Article

The anorexigenic effect of neuropeptide AF in Japanese quail, Coturnix japonica, is associated with activation of the melanocortin system

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Neuropeptide AF (NPAF) decreases food and water intake in birds and food intake in mammals. In this study, the objective was to determine the effects of centrally administered NPAF on food and water intake, hypothalamic c-Fos immunoreactivity and hypothalamic mRNA abundance of appetite-regulating factors in Japanese quail (Coturnix japonica). Seven days post hatch, 6 h fasted quail were intracerebroventricularly (ICV) injected with 0 (vehicle), 4, 8, or 16 nmol of NPAF and food and water intake were measured at 30 min intervals for 180 min. In Experiment 1, chicks which received 4, 8, and 16 nmol ICV NPAF had reduced food intake for 120, 60 and 180 min following injection, respectively, and reduced water intake during the entire 180 min observation. In Experiment 2, there was increased c-Fos immunoreactivity in the paraventricular nucleus, the ventromedial nucleus of the hypothalamus, and the dorsomedial hypothalamic nucleus in NPAF-injected quail. In Experiment 3, ICV NPAF was associated with decreased corticotropin-releasing factor mRNA, and an increase in hypothalamic proopiomelanocortin and melanocortin receptor 4 mRNA. These results demonstrate that central NPAF suppresses food and water intake in quail, effects that are likely mediated via the melanocortin system in the hypothalamus.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and npvf-expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of npvf-expressing neurons induces neuronal activity levels consistent with normal sleep. These results identify NPVF signaling and npvf-expressing neurons as a novel vertebrate sleep-promoting system and suggest that RFamide neuropeptides participate in an ancient and central aspect of sleep control.
Article
Full-text available
Adenylyl cyclase (AC) is an important messenger involved in G-protein-coupled-receptor signal transduction pathways, which is a well-known target for drug development. AC is regulated by activated stimulatory (Gαs) and inhibitory (Gαi) G proteins in the cytosol. Although experimental studies have shown that these Gα subunits can stimulate or inhibit AC’s function in a non-competitive way, it is not well understood what the difference is in their mode of action as both Gα subunits appear structurally very similar in a non-lipidated state. However, a significant difference between Gαs and Gαi is that while Gαs does not require any lipidation in order to stimulate AC, N-terminal myristoylation is crucial for Gαi’s inhibitory function as AC is not inhibited by non-myristoylated Gαi. At present, only the conformation of the complex including Gαs and AC has been resolved via X-ray crystallography. Therefore, understanding the interaction between Gαi and AC is important as it will provide more insight into the unknown mechanism of AC regulation. This study demonstrates via classical molecular dynamics simulations that the myristoylated Gαi1 structure is able to interact with apo adenylyl cyclase type 5 in a way that causes inhibition of the catalytic function of the enzyme, suggesting that Gα lipidation could play a crucial role in AC regulation and in regulating G protein function by affecting Gαi’s active conformation.
Article
Full-text available
Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg–Phe–NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.
Article
Full-text available
The central nervous system octapeptide, neuropeptide FF (NPFF), is believed to play a role in pain modulation and opiate tolerance. Two G protein-coupled receptors, NPFF1 and NPFF2, were isolated from human and rat central nervous system tissues. NPFF specifically bound to NPFF1 (K d = 1.13 nm) and NPFF2 (K d = 0.37 nm), and both receptors were activated by NPFF in a variety of heterologous expression systems. The localization of mRNA and binding sites of these receptors in the dorsal horn of the spinal cord, the lateral hypothalamus, the spinal trigeminal nuclei, and the thalamic nuclei supports a role for NPFF in pain modulation. Among the receptors with the highest amino acid sequence homology to NPFF1 and NPFF2 are members of the orexin, NPY, and cholecystokinin families, which have been implicated in feeding. These similarities together with the finding that BIBP3226, an anorexigenic Y1 receptor ligand, also binds to NPFF1 suggest a potential role for NPFF1 in feeding. The identification of NPFF1 and NPFF2 will help delineate their roles in these and other physiological functions.
Article
Full-text available
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Article
Full-text available
Dominant mutations at the agouti locus induce several phenotypic changes in the mouse including yellow pigmentation (phaeomelanization) of the coat and adult-onset obesity. Nonpigmentary phenotypic changes associated with the agouti locus are due to ectopic expression of the agouti-signaling protein (ASP), and the pheomelanizing effects on coat color are due to ASP antagonism of alpha-MSH binding to the melanocyte MC1 receptor. Recently it has been demonstrated that pharmacological antagonism of hypothalamic melanocortin receptors or genetic deletion of the melanocortin 4 receptor (MC4-R) recapitulates aspects of the agouti obesity syndrome, thus establishing that chronic disruption of central melanocortinergic signaling is the cause of agouti-induced obesity. To learn more about potential downstream effectors involved in these melanocortinergic obesity syndromes, we have examined expression of the orexigenic peptides galanin and neuropeptide Y (NPY), as well as the anorexigenic POMC in lethal yellow (A(y)), MC4-R knockout (MC4-RKO), and leptin-deficient (ob/ob) mice. No significant changes in galanin or POMC gene expression were seen in any of the obese models. In situ hybridizations using an antisense NPY probe demonstrated that in obese A(y) mice, arcuate nucleus NPY mRNA levels were equivalent to that of their C57BL/6J littermates. However, NPY was expressed at high levels in a new site, the dorsal medial hypothalamic nucleus (DMH). Expression of NPY in the DMH was also seen in obese MC4-RKO homozygous (-/-) mice, but not in lean heterozygous (+/-) or wild type (+/+) control mice. This identifies the DMH as a brain region that is functionally altered by the disruption of melanocortinergic signaling and suggests that this nucleus, possibly via elevated NPY expression, may have an etiological role in the melanocortinergic obesity syndrome.
Article
Full-text available
New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Article
Full-text available
Prolactin-releasing peptide (PrRP) is a peptide ligand for the human orphan G-protein-coupled receptor hGR3/GPR10 and causes the secretion of prolactin from anterior pituitary cells. However, the lack of immunoreactive staining for PrRP in the external layer of the median eminence seems to rule out this peptide as a classical hypophysiotropic hormone and, furthermore, PrRP is less effective than another inducer of prolactin secretion, thyrotropin-releasing hormone, both in vitro and in vivo. Here we show a reduction in the expression of PrRP mRNA during lactation and fasting and an acute effect of PrRP on food intake and body weight, supporting the hypothesis of an alternative role for the peptide.
