ArticlePDF Available

Phage PPPL-1, A New Biological Agent to Control Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae in Kiwifruit

Authors:

Abstract and Figures

Pseudomonas syringae pv. actinidiae (Psa) is a Gram-negative bacterium that causes bacterial canker disease in kiwifruit. Copper or antibiotics have been used in orchards to control this disease, but the recent emergence of antibiotic-resistant Psa has called for the development of a new control agent. We previously reported that the bacteriophage (or phage) PPPL-1 showed antibacterial activity for both biovar 2 and 3 of Psa. To investigate the possibility of PPPL-1 to control bacterial canker in kiwifruit, we further tested the efficacy of PPPL-1 and its phage cocktail with two other phages on suppressing disease development under greenhouse conditions using 6 weeks old kiwifruit plants. Our results showed that the disease control efficacy of PPPL-1 treatment was statistically similar to those of phage cocktail treatment or AgrimycinTM, which contains streptomycin and oxytetracycline antibiotics as active ingredients. Moreover, PPPL-1 could successfully kill streptomycin-resistant Psa isolates, of which the treatment of BuramycinTM carrying only streptomycin as an active ingredient had no effect in vitro. The phage PPPL-1 was further characterized, and stability assays showed that the phage was stable in the field soil and at low temperature of 0 ± 2 °C. In addition, the phage could be scaled up quickly up to 1010 pfu/mL at 12 h later from initial multiplicity of infection of 0.000005. Our results indicate that PPPL-1 phage is a useful candidate as a biocontrol agent and could be a tool to control the bacterial canker in kiwifruit by Psa infection in the field conditions.
Content may be subject to copyright.
Antibiotics2021,10,554.https://doi.org/10.3390/antibiotics10050554www.mdpi.com/journal/antibiotics
Article
PhagePPPL1,aNewBiologicalAgenttoControlBacterial
CankerCausedbyPseudomonassyringaepv.actinidiae
inKiwifruit
YuRimSong
1
,NguyenTrungVu
1
,JungkumPark
1
,InSunHwang
1
,HyeonJuJeong
2
,YounSupCho
2

andChangSikOh
1,3,
*
1
DepartmentofHorticulturalBiotechnology,CollegeofLifeScience,KyungHeeUniversity,
Yongin17104,Korea;yulimy@khu.ac.kr(Y.R.S.);nguyen12sh@gmail.com(N.T.V.);
jungkuum@naver.com(J.P.);hongkong10@hanmail.net(I.S.H.)
2
FruitResearchInstitute,JeollanamdoAgriculturalResearchandExtensionServices,
Haenamgun59021,Korea;pob1256@korea.kr(H.J.J.);aktis@korea.kr(Y.S.C.)
3
GraduateSchoolofBiotechnology,KyungHeeUniversity,Yongin17104,Korea
*Correspondence:co35@khu.ac.kr;Tel.:+82312012678
Abstract:Pseudomonassyringaepv.actinidiae(Psa)isaGramnegativebacteriumthatcausesbacterial
cankerdiseaseinkiwifruit.Copperorantibioticshavebeenusedinorchardstocontrolthisdisease,
buttherecentemergenceofantibioticresistantPsahascalledforthedevelopmentofanewcontrol
agent.Wepreviouslyreportedthatthebacteriophage(orphage)PPPL1showedantibacterialac
tivityforbothbiovar2and3ofPsa.ToinvestigatethepossibilityofPPPL1tocontrolbacterial
cankerinkiwifruit,wefurthertestedtheefficacyofPPPL1anditsphagecocktailwithtwoother
phagesonsuppressingdiseasedevelopmentundergreenhouseconditionsusing6weeksoldki
wifruitplants.OurresultsshowedthatthediseasecontrolefficacyofPPPL1treatmentwasstatis
ticallysimilartothoseofphagecocktailtreatmentorAgrimycin
TM
,whichcontainsstreptomycin
andoxytetracyclineantibioticsasactiveingredients.Moreover,PPPL1couldsuccessfullykillstrep
tomycinresistantPsaisolates,ofwhichthetreatmentofBuramycin
TM
carryingonlystreptomycin
asanactiveingredienthadnoeffectinvitro.ThephagePPPL1wasfurthercharacterized,and
stabilityassaysshowedthatthephagewasstableinthefieldsoilandatlowtemperatureof0±2
°C.Inaddition,thephagecouldbescaledupquicklyupto10
10
pfu/mLat12hlaterfrominitial
multiplicityofinfectionof0.000005.OurresultsindicatethatPPPL1phageisausefulcandidateas
abiocontrolagentandcouldbeatooltocontrolthebacterialcankerinkiwifruitbyPsainfectionin
thefieldconditions.
