords: dichlorvos; biodegradation; degradation pathways; mechanisms

1. Introduction

The overly common use of organophosphorus pesticides (OPs) has led to a high
risk of exposure to acute toxic compounds for various kinds of creatures, including hu-
mans [1]. As a representative organophosphorus pesticide, dichlorvos (O,O-dimethyl
O-(2,2-dichlorovinyl)phosphate, DDVP) has been commonly used in developing countries
and many other regions for more than 40 years [2]. DDVP has the molecular formula
C4H7Cl2O4P, with a molecular weight of 220.98, vapor pressure of 1.2 × 10–2 mmHg at
20 ◦C, and density of 1.415 g/mL at 25 ◦C. It is classified by the World Health Organization
(WHO) as class 2B: possible carcinogens [3]. In addition, the United States Environmental
Protection Agency (EPA) has also classified it as a Class I pollutant (highly toxic) [4].

Since DDVP came into commercial use in 1961, it could be seen in many countries due
to its significant advantages in terms of controlling internal and external parasites in crops
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and livestock and its ability to eliminate several pests in houses and farmlands [1]. The
yearly sales in 2019 around the world were about USD 88 million [5]. In many developing
countries, the excessive use or misuse of DDVP in agricultural production leads to serious
environmental problems and hazardous conditions. This situation usually has an impact
on the soil biome and becomes people’s environmental concern because of its residue
toxicity in the ecological system. This issue has caused an organophosphorus pesticide
contamination problem.

The massive application of DDVP can affect non-target organisms profoundly through
various kinds of pathways (Figure 1). Some reports have shown that exposure to DDVP in
childhood is related to an increased risk of diabetes and may lead to the increasing risk of
breast cancer in adulthood [6]. Scientific research has demonstrated certain effects of chronic
exposure to DDVP on mouse. Those animals exposed to DDVP showed nigrostriatal neuron
degeneration and remarkable behavioral impairment. Such animals have representative
symptoms called catalepsy which is similar to those of Parkinson’s disease in humans [7].
However, the current situation shows that OPs, including DDVP, are still widely used
in China, India, Brazil, and many other developing countries. Exposure is inevitable for
people in those countries. Therefore, there is an extremely urgent need to deal with DDVP
residues in the environment and to protect people from further physiological damage.
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Many studies have tested the degradation of DDVP using different kinds of physic-
ochemical methods, including gas phase surface discharge plasma, physical adsorption,
hydrodynamic cavitation, and nanoparticles [8]. These approaches are not cost-effective
and hard to apply to large contaminated areas. Therefore, microbial degradation of DDVP
has become a powerful and attractive method to solve the exposure problem of this haz-
ardous pesticide. Several microbes, including Cunninghamell aelegans, Fusarium solani,
Talaromyces atroroseus, Aspergillus oryzae, Ochrobactrum intermedium, Pseudomonas aeruginosa,
and Penicillium sp., have been isolated and play vital roles in DDVP degradation. It has been
reported that the organic pollutants can be used by edaphon including soil bacteria and
soil fungi as a sole carbon source [9–13]. These studies showed that microbial degradation
seems to be a more environmentally friendly and convenient treatment method to reduce
hazardous effects of toxic pollutants or contaminants [14–19]. In addition, there are a few
studies on degrading enzymes with correlative genes in microbes. However, most of the



Int. J. Environ. Res. Public Health 2021, 18, 5789 3 of 13

studies have paid little attention to the mechanisms and degradation pathways of DDVP.
This review summarizes different kinds of solutions to the DDVP contamination problem
and describes the promising application prospect of microbial degradation. Moreover, it
also discusses the mechanisms and degradation pathways of DDVP.