Article
Full-text available
The two mammalian neuropeptides NPFF and NPAF have been shown to have important roles in nociception, anxiety, learning and memory, and cardiovascular reflex. Two receptors (FF1 and FF2) have been molecularly identified for NPFF and NPAF. We have now characterized a novel gene designated NPVF that encodes two neuropeptides highly similar to NPFF. NPVF mRNA was detected specifically in a region between the dorsomedial and ventromedial hypothalamic nuclei. NPVF-derived peptides displayed higher affinity for FF1 than NPFF-derived peptides, but showed poor agonist activity for FF2. Following intracerebral ventricular administration, a NPVF-derived peptide blocked morphine-induced analgesia more potently than NPFF in both acute and inflammatory models of pain. In situ hybridization analysis revealed distinct expression patterns of FF1 and FF2 in the rat central nervous system. FF1 was broadly distributed, with the highest levels found in specific regions of the limbic system and the brainstem where NPVF-producing neurons were shown to project. FF2, in contrast, was mostly expressed in the spinal cord and some regions of the thalamus. These results indicate that the endogenous ligands for FF1 and FF2 are NPVF- and NPFF-derived peptides, respectively, and suggest that the NPVF/FF1 system may be an important part of endogenous anti-opioid mechanism.
Article
Full-text available
Mutation of the G protein-coupled receptor 54 is associated with a failure of reproductive function. The endogenous neuropeptide agonist for G protein-coupled receptor 54, kisspeptin, potently stimulates the hypothalamic-pituitary-gonadal axis in rodents and primates. The present study was designed to determine the effects of elevating circulating kisspeptin levels on LH, FSH, and testosterone in male volunteers. This was a double-blind, placebo-controlled, crossover study. Setting: This was a hospital-based study. Male volunteers (n = 6) were recruited. Each volunteer received a 90-min i.v. infusion of kisspeptin-54 (4 pmol/kg x min) and a control infusion of saline (0.9%) in random order. Plasma LH, FSH, and testosterone concentrations were measured. Kisspeptin-54 infusion significantly increased plasma LH, FSH, and testosterone concentrations compared with saline infusion (mean 90-min LH: kisspeptin, 10.8 +/- 1.5 vs. saline, 4.2 +/- 0.5 U/liter, P < 0.001; mean 90-min FSH: kisspeptin, 3.9 +/- 0.7 vs. saline, 3.2 +/- 0.6 U/liter, P < 0.001; mean 180-min testosterone: kisspeptin, 24.9 +/- 1.7 vs. saline, 21.7 +/- 2.2 nmol/liter, P < 0.001). The plasma half-life of kisspeptin-54 was calculated to be 27.6 +/- 1.1 min. The mean metabolic clearance rate was 3.2 +/- 0.2 ml/kg x min, and the volume of distribution was 128.9 +/- 12.5 ml/kg. Elevation of plasma concentrations of kisspeptin in human males significantly increases circulating LH, FSH, and testosterone levels. Kisspeptin infusion provides a novel mechanism for hypothalamic-pituitary-gonadal axis manipulation in disorders of the reproductive system.
Article
Full-text available
Agonists of membranal melanocortin 3 and 4 receptors (MC3/4Rs) are known to take part in the complex control mechanism of energy balance. In this study, we compared the physiological response to an exogenous MC3/4R agonist and the hypothalamic expression of proopic melanocortin (POMC) gene, encoding few MC3/4R ligands, between broiler and layer chicken strains. These strains, representing the two most prominent commercial strains of chickens grown for meat (broilers) and egg production (layers), differ in their food intake, fat accumulation, and reproductive performance and, therefore, form a good model of obese and lean phenotypes, respectively. A single i.v. injection of the synthetic peptide melanotan-II (MT-II; 1 mg/kg body weight) into the wing vein of feed-restricted birds led to attenuation of food intake upon exposure to feeding ad libitum in both broiler and layer chickens. A study of the POMC mRNA encoding the two prominent natural MC3/4R agonists, alpha-MSH and ACTH, also revealed a general similarity between the strains. Under feeding conditions ad libitum, POMC mRNA levels were highly similar in chicks of both strains and this level was significantly reduced upon feed restriction. However, POMC mRNA down-regulation upon feed restriction was more pronounced in layers than in broilers. These results suggest: (i) a role for MC3/4R agonists in the control of appetite; (ii) that the physiological differences between broilers and layers are not related to unresponsiveness of broiler chickens to the satiety signal of MC3/4R ligands. Therefore, these findings suggest that artificial activation of this circuit in broiler chicks could help to accommodate with their agricultural shortcomings of overeating, fattening, and impaired reproduction.
Article
Recently we demonstrated an anorectic effect of neuropeptide AF (NPAF). The present study was designed to further elucidate mechanisms mediating NPAF‐induced anorexia and to test in hypo‐ and hyperphagia animals. In Exp 1–3, blockade of the mu and kappa but not delta subtypes of opioid receptors and co‐injection of NPAF did not have an additive anorexic effect, suggesting NPAF is associated with mu and kappa opioid receptors. In Exp 4–5, NPAF injection into both divisions of the paraventricular nucleus (PVN) did not affect food or water intake. In Exp 6, NPAF was centrally injected and food intake was quantified in lines of chicks that have undergone long‐term divergent selection for low (LWS) or high (HWS) body weight and are models of hypo‐ and hyperphagic respectively. LWS chicks responded 120 min sooner and their threshold was 4 orders lower than noted in HWS chicks. In Exp 7, several behaviors were quantified, and feeding and exploratory pecks, time spent standing and sitting were all reduced, but not differentially between lines. However, total distance moved was reduced in LWS‐ but not HWS‐NPAF‐treated chicks. Also, LWS‐ slept more while HWS‐NPAF‐treated chicks slept less. These data support that NPAF‐induced anorexia is mediated through opioid receptors, that the PVN is not primary activated in NPAF‐induced anorexia, and hypo‐ and hyperphagic individuals respond differently to NPAF.
Article
Vasoactive intestinal polypeptide (VIP) is involved in gastric smooth muscle relaxation, vasodilation, and gastric secretions. It is also associated with appetite regulation, eliciting an anorexigenic response in mammals, birds, and fish, however the molecular mechanism mediating this response is not well understood. The aim of the present study was thus to investigate hypothalamic mechanisms mediating VIP-induced satiety in 7-day old Japanese quail. In Experiment 1, chicks that received intracerebroventricular (ICV) injection of VIP reduced food intake for up to 180 minutes following injection, and reduced water intake for 90 minutes. In Experiment 2, VIP-treated chicks that were food restricted did not reduce water intake. In experiment 3, there was increased c-Fos immunoreactivity in the arcuate (ARC) and dorsomedial (DMN) nuclei of the hypothalamus in VIP-injected quail. In experiment 4, ICV VIP was associated with decreased NPY mRNA in the ARC and DMN, and an increase in CRF mRNA in the DMN. In experiment 5, VIP-treated chicks displayed fewer feed pecks and locomotor behaviors. These results demonstrate that central VIP causes anorexigenic effects that are likely associated with reductions in orexigenic tone involving the ARC and DMN.