Keywords:bacterialcanker;diseasecontrol;kiwifruit;phage;Pseudomonassyringaepv.actinidiae
1.Introduction
BacterialcankercausedbyPsahasbeenconsideredasthemostdevastatingdisease
inbothActinidiadeliciosa(greenkiwifruit)andActinidiachinensis(yellowkiwifruit)[1–3].
Thediseasesymptomscanoccuronthevariousorgansofkiwifruitplantssuchasred
oozeoncaneandtrunk,darkbrownspotswiththeyellowishhalosonleaves,wilting
vines,andnecrosisinflowers[4,5].Amongthem,thewidedeathofvinesleadstothe
mosteconomicloss[6].TheseriousdamagebyPsainfectiononthekiwifruitindustrywas
reportedinthemajorkiwifruitgrowingcountriessuchasChina,Italy,andNewZealand
[7–10].
PsawasfirstisolatedinJapanin1984[11],andsporadicoutbreakswerereportedin
Korea[4,12],Portugal[13],Spain[14],France[15],Turkey[16],Slovenia[17],Greece[18],
andGeorgia[19].Basedongeographical,genetic,andbiologicalcharacteristics,Psa
Citation:Song,Y.R.;Vu,N.T.;Park,
J
.;Hwang,I.S.;Jeong,H.J.;Cho,
Y.S.;Oh,C.S.PhagePPPL1,aNew
BiologicalAgenttoControlBacterial
CankerCausedbyPseudomonas
syringaepv.actinidiaeinKiwifruit.
A
ntibiotics2021,10,554.https://
doi.org/10.3390/antibiotics10050554
AcademicEditor:CarlaPereira
Received:13April2021
Accepted:7May2021
Published:10May2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Antibiotics2021,10,5542of13
strainscanbegroupedintobiovars1,2,3,5,and6[20].Biovar4wasreclassifiedasP.
syringaepathovaractinidifoliorum[21].InKorea,severalPsastrainsbelongingtobiovar2
wereisolatedfromgreenkiwifruitcv.‘Hayward’(e.g.,JYS5)andyellowkiwifruitcv.
‘Hort16A’(e.g.,KBE9)[4].Biovar3strains,whichwasfirstisolatedinItalyin2008[1],
alsoappearedinKorea(e.g.,SYS1)[22].Recently,biovar3strainshavebeenfoundin
Europe,NewZealand,Chile,andChina,resultinginseveredamageintheinternational
kiwifruitindustry[23–25].
Currently,onlyafeweffectivetherapeuticdefinitivemethodsaredemonstratedfor
cankerdiseaseinkiwifruit.Copperorstreptomycinproductshavebeentraditionallyused
[26],butPsastrainsresistanttocopperandstreptomycinhavebeenreportedinseveral
countriesincludingKorea[27–29].Moreover,continuoususageorenvironmentalcontam
inationwiththesechemicalssignificantlycontributestogenerationofresistantbacteria.
Hence,alternativesmethodstomanagebacterialcankerinkiwifruitareneeded.
Aphageisavirusthatinfectsandkillshostbacterialcells,anditismostlyspecies
specific.Itisnotharmfultohumanandenvironment,thusithasbeenconsideredasan
ecofriendlyagenttocontrolplantpathogenicbacteria,inparticular,antibioticresistant
pathogenicbacteria[30,31].Phageshavetheselfreplicatingpropertyandhighhostspec
ificity.Thesecharacteristicsmakethempromisingasanalternativemethodtoantibiotics
forcontrolofbacterialcanker[32].Tocontrolphytopathogenicbacteria,severalphage
basedproductssuchasAgriPhage™(SaltLakeCity,UT,USA)havealreadybeendevel
opedandcommercialized,andmanystudiesshowingsignificantbiocontrolefficacyof
phagesforthemanagementoftheseveralimportantphytopathogenicbacteriainrecent
yearshavebeenreported[33].