2. Toxicological Effects of DDVP

DDVP has the tendency to remain in solution due to its solubleness, with a limited
tendency to absorb sediment. DDVP is subject to both abiotic and biological degradation
in solution [20]. In addition, DDVP has the ability to regulate the neurotransmitter acetyl-
choline which leads to irreversible inhibition of acetylcholinesterase. Thus, it has harmful
effect on nontarget invertebrates and vertebrates [21]. Based on the laboratorial research,
DDVP can be hydrolyzed to dichloroacetaldehyde, dichloroethanol, dichloroacetic acid,
dimethylphosphate, and dimethylphosphoric acid [22]. The process of DDVP degradation
in moist soil is similar to that in aqueous solution. There are two main routes of exposure:
inhalation and skin contact. People who are brought into contact with toxic waste contain-
ing DDVP or use domestic pesticides can potentially be exposed to them by inhalation.
Due to its long half-life and current situation of usage, the toxic effects caused by DDVP
residue should not be ignored. The toxicological effects of DDVP are presented in Table 1.

Toxic DDVP exposure in zebrafish was reported by Nguyen et al. [23], who illustrated
various kinds of procedures in energy utilization and stress response in liver. Three
concentrations of DDVP show that the effect on liver energy metabolism is rigorously
controlled. Toxic exposure may lead to a certain amount of neuromuscular impairment in
exposed zebrafish. Moreover, a study on tilapia demonstrated that acetylcholinesterase
(AChE) suppression in brain and liver is caused by DDVP which exerts cholinergic action
by blocking cholinesterase in the central and peripheral nervous system [24]. Tilapia
lived under a sublethal concentration (0.5 mg/L) of DDVP, and all sizes of fish showed a
significant inhibition of brain and liver AChE activities. AChE activity was regarded as an
indication of the extent of pollution of the aquatic environment by organic chemicals and
was correlated with water contamination.

Harmful impact on rats according to DDVP have also been investigated as representa-
tives of damage to land mammals. Okamura et al. [25] reported a study in which Wistar
rats were injected with four different dosages of DDVP dissolved in saline on their neck.
Sperm motility is deteriorated by DDVP exposure at different doses, which means humans
may suffer from testicular dysfunction. Another study focused on the biochemical and
behavioral sequelae of chronic DDVP exposure in rats [26]. This study illustrated that all
components of spontaneous locomotor activity in rats exposed to DDVP have reduced
remarkably. DDVP administration also led to evident damage on rats’ muscle strength
and coordination. According to a cellular-level study, exposure to DDVP may result in
neuronal cell death in primary rats [27]. This study observed significant upregulation of
pro-inflammatory molecules like nitric oxide, tumor necrosis factor alpha (TNF-α), and
interleukin 1 beta (IL-1β) when microglia were treated with DDVP (10 µM). The study
concluded that DDVP can induce microglial activation and then cause cell apoptosis. An-
other study described the influence of butyrylcholinesterase (BuChE) activity in rats with
continued exposure to DDVP [28]. Different types of doses of DDVP (8.0 mg/kg of body
weight) were given to both sexes of rats, with two-day intervals between administrations.
This study clearly showed that exposure to DDVP significantly decreased the BuChE
activity in both male and female rats.

There are several reports about the hazardous effects of DDVP on the human body
indicating that a higher concentration of DDVP can cause death. A woman died a day
after ingesting DDVP and an infant died after ingesting a cake-like bait that contained
DDVP [29]. Although most of the studies showed little proof that exposure to DDVP
is related to any cancer risk, Eroğlu et al. [2] and Koutros et al. [4] indicated the toxic
effects of DDVP on human peripheral blood lymphocytes. As a result, DDVP-induced
micronuclei decreased the mitotic and replication indices. This kind of genotoxic product
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causes chromosomal damage and cell death (decreased mitotic and replication indices).
It has been classified by the United States Environmental Protection Agency as a toxic
chemical in the Toxics Release Inventory (TRI) [30].

Some studies have illuminated the molecular mechanism of DDVP neurotoxicity.
The dominating mechanism of action of DDVP is the inhibition of AChE, which causes
an increase in the level of acetylcholine in the synaptic cleft and produces nicotine and
muscarinic signs, which are also accompanied by symptoms of poisoning in the central
nervous system [31]. However, a certain amount of acetylcholinesterase inhibition can be
tolerant to nervous system without any toxic effects. In all kinds of mammals, toxic signs
were discovered until acetylcholinesterase was inhibited by at least 20% [1].