Article
Prolactin-releasing peptide (PrRP) increases food intake in birds whereas it is a potent satiety factor in rodents and fish. The aim of this study was to determine the effects of central injection of PrRP on feeding behavior and hypothalamic physiology in juvenile Japanese quail (Coturnix japonica). Intracerebroventricular injection of 1692 pmol of PrRP increased food intake for the first 90 minutes post-injection but did not affect water intake. Quail treated with PrRP displayed more food and drink pecks, less time standing but more perching, and decreased defecations. PrRP-injected quail had increased c-Fos immunoreactivity in the dorsomedial nucleus (DMN) and arcuate nucleus (ARC) of the hypothalamus. Hypothalamic neuropeptide Y receptor sub-types 2 and 5 and melanocortin receptor 4 mRNAs were greater in PrRP- than vehicle-injected quail. In the DMN there was less corticotropin-releasing factor (CRF) mRNA, and in the ARC more CRF mRNA, in PrRP- than vehicle-injected chicks. Thus, PrRP increases food intake in quail, which is associated with changes in hypothalamic CRF and neuropeptide Y receptor gene expression and c-Fos immunolabeled cells in the ARC and DMN.
Article
The 2 structurally related peptides, neuropeptide FF (NPFF) and neuropeptide AF (NPAF), are encoded by the NPFF gene and have been identified as neuromodulators that regulate nociception and opiate-mediated analgesia via NPFF receptor (NPFFR2) in mammals. However, little is known about these 2 peptides in birds. In this study, we examined the structure, tissue expression profile, and functionality of NPAF and NPFF in chickens. Our results showed that: 1) unlike mammalian NPFF, NPFF from chicken and other avian species is predicted to produce a single bioactive NPAF peptide, whereas the putative avian NPFF peptide likely lacks activity due to the absence of functional RFamide motif at its C-terminus; 2) synthetic chicken (c-) NPAF can potently activate cNPFFR2 (and not cNPFFR1) expressed in HEK293 cells, as monitored by 3 cell-based luciferase reporter systems, indicating that cNPAF is a potent ligand for cNPFFR2, which activation could decrease intracellular cAMP levels and stimulate the MAPK/ERK signaling cascade; interestingly, gonadotropin-inhibitory hormone, a peptide sharing high structural similarity to NPAF, could specifically activate cNPFFR1 (but not cNPFFR2); 3) Quantitative real-time PCR revealed that cNPFF mRNA is widely expressed in chicken tissues with the highest level detected in the hypothalamus, whereas cNPFFR2 is expressed in all tissues examined with the highest level noted in the hypothalamus and anterior pituitary. Taken together, our data reveal that avian NPFF encodes a single bioactive NPAF peptide, which preferentially activates NPFFR2, and provides insights into potential structural and functional changes of NPFF-derived peptides during vertebrate evolution.
Article
There is little information regarding effects of fasting on feeding behavior and hypothalamic physiology in young Japanese quail. The aim was thus to measure food intake and hypothalamic mRNA in response to fasting and refeeding. Five d-old quail ate little during the dark cycle. Food intake was greatest during the first 2 h of the light cycle. Six day-old quail fasted for 6 h ate the most during the first 15 min of refeeding. In 7 d-old quail, 3 h of fasting up-regulated hypothalamic neuropeptide Y (NPY), NPY receptor sub-type 2 (NPYR2), agouti-related peptide (AgRP), orexin receptor 2 (ORXR2), melanocortin receptors 3 and 4 (MC3R and MC4R, respectively), and neuropeptide S (NPS) and decreased corticotropin-releasing factor receptor sub-type 1 (CRFR1) mRNA. Quail fasted for 3 h and refed for 1 h had greater NPY, AgRP, POMC, and MC3R but less CRFR1 mRNA than fed quail. Quail fasted for 6 h expressed more NPY, NPYR1, NPYR2, and MC3R and less ORXR2, prolactin releasing peptide (PrRP), cocaine- and amphetamine-regulated transcript (CART), and calcitonin (CAL) mRNA than fed quail. Quail fasted for 6 h and refed for 1 h expressed more NPY, NPYR1, NPYR2, AgRP, MC3R, MC4R, and NPS and less galanin, ORXR2, PrRP, CART, and CAL mRNA than fed birds. Hence, fasting induced changes in hypothalamic mRNA, with the largest changes occurring in genes associated with NPY and melanocortin signaling. Most genes remained elevated or downregulated after refeeding, suggesting that there was a time lag for transcription to respond to compensatory feeding.
Article
Neuropeptides AF (NPAF), FF (NPFF) and SF (NPSF) are RFamide neuropeptides known to be widely expressed in the mammalian central nervous system, where they fulfill a wide range of functions with pain modulation being the most prominent one. Recent evidence indicates that RFamides act as mediators in mast cell–sensory nerve communications related to allergic disease. Previous work by our group has shown that the expression levels of some members of the Mas-related gene receptor (Mrgpr) family in both enteric neurons and mucosal mast cells change during intestinal inflammation. The Mrgpr subtypes C11 and A4 can be activated by NPAF, while A1 and C11 are triggered by NPFF. The aim of the present study was to investigate whether RFamides of the NPFF group are expressed in the gastrointestinal tract and to identify possible targets and receptors that might be involved in RFamide-associated mast cell modulation. To this end, the expression and distribution patterns of NPFF/AF receptors and the NPFF precursor protein were determined in bone marrow-derived mucosal mast cells (BMMCs) by immunocytochemistry and (RT-)PCR. BMMCs were found to express MrgprA4 and A1, and functional analysis of the effects of NPAF by means of a β-hexosaminidase assay, mMCP-1 ELISA, electron microscopy and live cell calcium imaging revealed a piecemeal degranulation induced by NPAF. However, knock-out of MrgprA4 and A1 did not reduce the effect of NPAF, indicating that the BMMC response to NPAF was receptor independent. ProNPFF was expressed in neurons and BMMCs, suggesting that both cell types are potential sources of NPAF in situ. Our results show that the RFamide NPAF can be considered as a novel modulator of BMMC activity in the neuro-immune communication in the gastrointestinal tract, although the exact signaling pathway remains to be elucidated. This article is protected by copyright. All rights reserved.