AlthoughthelargenumberofphagestargetingtoPsawereisolatedandcharacter
ized[34–37],onlyafewofthemsuchasPseudomonasphageφ6weredemonstratedto
showtheircontrolefficacyexvivoonbacterialcanker[38].Wepreviouslyreportedviru
lentphages,PPPL1,KHUφ34,andKHUφ38,whichcouldkillPsastrainsbelongingto
bothbiovar2and3andotherP.syringaepathovars[37,39].PPPL1andKHUφ38belong
toPodoviridaefamily,whileKHUφ34isamemberofMyoviridaefamily.Additionally,
PPPL1genomeanalysisillustratedthatitisavirulentphagewithgenesencodingaclass
IIholinandRzlikelysisprotein,butnogenesrelatingtolysogeniccycle[39].Further
more,thisphagewasstableunderdiverseenvironmentalconditionswherekiwifruittrees
aregrowing.Thus,weaimedtofurtherexaminethepotentialofPPPL1phageincontrol
lingbacterialcankerdiseaseinkiwifruitaswellasinmanagingantibioticresistantPsa
isolates.Furthermore,thecombinationofPPPL1withKHUφ34andKHUφ38incontrol
lingbacterialcankerdiseaseinkiwifruitwasalsoevaluated.
2.Results
2.1.ControlEfficacyofPPPL1PhagetoPreventBacterialCankerinPlanta
TotestthecontrolefficacyofPPPL1phageagainstbacterialcankerinkiwifruit,108
pfu/mLofphages(equivalenttoMOI1.0)werefirsttreatedonbothsidesof12kiwifruit
leavesof5plantsundergreenhouseconditions,followedbyapplicationofPsaKBE9
(biovar2)andSYS1(biovar3)mixture2hafterphagetreatment.ThePPPL1phageap
plicationsignificantlyprotectedthetreatedleaveswithPsa,basedonthereductionin
visiblesymptomaticspotscomparedtotheuntreatedone(Figure1a).Indeed,thenumber
ofvisiblesymptomaticspotsinthePPPL1pretreatedleavesmaintainedatalowerrate
around16.7±4.63(mean±standarderror)spotsafter14daysafterinoculation(dai),while
itcontinuouslyincreasedandreachedtoanaverageof512.9±144.35spotsat14daiinthe
untreatedleaves(Figure1b).Furthermore,thediseaseincidenceinthePPPL1pretreated
leaveswasnotstatisticallydifferentfromthatinleavestreatedwithcommercialantibiotic
productAgrimycin™(approximately41.7spots±16.83)(Figure1b).Theseassayswere
repeatedthreetimeswiththesimilarresults.Theseresultsindicatethatthepretreatment
Antibiotics2021,10,5543of13
ofPPPL1phagecanefficientlycontrolbacterialcankerinkiwifruitasmuchasthetreat
mentoftheantibioticsproduct.
Figure1.ControlefficacyofPPPL1phagetreatmentagainstbacterialcankercausedbyPseudomo
nassyringaepv.actinidiae(Psa)KBE9andSYS1mixtureinplanta.(a)Thekiwifruitleaves10days
afterpathogeninoculation(dai)withphagesorantibioticpesticide.Bottomfiguresareenlarged
photographsoftopleaves.Theyellowarrowsindicatesymptomaticspots.Thesterilizedwater
wasusedfordilutionofphagesandbacteria.Water,PPPL1(10
8
pfu/mL),orAgrimycin™(0.4
g/L)wasapplied2hbeforeinfectionwithPsa(10
8
cfu/mL).(b)Themeanofnumbersofsympto
maticspotsonthetreatedleaves(n=12).Theerrorbarsindicatethestandarderror,andthediffer
entalphabetsinthenextoflinesindicatethedifferentgroupsbasedonsignificantdifferencesatp
<0.05byDuncan’smultiplerangetestat14dai.