Table 1. Toxicological effects of dichlorvos in humans and animals.

No. Study Sample/
Sample Sources

Concentration/
Volume of Dichlorvos Specific Statement Reference

1 Zebrafish 6, 19, 32 mg/L Neuromuscular impairment arise from dichlorvos [23]

2 Tilapia 0.5 mg/L Significant inhibition of brain and liver
acetylcholinesterase (AChE) activity [24]

3 Drosophila 775 mg/kg Mortality increased with increased dichlorvos dose [32]

4 Larval butterflies 5–994 mg/L Dichlorvos did not appear to affect life cycle of
surviving caterpillars [33]

5 Tor putitora 12.964 mg/L Exposure to dichlorvos induced significant drop in
oxygen consumption [34]

6 Loach 4.56, 5.76, 7.12, 8.96,
11.20 µg/L

Decreased glutamic-pyruvic transaminase and
glutamic-oxalacetic transaminase activity of liver [35]

7 Chicks 6.51 mg/kg Dichlorvos significantly reduced plasma and brain
cholinesterase activity [36]

8 Cyanobacteria 261.16 µmol/L Significantlydecreased chlorophyll content [37]

9 Wistar rats 0, 1, 2, 4 mg/kg Decreased sperm motility [25]

10 Rats 6 mg/kg Severe toxic manifestations in motor and
memory functions [26]

11 Primary rats 10 µmol/L Microglial activation and ultimately apoptotic
cell death [27]

12 Rats 8 mg/kg Decreased butyrylcholinesterase (BuChE) activity [28]

13 Rats 1.8, 9 mg/kg Acute exposure to dichlorvos led to nitro-oxidative
stress in the brain [38]

14 Wister rats 1.8, 100 mg/kg Decreased respiratory rate [39]

15 Mice 40 mg/kg Exposure to dichlorvos led to neuronal damage [40]

16 Albino rats
50 mL

dichlorvos/50 mL
distilled water

Lungs and liver revealed moderate lymphocytic
infiltration and hepatocytic steatosis after gradually

exposed to dichlorvos
[41]

17 Human Unknown A woman died a day after ingesting dichlorvos [29]

18 Human Unknown Dichlorvos known to inhibit plasma, erythrocyte,
and brain AChE activity [42]

19 Human Unknown An infant died after ingesting cake-like bait
containing dichlorvos [29]

20 Cells 5, 10, 20, 40, 80, 100
mg/L

Toxic nuclear effects in human peripheral
blood lymphocytes [2]

21 Cells 50–500 µmol/L Cell death increasing accompanied by
mitochondrial membrane potential decrease [21]
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3. Physicochemical Transformation of DDVP

Several physicochemical methods have been applied to control residual DDVP pol-
lutant (Table 2). On the whole, these methods are efficient to a certain extent, but too
expensive for developing countries that are suffering from DDVP contamination. Several
researches have reported hazardous effects of DDVP exposure on aquatic animals, land
mammals, and humans. Thus, removal of DDVP residue from contaminated environments
is extremely urgent.

The main technique for solving pesticide pollutants is chemical degradation [43].
Other common solutions for solving pesticide pollutants include chlorination, hydrody-
namic cavitation, active carbon, O2 plasma, metal catalysts, and H2O2 and O3 adsorp-
tion [14]. Bustos et al. [44] highlighted the urgent need and intricacy of photo-induced
oxygen-mediated reactions of DDVP. DDVP is photoionized by electron transfer to dis-
solved oxygen, followed by superoxide radicals, and finally the HO yield. It might be
the main mechanism of degradation taking place during photolysis. In addition, it has
been investigated that the hydrodynamic cavitation reactor can be applied to degrade an
aqueous solution of DDVP. As shown in another study, a chlorinated organophosphate
compound can be effectively degraded using treatment strategies based on hydrodynamic
cavitation in a large-scale operation [45]. According to this report, active carbon is an
efficient substituent that absorbs DDVP residual, because powder-activated carbon shows
excellent adsorption of aromatic compounds, including pesticides, herbicides, surface
activators, natural pigments, and phenols [46].