Article
Alpha-melanocyte stimulating hormone (α-MSH) reduces food intake in birds and mammals. The objective of this experiment was to determine effects of α-MSH on food and water intake, and hypothalamic c-Fos immunoreactivity and appetite-associated factor mRNA in Japanese quail (Coturnix japonica), a species that has not undergone the same artificial selection for growth-related traits as the chicken. At 7 days post-hatch, 3-hour-fasted quail were intracerebroventricularly (ICV) injected into the lateral ventricle with 0 (vehicle), 0.5, 5, or 50 pmol of α-MSH and food and water intake were recorded at 30 minute intervals for 180 minutes. In the second and third experiment, quail were injected with 50 pmol α-MSH and hypothalami were collected at 1 hour to determine c-Fos immunoreactivity and mRNA abundance, respectively. At 30 minutes, quail injected with 5 or 50 pmol of α-MSH ate and drank less than vehicle-injected quail. Quail injected with 50 pmol ate less for the entire duration of the experiment and drank less than vehicle-injected quail for 120 minutes post-injection. Hypothalamic expression of agouti-related peptide and DOPA decarboxylase were greater in vehicle- than α-MSH-injected quail, whereas melanocortin receptor 4 (MC4R) mRNA was greater in α-MSH- than vehicle-injected birds. Alpha-MSH injection was associated with more c-Fos immunoreactive cells in the ventromedial hypothalamus (VMH) and paraventricular nucleus (PVN) of the hypothalamus. Results suggest that the anorexigenic effect of α-MSH is conserved among avians and that effects in quail are associated with the VMH and PVN and involve MC4R.
Article
... Thomas D Schmittgen 1 & Kenneth J Livak 2 . ABSTRACT. ... N. Engl. J . Med. ... 32, e178 (2004). | Article | PubMed | ChemPort |; Livak , KJ & Schmittgen , TD Analysis of relative gene expression data using real - time quantitative PCR and the 2 (- Delta Delta C(T)) Method . ...
Article
... Thomas D Schmittgen 1 & Kenneth J Livak 2 . ABSTRACT. ... N. Engl. J . Med. ... 32, e178 (2004). | Article | PubMed | ChemPort |; Livak , KJ & Schmittgen , TD Analysis of relative gene expression data using real - time quantitative PCR and the 2 (- Delta Delta C(T)) Method . ...
Article
... Thomas D Schmittgen 1 & Kenneth J Livak 2 . ABSTRACT. ... N. Engl. J . Med. ... 32, e178 (2004). | Article | PubMed | ChemPort |; Livak , KJ & Schmittgen , TD Analysis of relative gene expression data using real - time quantitative PCR and the 2 (- Delta Delta C(T)) Method . ...
Article
Gonadotropin-inhibitory hormone (GnIH), a 12 amino acid peptide, is expressed in the avian brain and inhibits luteinizing hormone secretion. Additionally, exogenous injection of GnIH causes increased food intake of chicks although the central mechanism mediating this response is poorly understood. Hence, the purpose of our study was to elucidate the central mechanism of the GnIH orexigenic response using 12 day post hatch layer-type chicks as models. Firstly, via mass spectrometry we deduced the chicken GnIH amino acid sequence: SIRPSAYLPLRFamide. Following this we used chicken GnIH to demonstrate that intracerebroventricular (ICV) injection of 2.6 and 7.8 nmol causes increased food intake up to 150 min following injection with no effect on water intake. The number of c-Fos immunoreactive cells was quantified in appetite-associated hypothalamic nuclei following ICV GnIH and only the lateral hypothalamic area (LHA) had an increase of c-Fos positive neurons. From whole hypothalamus samples following ICV GnIH injection abundance of several appetite-associated mRNA was quantified which demonstrated that mRNA for neuropeptide Y (NPY) was increased while mRNA for proopiomelanocortin (POMC) was decreased. This was not the case for mRNA abundance in isolated LHA where NPY and POMC were not affected but melanin-concentrating hormone (MCH) mRNA was increased. A comprehensive behavior analysis was conducted after ICV GnIH injection which demonstrated a variety of behaviors unrelated to appetite were affected. In sum, these results implicate activation of the LHA in the GnIH orexigenic response and NPY, POMC and MCH are likely also involved.
Article
QRFP, a member of the RFamide-related peptide family, is a strongly conserved hypothalamic neuropeptide that has been characterized in various species. Prepro-QRFP mRNA expression is localized to select regions of the hypothalamus, which are involved in the regulation of feeding behavior. The localization of the peptide precursor has led to the assessment of QRFP on feeding behaviors and the orexigenic effects of QRFP have been detected in mice, rats, and birds. QRFP acts in a macronutrient specific manner in satiated rats to increase the intake of a high fat diet, but not the intake of a low fat diet, and increases the intake of chow in food-restricted rats. Studies suggest that QRFP's effects on food intake are mediated by the adiposity signal, leptin, and hypothalamic neuropeptides. Additionally, QRFP regulates the expression and release of hypothalamic Neuropeptide Y and proopiomelanocortin/α-Melanocyte-Stimulating Hormone. QRFP binds to receptors throughout the brain, including regions associated with food intake and reward. Taken together, these data suggest that QRFP is a mediator of motivated behaviors, particularly the drive to ingest high fat food. The present review discusses the role of QRFP in the regulation of feeding behavior, with emphasis on the intake of dietary fat.
Article
While neuropeptide Y (NPY) has been studied extensively per its pronounced role in food intake stimulation as well as its role in central pathways governing eating disorders, it has to our knowledge not been studied in polygenic models of hypo- and hyperphagia. Thus, the present study was designed to measure central NPY-associated food intake in lines of chickens that have undergone long-term genetic selection for low (LWS) or high (HWS) body weight and exhibit hypo- and hyperphagia, respectively. LWS chicks did not respond with any magnitude of altered food intake to any dose of NPY tested, while HWS chicks responded to all doses of NPY at similar magnitudes throughout the duration of observation. Both lines responded with similar increases in c-Fos immunoreactivity in the lateral hypothalamus and both divisions of the paraventricular nucleus; there were no significant line or line by treatment interactions. These data support the hypothesis that differences exist in the central NPY system of chicks from LWS and HWS lines and may provide novel insight for understanding NPY control of appetite.
Article
Regulating food intake is complicated in animals including domestic birds. Just after hatching, neonatal chicks find their food by themselves and they can control food intake, since domestic chicken belongs to the precocial type of avian species. Thus, domestic chickens have relatively well-developed mechanisms of food-intake control at hatching. While many aspects of food-intake regulation in chickens appear similar to that in mammals, there are some responses that are unique to chickens. For instance, some neurotransmitters such as neuropeptide Y (NPY), orexin-A, orexin-B, motilin, melanin-concentrating hormone (MCH), galanin, growth hormone releasing factor (GRF) and ghrelin stimulate feeding in mammals. Only NPY strongly stimulates food intake in birds similar to that observed in mammals; however, both orexins, motilin, MCH and galanin failed to alter food intake of the chick. Moreover, GRF and ghrelin suppressed feeding of chicks. On the other hand, cholecystokinin (CCK), gastrin, glucagon-like peptide-1 (GLP-1), corticotropin-releasing factor (CRF), histamine, α-melanocyte stimulating hormone (α-MSH), leptin and bombesin are known to suppress feeding in mammals. These responses are similar to those of mammals except for leptin. Therefore, the inhibitory mechanisms for feeding are well conserved in chicks.