Previously,wereportedotherPsaphages,KHUφ34andKHUφ38,whichbelongto
MyoviridaeandPodoviridae,respectively,andtheirlyticactivityagainstPsaSYS1(biovar
3)waslessthanthatagainstPsaKBE9(biovar2)invitro[37].Therefore,wetriedtocom
paretheircontrolefficacyagainstPsaKBE9andSYS1mixtureinplanta.Consistentlyto
thepreviousresult,inthepresenceofPsaKBE9infection,theindividualtreatmentof
KHUφ34andKHUφ38phagesshowedlesseffectscomparedtoPPPL1inplanta,butthe
phagecocktailwiththreephagesshowedthesimilarefficacytoPPPL1phagealone(Fig
ure2).WhiletheleavestreatedwithPsaonlyshowedanaverageof512.9±144.35symp
tomaticspotsat14dai,theleavespretreatedwithKHUφ34andKHUφ38showed234.17
±98.46and428.33±112.15spots,comparedwithonly16.67±4.63and27.08±10.16spots
Antibiotics2021,10,5544of13
bypretreatmentwithPPPL1andthephagecocktail,respectively(Figure2b).Theseas
sayswererepeatedtwicewiththesimilarresults.Overall,theseresultsindicatethatthe
controlefficacyofPPPL1phageissignificantlysimilartophagecocktailtreatmentand
betterthanthoseoftwootherphages,consistentwithinvitrolyticactivity.
Figure2.ControlefficacyofPPPL1phagecomparedtoKHUφ34,KHUφ38,orphagecocktail
withallthreephagesagainstbacterialcankercausedbyPseudomonassyringaepv.actinidiae(Psa)
KBE9andSYS1mixtureinplanta.(a)Thekiwifruitleaves10daysafterPsainoculation(dai)with
phagesorantibioticpesticide.Bottomfiguresofeachtreatmentareenlargedphotographsoftop
leaves.Theyellowarrowsindicatesymptomaticspots.Thesterilizedwaterwasusedfordilution
ofphagesandbacteria.Buffer,eachphage(10
8
pfu/mL),orAgrimycin™(0.4g/L)wastreated2h
beforetreatmentwithbacterialsuspension(10
8
cfu/mL).Mockandbufferaresterilizedwater.(b)
Themeanofnumberofsymptomaticspotsonthetreatedleaves(n=12).Theerrorbarsindicate
thestandarderror,andthedifferentlettersontopofeachbarindicatethedifferentgroupsbased
onsignificantdifferencesatp<0.05byDuncan’smultiplerangetestat10dai.
Antibiotics2021,10,5545of13
2.2.ConcentrationandTreatmentTimingofPPPL1PhageforEfficientControlofBacterial
CankerinPlanta
Toexamineifphageconcentrationcouldbereducedfordiseasecontrol,thecontrol
efficacyofMOI0.1wascomparedwiththatofMOI1.0in20leavesof5plantsunder
greenhouseconditions.WhileleavestreatedwithPsaKBE9onlyshowed62.7±20.7spots
5weeksaftertreatment,about12.6±4.29and27.1±7.29spotsfromMOI1.0andMOI0.1,
respectively,wereobserved(Figure3a).Theseassayswererepeatedtwicewiththesimilar
results.Theseresultsindicatethat,althoughbothMOItreatmentssignificantlyreduced
thediseaseseveritybyPsainkiwifruitleaves,MOI1.0wasmoreefficient,anditwas
statisticallysimilartoAgrimycin
TM
treatment.
Figure3.Effectsofphageconcentrationandtimingofphagetreatmentoncontrolefficacyof
PPPL1phagetreatmentagainstbacterialcankercausedbyPseudomonassyringaepv.actinidiae
(Psa)KBE9inkiwifruitleaves.(a)Leavesweretreatedwithphagesat10
7
and10
8
pfu/mLby
brushingonbothsidesofleaves,thenPsawasappliedonthesamesides2hlater.(b)Leaveswere
inoculatedwithPsaonbothsidesofleavesbybrushing,thenphagesat10
7
and10
8
pfu/mLwere
appliedonthesamesidesbybrushing.Thefronttreatmentofeachtreatmentlabelwasfirstap
plied,andthebackonewastreated2hlater.Theerrorbarsindicatethestandarderror(n=20),
andthedifferentalphabetsinthenextoflinesindicatethedifferentgroupsbasedonsignificant
differencesatp<0.05byDuncan’smultiplerangetestat5weeksor7daysaftertreatment.