Advanced oxidation processes (AOPs) containing various kinds of oxidants have been
applied to remove hazardous pollutants from soil and water environments successfully.
Bai et al. [47] noted that the O2 plasma treatment worked well in the DDVP remediation
process, and the usefulness of degradation is mainly dependent on the related operating
parameters and chemical structures of pesticides. Hydroxyl radicals have the ability
to break the double bond in the DDVP molecule, and DDVP is further oxidized to 1,1-
dichloro ethoxy dimethyl phosphate, 1,1,1-trichloro-2-hydroxyl-ethyl dimethyl phosphate,
dimethyl phosphite, dimethyl phosphate, trimethyl phosphate, methyl phosphate, dichloro
acetaldehyde, oxalic acid, CH2Cl2, CHCl3 (parts of which are mineralized to phosphoric
acid), CO2, H2O, and chloridion [48]. It took only 90 min to push the elimination ration
up to 98% under acidic and saturated dissolved oxygen conditions [49]. Through the
known products, the reaction mechanism of DDVP oxidized by H2O2 was discussed,
and the conclusion was made that the main decontamination mechanism is radical chain
reaction [50].

Comparatively, ozone and hydroxyl radicals are vital for DDVP abatement. The
abiotic hydrolysis degradation pathway is presented in Figure 2. However, we still need
more detailed studies on aqueous solutions and lower concentrations of contaminants in
order to properly assess the process performance.

Iron-modified ZSM-11 zeolites were applied as heterogeneous catalysts in the degra-
dation process of DDVP water solutions. ZSM-11 zeolite matrices were synthesized by the
hydrothermal method and iron was incorporated by the wet impregnation method in four
concentrations. From this report, Fe/ZSM-11 with 6 wt% of incorporated iron showed the
best catalytic behavior based on DDVP [51].

Removing DDVP pollutants from water is a real challenge due to the presence of the
direct carbon-to-phosphorous covalent bond, which reveals its stability under chemical and
thermal degradation. From recent studies, nanomaterials seem to be a possible solution
for degradation. Mehrotra et al. [52] reported an efficient way for catalytic degradation of
DDVP using protein-capped zero-valent iron nanoparticles, which removed the pesticide in
1 h. Moreover, the degradation mechanisms of DDVP during oxygen plasma treatment have
been successfully detailed [53], so several active materials (high-energy electrons and free
radicals) in oxygen plasma can thoroughly degrade DDVP within a short exposure time.
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Table 2. Physical and chemical methods used to degrade dichlorvos from environments.

No. Study Sample/
Sample Sources

Physicochemical
Method Used Medium Specific Statement Reference

1 Sunlight/UV Photocatalysis Water
pH 3 conditions increased dichlorvos

photodegradation up to 32%, with degradation
rate constant of 0.064 h−1

[44]

2
Hydrodynamic

cavitation
reactor/Fenton

Advanced
oxidation

processes (AOPs)
Water 91.5% dichlorvos was degraded in 1 h [45]

3 Activated carbon Adsorption Water Average removal rate of dichlorvos was 95.1% [46]

4 O2 plasma AOPs Air Most of the dichlorvos was removed in 120 s [47]

5 Fe ZSM-11 Photocatalysis Water Dichlorvos was degraded in 120 min (6% Fe
ZSM-11) [51]

6 Zero valent iron
nanoparticles Photocatalysis Water Pesticide was removed in 1 h [52]

7 Fenton/H2O2 AOPs Water
In acidic and saturated dissolved oxygen
conditions, it took nearly 90 min to push

degradation ratio up to 98%
[49]