Article
Summary: Expression of c-Fos, or other immediate early gene products, by individual neurons can be used as a marker of cell activation, making staining of these proteins an extremely useful technique for functional anatomical mapping of neuroendocrine systems. Because these proteins are located in the nucleus, identification of the phenotype of the activated neuron using substances located within the cytoplasm can be accomplished with standard double-labeling immunocytochemical techniques. Although it is clear that neurons have the capacity to express a number of immediate early gene products, what remains to be established is whether there is a different pattern of expression following various stimuli. In our studies, we focus primarily on expression of one immediate early gene product, the c-Fos protein. We also include some experiments using expression of other members of the Fos family and Jun proteins as markers for neuronal activation. Our studies describe uses of c-Fos expression in both parvocellular and magnocellular hypothalamic systems to address the following issues: (a) identification of neuroendocrine cells activated by specific treatments and conditions, (b) ascertainment of functional differences in subpopulations activated by specific stimuli, (c) evaluation of neuronal activity in complex areas containing multiple neuroendocrine systems, (d) identification of other brain areas activated in conjunction with neuroendocrine systems following specific stimuli, (e) analysis of connectivity of activated neuroendocrine systems with other parts of the brain, and (f) identification of stimuli that decrease neuronal activity. The neuroendocrine systems studied include those that secrete arginine vasopressin (AVP), oxytocin (OT), corticotropin-releasing hormone (CRH), luteinizing hormone-releasing hormone (LHRH), and dopamine (DA). The use of c-Fos expression has permitted functional neuroanatomical mapping of these systems in response to specific stimuli such as cholecystokinin (CCK), hyperosmolality, and volume depletion, or during various physiological states such as the proestrous ovulatory luteinizing hormone (LH) surge and lactation. Although the use of c-Fos as a marker of neuronal activation will continue to be an extremely powerful technique, future studies will also be directed at relating immediate early gene expression to changes in neuroendocrine gene expression. To this end, we have shown that both c-Fos and c-Jun are expressed in neuroendocrine neurons in response to a number of stimuli, setting the stage for potential regulatory drive to genes containing AP-1 binding sites. In addition, by using double-label in situ hybridization techniques, it should be possible to compare gene expression in activated neurons (as determined by the presence of c-Fos mRNA) and unactivated neurons, thus permitting immediate early gene expression to move beyond its present use as a marker of neuronal activation to an assessment of its role in the promotion of specific neuropeptide gene expression.
Article
To our knowledge appetite-associated effects of neuropeptide SF (NPSF) are unreported. Thus chicks were intracerebroventricularly injected with 3.8, 7.5 and 15.0 nmol of NPSF and they reduced both their food and water intake. Blood glucose concentration was not affected. Additionally, NPSF-treated chicks did not exhibit any behaviors that were associated with stress or that may be competitive with ingestion. We conclude that NPSF is associated with anorectic and antidipsogenic effects.
Article
The neuropeptide control of gonadotropin secretion at the level of the anterior pituitary gland is primarily through the stimulatory action of the hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), which was originally isolated from mammals and subsequently from nonmammals. To date, however, an inhibitory peptide of gonadotropin release is unknown in vertebrates. Here we show, in a bird, that the hypothalamus also contains a novel peptide which inhibits gonadotropin release. Acetic acid extracts of quail brains were passed through C-18 reversed-phase cartridges, and then the retained material was subjected to the reversed-phase and cation-exchange high-performance liquid chromatography (HPLC). The peptide was isolated from avian brain and shown to have the sequence Ser-Ile-Lys-Pro-Ser-Ala-Tyr-Leu-Pro-Leu-Arg-Phe-NH2. Cell bodies and terminals containing this peptide were localized immunohistochemically in the paraventricular nucleus and median eminence, respectively. This peptide inhibited, in a dose-related way, gonadotropin release from cultured quail anterior pituitaries. This is the first hypothalamic peptide inhibiting gonadotropin release reported in a vertebrate. We therefore term it gonadotropin-inhibitory hormone (GnIH).
Article
Kisspeptin is distributed not only in brain areas for regulating reproduction but also in nuclei involved in feeding control. Whether kisspeptin alters food intake is unknown in mice. We examined how kisspeptin-10 influences feeding after intracerebroventricular injection in mice using automated monitoring. Kisspeptin-10 (0.3, 1, and 3 μg/mouse) dose-dependently inhibited the feeding response to an overnight fast by 50, 95, and 90% respectively, during the 2-3 h period postinjection. The 1μg/mouse dose reduced the 4-h cumulative food intake by 28% whereas intraperitoneal injection (10 μg/mouse) did not. The decreased 4-h food intake was due to reduced meal frequency (-45%/4 h), whereas meal size and gastric emptying were not altered. These data suggest that kisspeptin may be a negative central regulator of feeding by increasing satiety.
Article
Neuropeptide AF (NPAF), a member of the RFamide family, was centrally administered to rats to determine its effect on food intake. Rats responded with a linear dose-dependent reduction in cumulative food intake up to 3 h post injection, but when analyzed on a noncumulative basis, food intake was only significantly reduced at 0.5 h. To our knowledge, this is the first report of NPAF-induced reduction in food intake in a mammalian model.
Article
Neuropeptide AF (NPAF), a member of the RFamide family, is encoded by the same gene as neuropeptide FF (NPFF), which causes short-term anorexia. However, reports on the role of NPAF on appetite-related process are lacking. Thus, i.c.v. injections of 4.0, 8.0 and 16.0 nmol NPAF were administered to chicks to observe its effect on food and water intake. Chicks treated with 8.0 and 16.0 nmol i.c.v. NPAF decreased both their food and water intake. Additionally, all doses of NPAF injected caused a similar reduction in whole blood glucose concentration 180 min after injection. In a second experiment, chicks that received i.c.v. NPAF had an increased number of c-Fos immunoreactive cells in the dorsomedial, paraventricular (magnocellular and parvicellular parts) and ventromedial nuclei. The arcuate nucleus and lateral hypothalamic area were not affected. In a third experiment, NPAF-treated chicks exhibited fewer feeding pecks and spent less time perching, whereas they spent an increased time in deep rest. Other behaviours, including exploratory pecking, escape attempts, defecations, distance moved, and time spent standing, sitting and preening, were not affected by NPAF injection. We conclude that NPAF causes anorectic effects that are associated with the hypothalamus.