8 H2O2 AOPs Air 80.7% of dichlorvos vapor was decontaminated
by 110–130 mg/m3 of H2O2 aerosol in 60 min [48]

9 O3 AOPs Water Ozone plays an important role in dichlorvos
degradation [50]

10
Dielectric barrier
discharge (DBD)

plasma
Free radicals Water

At lower initial concentration, the
disappearance rate of dichlorvos followed

first-order rate law; at higher initial
concentration, the disappearance rate of
dichlorvos shifted to zero-order rate law

[54]

11 Fresh frozen
plasma AOPs Air Dichlorvos half-life is 17.9 min [55]
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4. Microbial Degradation of DDVP

Microbial degradation is regarded as a cost-effective and promising method with a huge
potential for the removal of pesticides, compared to physicochemical approaches [9,13,19]. Soil
bacteria and fungi have been documented as being able to mineralize various organic
pollutants as a sole carbon source [56–60]. Based on the existing research, the effective soil
microorganisms for solving the DDVP residual have been isolated and studied (Table 3).

Five kinds of strains were selected and studied for the plant-fungi-spent mushroom
compost (SMC) interaction, which has the potential to speed up the DDVP degradation
rate [56]. According to this research, fungal strains identified as Cunninghamella elegans,
Fusarium solani, Talaromycesatro roseus, Aspergillus oryzae, and Penicillium sp. were isolated
from pesticide-polluted soil. Their rhizosphere interaction with plants (Panicum maximum)
was shown in this study. The plant-fungi-SMC interaction synergistically sped up the
DDVP degradation rate in a shorter time period, and an appreciable loss of DDVP of
72.23% and 82.70% degradation efficiency was observed in 30% and 40% of treatments,
respectively, as compared to controls 1 and 2, with 62.20% and 62.33% degradation effi-
ciency, respectively.

As a representative organophosphorus pesticide, DDVP has been applied in biodegra-
dation studies. In a study by Jiang et al. [61], they found a bacterium that can degrade
DDVP rapidly, Ochrobactrum intermedium DV-B31. This bacterium degraded 96.38% of
DDVP samples in 8 days, which proved its potential for bioremediation. Interestingly, some
bacteria, such as Pseudomonas aeruginosa and Bacillus amyloliquefaciens YP6, can degrade
DDVP and other pesticides [62]. Nonetheless, the bioremediation ability of the bacterial
cultures can be affected by different factors, including the type of inoculum and its density,
pH, temperature, and toxic compounds present in the system [63].

Table 3. Microbial degradation of dichlorvos.

No. Strain or
Community Sample Sources Detected Metabolites Comments Reference

1 Cunninghamella
elegans

Surroundings of
sewage disposing

outlet from
agro-pesticide

manufacturing in
Owo, Nigeria

O,O-dimethyl phosphonic ester,
desmethyl dichlorvos, also known

as 2,2-dichlorovinyl
O-methylphosphate, and

O,O,O-trimethyl phosphoric ester,
also known as dichlorvos

(2,2-dichlorovinyl-O,O-dimethyl
phosphate)

Cunninghamella elegans strain was
the most dominant fungal strain in
pesticide-polluted soil samples with
37 appearances in 50 samples (74%
incidence), Talaromycesatro roseus

had 33 appearances (66% incidence),
Aspergillus oryzae had 32

appearances (64% incidence),
Fusarium solani and Penicillium sp.

both had 26 appearances (52%
incidence).

[56]

2 Fusarium solani

3 Talaromycesatro roseus

4 Aspergillus oryzae

5 Penicillium sp.

6 Ochrobactrum
intermedium DV-B31

Farmland annually
sprayed with

organophosphorus
pesticides

No data 96.38% dichlorvos was degraded by
DV-B31 in 8 days [61]

7 Pseudomonas
aeruginosa

Agricultural field
inPunjab, India No data 90% of dichlorvos was degraded in

around 20 days [58]

8 Bacillus
amyloliquefaciens YP6

Phosphate mine in
Guizhou Province,

China
No data 53% of dichlorvos was degraded in

1 h [62]

9 Trichoderma atroviride
T23 No data Dichloroethane and

trichloroethylene
300 µg/mL dichlorvos was

degraded in 120 h [60]

10 Trichoderma atroviride
mutant AMT-28

Vegetable field in
Shenyang, China No data

Dichlorvos was completely
removed when treated with mycelia

of AMT-28 for 7 d
[64]
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Table 3. Cont.

No. Strain or
Community Sample Sources Detected Metabolites Comments Reference

11

Consortium of
Pseudomonas,
Xanthomonas,
Sphingomonas,

Acidovorax,
Agrobacterium, and
Chryseobacterium

Greenhouse
within Xisanqi

Ecological Garden,
Beijing, China

No data

Dichlorvos degradation efficiency of
these bacteria was 11.5%,70.0%,
78.7%, 52.6%, 66.4%, and 25.2%,

respectively

[66]

12 Pseudomonas stutzeri
smk India Free methyl and phosphate 80% of dichlorvos was degraded on

7th day of incubation [65]

Recently, there has been increasing interest in the biodegradation pathway of DDPV.
A study of Trichoderma atroviride strain T23 presented two possible ways of degrading
DDVP [60]. According to the results of this study, the first pathway is related to the breakage
of the P-O bond. DDVP was converted to dimethyl phosphate (DMP) and dichloroacetalde-
hyde, and these intermediates can be rapidly tautomerized to dichloroacetic acid (DCAA)
and dichloroethane (DCE). Some of the DCE is then transformed into trichloroethane
(TCE) and the rest is dechlorinated into ethanol. Potentially, through the esterification
of DCAA to ethyl dichloroacetate (EDCA), DMP is eventually converted into phosphate
ions by strain T23. Moreover, the stochiometric amount of metabolites is lower than the
consumption of DDVP, which leads to the second possible pathway. The second pathway
involves the de-chlorination of DDVP to the isomers, (Z)-2-chlorovinyl dimethylphos-
phate and (E)-2-chlorovinyl dimethyl phosphate, while these isomers hardly undergo
further de-chlorination to phosphoric acid trimethyl ester. Thus, they are unlikely the main
by-products and are not easy to detect using normal techniques.

Sun et al. [64] noted that Trichoderma atroviride mutant AMT-28 is one of the most
effective fungal bacteria and can completely remove DDVP pollution in 7 days. The DDVP
removal is related to biomineralization process which attributed to fungal biodegradation.
Parte et al. [65] demonstrated another biodegradation pathway in Pseudomonas stutzeri
strain smk. This study elucidated the aerobic degradation pathway of DDVP: two dichlori-
nation steps producing 2-chlorovinyl dimethyl phosphate and vinyl dimethyl phosphate.
The vinyl dimethyl phosphate was then devinylated to produce dimethyl phosphate,
which, upon two sequential demethylation steps was separated into 2-methyl moieties
and a free phosphate to serve as the sole carbon and phosphate source to support growth.
These various kinds of degradation pathways indicate that microbial degradation seems to
be more adaptable to current agriculture and living conditions.

In some cases, a single type of a bacterial strain is not applicable due to the current
degradation requirements. Based on this situation, Ning et al. [66] reported that degrada-
tion ability can be mutually promoted by a bacterial community. It seems that more kinds of
bacteria have higher active constituents. A consortium of Pseudomonas, Xanthomonas, Sphin-
gomonas, Acidovorax, Agrobacterium, and Chryseobacterium was reported, which extends the
range of pesticide degradation by phyllosphere microbial communities and consequently
provides a brand-new idea for the biodegradation of DDVP with pure microbial cultures
from the plant phyllosphere.