Article
Neuropeptide VF (NPVF) induces satiety through hypothalamic interactions; however, the central mechanism that mediates these effects is poorly understood. Therefore, this study was conducted to explore some possible opioid receptor associated mechanisms of NPVF-induced satiety using chicks as models. Co-injection of NPVF and a mu opioid receptor antagonist (beta-funaltrexamine, FNA) did not have an additive suppressive effect on food intake compared to NPVF and FNA when injected alone. Contrary, co-injection of NPVF and a delta opioid receptor antagonist (ICI-174,864, ICI) caused a greater reduction in food intake than when both were injected alone. Co-injection of NPVF and a kappa opioid receptor antagonist (nor-binaltorphimine, BNI) did not cause an additive suppressive effect on food intake than when the two were injected alone. A reversal of neuropeptide Y and beta-endorphin induction of food intake occurred when NPVF was co-injected. These results support that NPVF-induced satiety is mediated through mu and kappa but not delta subtypes of opioid receptors, and their ligands including neuropeptide Y and beta-endorphin. Thus, NPVF-associated anorexia may be mediated via modulation of the chick's innate opioid-associated orexigenic system.
Article
The actions of neuropeptide AF (NPAF), on the hypothalamic-pituitary-adrenal (HPA) axis, behavior and autonomic functions were investigated. NPAF (0.25, 0.5, 1, 2 nmol) was administered intracerebroventricularly to rats, the behavior of which was monitored by means of telemetry, open-field (OF) observations and elevated plus-maze (EPM) tests. The temperature and heart rate were recorded by telemetry, and the plasma ACTH and corticosterone levels were used as indices of the HPA activation. The dopamine release from striatal and amygdala slices after peptide treatment (100 nM and 1 microM) was measured with a superfusion apparatus. To establish the transmission of the HPA response, animals were pretreated with the corticotrophin-releasing hormone (CRH) receptor antagonist antalarmin or astressin 2B (0.5 nmol). In the OF test, the animals were pretreated with antalarmin or haloperidol (10 microg/kg), while in the EPM test they were pretreated with antalarmin or diazepam (1 mg/kg). NPAF stimulated ACTH and corticosterone release, which was inhibited by antalarmin. It activated exploratory locomotion (square crossings and rearings) and grooming in OF observations, and decreased the entries to and the time spent in the open arms during the EPM tests. The antagonists inhibited the locomotor responses, and also attenuated grooming and the EPM responses. NPAF also increased spontaneous locomotion, and tended to decrease the core temperature and the heart rate in telemetry, while it augmented the dopamine release from striatal and amygdala slices. These results demonstrate, that acute administration of exogenous NPAF stimulates the HPA axis and behavioral paradigms through CRH and dopamine release.
Article
Alpha-melanocyte-stimulating hormone (alpha-MSH) and its receptors are critical and indispensable for maintaining appropriate feeding behavior and energy homeostasis in both mice and humans. Corticotropin-releasing factor (CRF) is a candidate for mediating the anorexic effect of alpha-MSH. In the present study, we examined whether CRF and its receptors are involved in the anorexic effect of alpha-MSH, using CRF-deficient (CRFKO) mice and a CRF receptor antagonist. Intracerebroventricular administration of NDP-MSH, a synthetic alpha-MSH analogue, suppressed food intake in wild-type (WT) mice. This effect was abolished by pretreatment with a non-selective CRF receptor antagonist, astressin, suggesting that the effect of alpha-MSH-induced anorexia was mediated by a CRF receptor. In CRFKO mice, administration with NDP-MSH did not affect food intake at an early phase (0-4h). In addition, CRF mRNA levels in the hypothalamus were significantly increased in NDP-MSH-treated mice. Therefore, our findings, using CRFKO, strongly support evidence that CRF is involved in the acute anorexic effect of alpha-MSH. On the other hand, NDP-MSH administered to CRFKO mice led to suppressed food intake at the late phase (4-12h), similar to the effect in WT mice. Further, NDP-MSH similarly reduced food intake during the late phase in all types of mice, including WT, CRFKO, and CRFKO with corticosterone replacement. The results would suggest that alpha-MSH-induced suppression of food intake at late phase was independent of glucocorticoids and CRF.
Article
Two peptides that crossreact with an antiserum raised against Phe-Met-Arg-Phe-NH2 were purified from bovine brain extract. Their structures were determined to be Ala-Gly-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Trp-Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe- NH2 and Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2. The sequences were determined by gas-phase sequencing, except for the COOH-terminal phenylalaninamides. These were assigned on the basis of the reactivity of the peptides with the anti-Phe-Met-Arg-Phe-NH2 antiserum, which appears to recognize the determinant -Arg-Phe-NH2. Both peptides were synthesized, and the synthetic peptides were found to have the same HPLC retention times as the endogenous Phe-Met-Arg-Phe-NH2-immunoreactive peptides, thus confirming the assignment of phenylalaninamide to the COOH-terminal positions. Both of the synthetic peptides were found to decrease tail-flick latency in rats, and the octapeptide was more active than the octadecapeptide. The octapeptide was found also to attenuate the prolongation of the tail-flick latency induced by morphine.
Article
Immuno- and hybridization histochemical methods were used to examine a possible role for adrenocorticotropic hormone (ACTH) in regulating the expression of corticotropin-releasing peptides in rat hypothalamus. Densitometric assessments of relative levels of mRNAs encoding corticotropin releasing factor (CRF), arginine vasopressin (AVP) and oxytocin (OT) in the parvocellular division of the paraventricular nucleus (PVH) were carried out in intact, adrenalectomized (ADX) and hypophysectomized (HYPOX) animals. Both surgeries resulted in comparable increases in relative levels of CRF and AVP transcripts in the parvocellular PVH; no effects on OT mRNA in this compartment were evident. In a second experiment, ACTH or saline vehicle were administered systemically via osmotic minipump for seven days to rats submitted to both HYPOX and ADX surgeries. Lower replacement doses of ACTH reduced the number of detectable AVP-immunoreactive (AVP-ir) cells in the parvocellular PVH to 53% of that seen in vehicle-treated HYPOX/ADX controls; the number of CRF-IR cells was not significantly affected. Higher doses of ACTH resulted in counts of AVP- and CRF-IR neurons that were reduced to 32% and 70%, respectively, of control values. Staining patterns for the two peptides in the external lamina of the median eminence generally followed the cell count data. Neither densitometric nor combined immunohistochemical (for CRF-ir) and hybridization histochemical (for AVP mRNA) assays revealed any marked effect of ACTH on AVP mRNA expression in the parvocellular PVH of HYPOX/ADX rats. The results indicate that ACTH is capable of inhibiting corticotropin-releasing peptide, but not mRNA, expression in hypophysiotropic neurons. The mechanisms underlying these effects remain to be fully clarified.