5. Molecular Mechanism of DDVP Biodegradation

The proposed DDVP microbial degradation pathways are presented in Figure 3. The
biodegradation mechanisms of many other organophosphorus pesticides have been deeply
studied, especially those pesticides whose degradation genes and enzymes were cloned
and purified [67–71]. According to previous research, most of the microbial degradation of
DDVP is closely related to a functional gene that encodes for the enzymes, which is crucial
in the degradation process [64].
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Parte et al. [65] revealed the correlation between pesticide concentration and biodegra-
dation ability. It seems that a lower concentration of DDVP supports bacterial growth,
while higher concentration harms the bacteria. The reason may be that the cells and enzyme
systems are hampered by increasing concentrations of pesticide, leading to lower biodegra-
dation efficiency. Sun et al. [64] also found that the enzyme produced by TaPon1-like had a
low Km for DDVP (0.23 mM) and a high Kcat (204.3 s–1). The enzyme was able to hydrolyze
broad substrates with stable activity in a wide range of pH and temperature values. TaPon1-
like hydrolase plays an important role in the first step of DDVP degradation by strain T23
and contributes to a comprehensive understanding of the mechanism of organophosphate
pesticide degradation. The deletion of TaPon1-like weakened the efficiency of the DDVP
degradation, but it did not abolish the hydrolysis ability, which indicates that TaPon1-like
is one of the key enzymes of strain T23 that is responsible for the hydrolysis of the P-O
bond in DDVP.

Moreover, a study demonstrated that AMT-28 could produce inducible intracellular-
degrading enzyme of DDVP, causing immobilized cells to display ever-increasing DDVP
degradation ability in reusability determinations. To thoroughly investigate the mechanism
of DDVP bioremediation, research on the isolation and purification of inducible intracellular
degrading enzyme are ongoing [72]. Although the degradation mechanism has not been
clearly explained, some kinds of fungi can produce novel OPs degrading enzyme [73–75].

The elimination of DDVP from saline solutions has been attributed to its ability to
penetrate into the cytoplasm via a principle, called “organic-osmolyte.” Moreover, the
PON1 gene, which exists widely in mammals, has been found to have a powerful influence
on the detoxification of organophosphate compounds. This led to the result that PON1
has the ability to prevent oxidative damage to tissues, which seems to be reasonable [76].
Therefore, PON1 may prevent tissue damage due to organophosphate toxicity, especially
in the central nervous system [76]. This study has shown that PON1 could effectively
reduce the blood concentration and decrease the peak concentration of DDVP, and lessen
the amount that enters the blood. This study also compared the hydrolytic effect of PON1
with atropine + PAM, the most widely used clinical therapy. It showed that atropine + PAM
did not affect the metabolism of DDVP, which was consistent with a recent research [76].
Co-treatment does not alter the impact of PON1 on DDVP concentration, which implies that
there is no interaction between PON1 and atropine + PAM-CI; therefore, it is supposed that
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co-treatment may be feasible in the clinical treatment of human organophosphate-related
toxicity [77–79].

Based on these studies, it seems that using microorganisms merely is not the most
effective method. Unfortunately, current knowledge of the DDVP biodegradation mecha-
nism is still very limited; more research should be focused on identifying the novel genes
and enzymes to explore the degradation pathway.

6. Conclusions and Future Perspectives

Different physicochemical methods have been developed for the removal of DDVP
from contaminated environments, and microbial degradation is regarded as a promising
method to solve several harmful residuals caused by DDVP. The biodegradation mecha-
nism of many OPs has been studied deeply, especially for the methyl parathion, whose
degradation genes and enzymes were cloned and purified. There is a need to select
more useful strains, since only a few bacteria have been studied thoroughly in relation
to the functional enzymes and genes. Moreover, the large number of different DDVP
biotransformation metabolites should be detected to avoid secondary pollution.

Under the current situation of DDVP usage distribution, developing countries are
more liable to suffer from exposure toxicity, but they are not allowed to use several physic-
ochemical methods to solve the problem due to their economic capability. As a result, there
is an urgent need for further study of biodegradation, in order to provide cloned strains
to reduce the threat of DDVP exposure at lower cost. In the future, advanced scientific
technologies such as gene editing and DNA isotope probes could be used to search for
and evaluate more adaptable microorganisms for pesticide degradation. Moreover, next-
generation sequencing analysis of the complete genome could explore the bioremediation
potential of indigenous microbial strains in detail. The potential strains can be applied for
large-scale treatment of DDVP and other pesticides.
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