Article
The effect of neuropeptide FF (NPFF), a mammalian FMRFamide-like peptide with antiopioid activity, on food intake was investigated in food-deprived rat. The ICV administration of NPFF (5 or 10 micrograms/rat) reduced food intake during the first 60 min after administration. ICV injection of naloxone (10 or 100 micrograms/rat), an opioid antagonist, also decreased food intake. However, the combination of NPFF and naloxone showed no additivity in the anorexigenic effect, suggesting that NPFF and naloxone reduced food intake by the common mechanism. These results indicate that NPFF may function as an endogenous anorexigenic peptide with anitiopioid function.
Article
FMRFamide-related peptides have been isolated from both invertebrates and vertebrates and exhibit a wide range of biological effects in rats. We show here that in humans 2 FMRFamide-related peptides are encoded by a single gene expressed as a spliced mRNA. The larger predicted peptide (AGEGLNSQFWSLAAPQRFamide) differs from the peptide isolated from bovines (AGEGLSSPFWSLAAPQRFamide) by the substitutions of 2 amino acids. The shorter predicted peptide (NPSF, SQAFLFQPQRFamide) is 3 amino acids longer than the bovine 8 amino-acid NPFF (FLFQPQRFamide) or the human NPFF peptide isolated from serum [5], suggesting that the encoded protein is subject to cleavage by a tripeptidyl peptidase or by a novel processing mechanism. On rat spinal cord, the larger peptide is indistinguishable in activity from the equivalent bovine peptide whereas the smaller extended peptide is inactive.
Article
Mechanical activity was recorded in circular and longitudinal smooth muscle preparations isolated from extensive regions of the porcine gastrointestinal tract in response to the FMRFamide-like neuropeptides F8Famide and A18Famide. In all preparations, the peptides were about equipotent in producing phasic contractions or enhancing spontaneous activity. The most prominent responses were observed in jejunal longitudinal strips which were on the average 91% (+/- 4% SEM, n = 15; 10(-6) M) of the histamine (10(-5) M) responses. The peptide-induced phasic activity was completely abolished by nifedipine but was unaffected by tetrodotoxin, atropine, phentolamine, yohimbine, phenoxybenzamine, propranolol, methysergide, cimetidine, indomethacin, levallorphane or naloxone. Both peptides enhanced acetylcholine-induced contractions. However, bovine ileum and guinea-pig taenia coli was not affected by these peptides. The results indicate that F8F- and A18F-amide contract porcine gastrointestinal smooth muscle by acting directly via non-opioid receptors on L-type calcium channels. In addition an increase of the sensitivity to cholinergic stimulation occurs.
Article
Hypothalamic peptide hormones regulate the secretion of most of the anterior pituitary hormones, that is, growth hormone, follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone and adrenocorticotropin. These peptides do not regulate the secretion of prolactin, at least in a specific manner, however. The peptides act through specific receptors, which are referred to as seven-transmembrane-domain receptors or G-protein-coupled receptors. Although prolactin is important in pregnancy and lactation in mammals, and is involved in the development of the mammary glands and the promotion of milk synthesis, a specific prolactin-releasing hormone has remained unknown. Here we identify a potent candidate for such a hormone. We first proposed that there may still be unknown peptide hormone factors that control pituitary function through seven-transmembrane-domain receptors. We isolated the complementary DNA encoding an 'orphan' receptor (that is, one for which the ligand is unknown). This receptor, hGR3, is specifically expressed in the human pituitary. We then searched for the hGR3 ligand in the hypothalamus and identified a new peptide, which shares no sequence similarity with known peptides and proteins, as an endogenous ligand. We show that this ligand is a potent prolactin-releasing factor for rat anterior pituitary cells; we have therefore named this peptide prolactin-releasing peptide.
Article
In the present study, the effect of intracerebroventricular (i.c.v.) administration of alpha-melanocyte stimulating hormone (alpha-MSH) on food intake of neonatal chicks was examined. In experiment 1, i.c. v. injection of alpha-MSH (0.04, 0.2 and 1 microg) significantly inhibited food intake of 3-h fasted chicks in a dose-dependent manner. In experiment 2, alpha-MSH strongly inhibited neuropeptide Y-induced feeding when neuropeptide Y (2.5 microg) and several doses of alpha-MSH were given simultaneously i.c.v. These results suggest that alpha-MSH plays an important role in the regulation of food intake of neonatal chicks.
Article
To determine whether the hypothalamic dorsomedial nucleus (DMN) may serve as a relay center for the central actions of leptin on thyrotropin-releasing hormone (TRH)-synthesizing neurons in the paraventricular nucleus (PVN), axonal projections from the DMN to TRH-containing neurons in the PVN were studied using the anterogradely transported marker substance, Phaseolus vulgaris-leucoagglutinin (PHA-L). Stereotaxic injections of PHA-L were targeted to the mid-dorsal and mid-ventral portions of the DMN. After 10-14-day survival, the brains were prepared for immunohistochemistry and immunostained with an antibody directed against PHA-L. Focal injections confined to the DMN were identified in 14 animals and gave rise to a fiber bundle that entered the PVN at the caudal pole of the nucleus, densely innervating all parvocellular subdivisions of the PVN. In double-labeled preparations using antisera to PHA-L and preproTRH 178-199, the latter as a marker for TRH-containing neurons in the PVN, proTRH-IR neurons were observed to be enmeshed in a network of PHA-L-containing fibers. When the injection site covered the entire DMN or the mid-dorsal part of the DMN, PHA-L-containing axon varicosities were juxtaposed to approximately 97 and 90% of proTRH neurons, respectively, in all parvocellular subdivisions of the PVN, and by ultrastructural analysis were shown to be synaptic. In contrast, when the injection site was centered primarily in the mid-ventral part of the DMN, only approximately 52% of proTRH-synthesizing neurons appeared to be innervated by PHA-L-containing axons. These data demonstrate that a major projection pathway exists from the DMN, specifically to TRH-producing neurons in the PVN, and suggest that the DMN is anatomically situated to exert a regulatory effect on TRH-synthesizing neurons in the PVN.
Article
Leptin deficiency results in a complex obesity phenotype comprising both hyperphagia and lowered metabolism. The hyperphagia results, at least in part, from the absence of induction by leptin of melanocyte stimulating hormone (MSH) secretion in the hypothalamus; the MSH normally then binds to melanocortin-4 receptor expressing neurons and inhibits food intake. The basis for the reduced metabolic rate has been unknown. Here we show that leptin administered to leptin-deficient (ob/ob) mice results in a large increase in peripheral MSH levels; further, peripheral administration of an MSH analogue results in a reversal of their abnormally low metabolic rate, in an acceleration of weight loss during a fast, in partial restoration of thermoregulation in a cold challenge, and in inducing serum free fatty acid levels. These results support an important peripheral role for MSH in the integration of metabolism with appetite in response to perceived fat stores indicated by leptin levels.
Article
It is well known that alpha-melanocyte stimulating hormone (alpha-MSH) inhibits feeding via melanocortin receptor-4 (MC4R) in the mammalian brain. The anorexigenic effect of alpha-MSH is attenuated by agouti-related protein (AGRP), an antagonist for MC4R. Present studies were carried out to clarify whether human AGRP (86-132) antagonizes the anorexigenic effect of alpha-MSH in broiler chicks. Intracerebroventricular injection of AGRP attenuated the anorexigenic effect of alpha-MSH. Furthermore, AGRP stimulated food intake of layer-type chicks under an ad libitum feeding condition but not broiler chicks, suggesting that the orexigenic effect of AGRP is different between two breeds. These also imply that the extent of the anorexigenic effect of endogenous alpha-MSH is different among two breeds. This may be a part of the difference in food intake between two breeds.
Article
A structure-activity study was carried out to determine the importance of the C-terminal amino acids of the octapeptide Neuropeptide FF (NPFF) in binding and agonistic activity. Affinities of NPFF analogues were tested toward NPFF receptors of the rat spinal cord and the human NPFF2 receptors transfected in CHO cells. The activities of these analogues were evaluated by their ability to both inhibit adenylate cyclase in NPFF2 receptor transfected CHO cells and to reverse the effect of nociceptin on acutely dissociated rat dorsal raphe neurons. The substitutions of Phenylalanine8 by a tyrosine, phenylglycine or homophenylalanine were deleterious for high affinity. Similarly, the replacement of Arginine7 by a lysine or D. Arginine induces a loss in affinity. The pharmacological characterization showed that the presence of the amidated Phe8 and Arg7 residues are also extremely critical for activation of anti-opioid effects on dorsal raphe neurons. The sequence of the C-terminal dipeptide seems also to be responsible for the high affinity and the activity on human NPFF2 receptors. The results support the view that a code messaging the molecular interaction toward NPFF-receptors is expressed in the C-terminal region of these peptides but the N-terminal segment is important to gain very high affinity.
Article
Neuropeptide FF (NPFF) is a mammalian peptide that is found in high concentrations in the central nervous system (CNS) and has also been detected in plasma. Various functions have been attributed to this peptide although its main action in the CNS remains unclear. In this study we observed that intracerebroventricular (ICV) injection of human NPFF, at early light phase in fasted rats, acutely reduced food intake and caused a large increase in water intake compared with saline injected controls. This effect was independently observed in two separate studies yielding similar results. Thus the central effects of NPFF to decrease food intake may be largely attributable to increased water intake.
Article
The central melanocortin system is perhaps the best-characterized neuronal pathway involved in the regulation of energy homeostasis. This collection of circuits is unique in having the capability of sensing signals from a staggering array of hormones, nutrients and afferent neural inputs. It is likely to be involved in integrating long-term adipostatic signals from leptin and insulin, primarily received by the hypothalamus, with acute signals regulating hunger and satiety, primarily received by the brainstem. The system is also unique from a regulatory point of view in that it is composed of fibers expressing both agonists and antagonists of melanocortin receptors. Given that the central melanocortin system is an active target for development of drugs for the treatment of obesity, diabetes and cachexia, it is important to understand the system in its full complexity, including the likelihood that the system also regulates the cardiovascular and reproductive systems.
Article
This paper reports the results of in vivo and in vitro experiments on the feedback effects of corticosterone on the hypothalamo-pituitary-adrenal axis in embryos at day 18 of incubation and in 9-day-old chickens. In vivo, a significant negative feedback was detected on the levels of corticotropin-releasing factor (CRF) precursor (proCRF) mRNA and on the plasma concentration of corticosterone, two hours after a single intravenous injection with 40 microg corticosterone. In contrast, the levels of CRF peptide in the hypothalamic area, the CRF receptor type 1 (CRF-R1) mRNA and pro-opiomelanocortin (POMC) mRNA levels in the pituitary were not affected by the in vivo administration of corticosterone. In vitro, incubation with 1 microM corticosterone did not affect the CRF-R1 mRNA levels in the pituitary, but significant feedback inhibition was observed on the POMC mRNA levels. These in vitro effects were the same at the two ages studied. The in vitro feedback effect on the proCRF gene expression, however, differed with age. In 9-day-old animals a decrease in gene expression was observed which was not detectable in embryonic tissue at day 18 of the ontogeny.
Article
Prolactin-releasing peptide (PrRP) is one of the inhibitory factors in feeding regulation of mammals. However, no information is available for avian species. The present study was done to clarify the effect of intracerebroventricular (ICV) injection of PrRP on feeding in chicks. Firstly, we found that ICV injection of PrRP (94-1500 pmol) significantly increased food intake in chicks. The result was completely different from those obtained in mammals. The orexigenic effect of PrRP was significantly weaker than that of neuropeptide Y (NPY), a potent orexigenic peptide, on an equimolar basis. The orexigenic effect of NPY was further enhanced with coinjection of PrRP. These results suggest the existence of a novel orexigenic mechanism in the chick brain, which might differ from NPY-involved feeding regulatory pathway. In addition, ICV injection of PrRP significantly decreased the rectal temperature, but the effect was weaker than that of NPY, suggesting that PrRP may inhibit energy expenditure in chicks. Taken together, we showed here that PrRP may be involved in the regulation of both feeding behavior and energy metabolism in the chick brain.
Article
Neuropeptides containing a C-terminal Arg-Phe-NH2 motif (RFamide peptides) are suggested to be involved in the control of feeding behavior in both invertebrates and vertebrates. Gonadotropin-inhibitory hormone (GnIH) is the first identified avian RFamide peptide that inhibits gonadotropin release from the pituitary. The GnIH precursor encodes one GnIH and its related peptides (GnIH-RP-1 and -RP-2) that shared the same C-terminal motif, Leu-Pro-Xaa-Arg-Phe-NH2 (Xaa = Leu or Gln) (LPXRFamide). GnIH neurons are localized in the paraventricular nucleus, with their fibers visible in multiple brain locations including the median eminence and brainstem. In this study, we therefore investigated the action of GnIH and its related peptides on feeding behavior. Intracerebroventricular (ICV) injection of GnIH, GnIH-RP-1 and GnIH-RP-2 significantly stimulated food intake in chicks. The chicken pentapeptide LPLRFamide, a degraded C-terminus of GnIH and GnIH-RP-1, did not stimulate feeding thereby demonstrating the importance of the N-terminus of GnIH and its related peptides for the orexigenic effect. Anti-GnIH antiserum suppressed appetite induced by fasting, but did not modify feeding under ad libitum conditions. The present study suggests that GnIH and its related peptides act as endogenous orexigenic factors in the brain of chicks.