InadditiontotheprophylacticefficacyofPPPL1phage,itstherapeuticefficacywith
MOI1.0wasalsoexamined.TheplantswereinoculatedwithPsabacteriaandthenphages
wereapplied2hlater.Asaresult,thecontrolefficacyofphagetreatmentonkiwifruit
Antibiotics2021,10,5546of13
leavesafterpathogentreatmentexhibitedstatisticallynodifferencefromthatofnophage
treatment(Figure3b).TheseresultsindicatenotherapeuticefficacyofPPPL1phagefor
applicationinplanta.
2.3.AntibacterialEffectsofPPPL1PhageonStreptomycinResistantPsaIsolatesInVitro
StreptomycinbasedproductsaremainlyusedforcontrolofPsa[26,28].However,
manystudieshavereportedtheemergenceofstreptomycinresistantPsaisolates
[27,29,40].FourstreptomycinresistantPsastrainsisolatedfromSouthKorea(YCS3,JYS5,
KACC10584,andKACC10595)wereusedtoexaminetheantibacterialeffectsofPPPL1
againsttheminvitro.Forthisassay,Buramycin
TM
containingastreptomycinasanactive
compoundandAgrimycin™containingbothstreptomycinandoxytetracyclineasactive
compoundswereusedascontrols.Buramycin
TM
didnotsuppressbacterialgrowthof
streptomycinresistantPsaisolatesatall,whileitcausedtheformationofclearzone
againstonlyPsastrainKBE9,astreptomycinsensitiveisolate(Figure4a,b).Incontrast,
bothAgrimycin™andPPPL1phageformedclearzonesagainstallPsastrains,andtheir
antibacterialactivitieswerestatisticallyverysimilaratp<0.05,althoughthesizesofclear
zonesslightlyvariedamongPsaisolates.TheseresultsindicatethatPPPL1phagecould
beusedtocontrolstreptomycinresistantPsaisolateslikeantibioticsproducts.
Figure4.AntibacterialeffectsofPPPL1onstreptomycinresistantPsaisolates.(a)Theimagesof
platesshowingclearzones.Themosttopleftfigureshowedthetreatmentofotherfigures.(b)
Lengthofclearzonecausedbyeachtreatment.Theerrorbarsindicatethestandarddeviation(n=
3),andthealphabetsontopofeachbarindicatethedifferentgroupsbasedonsignificantdiffer
encesatp<0.05byDuncan’smultiplerangetestineachstrain.sH
2
O,sterilizedwater;Buramy
cin™(1.25g/L);Agrimycin™(0.4g/L);PPPL1(10
8
pfu/mL).
Antibiotics2021,10,5547of13
2.4.StabilityofPPPL1PhageintheFieldSoilandLowTemperature
Inthepreviousreport,weshowedthatthelyticactivityofPPPL1phageisstable
underthefieldtemperature(averagetemperatureinkiwifruitgrowingregionsinKorea
overtheyear:0to26°C)andpH4–11[39].However,here,wecheckedhowlongthelytic
activityofPPPL1phagecanbesustainedinthefieldsoilat26°C.First,tocheckthevia
bilityofPPPL1phageinsidethefieldsoil,10
8
pfu/mLofPPPL1phagewasinoculatedin
thefieldsoilcollectedfromthekiwifruitorchardinKorea.ThePPPL1phagekeptitslytic
activityagainstPsaformorethan240hinthefieldsoilat26°C(Figure5a).Forlongterm
storage,whetherthelyticactivityofPPPL1phagecanbekeptstableatlowtemperature
(0±2°C)ornotiscritical.Therefore,about2×10
10
pfu/mLofPPPL1phagesolutionas
theinitialtiterwaskeptatthistemperature.ThedatashowsthatPPPL1phagewasvery
stableformorethan7daysatlowtemperature(Figure5b).Theseresultsindicatethat
PPPL1phagecanbeusedinthefieldwherekiwifruittreesaregrowingandcanbekept
atlowtemperatureforstorage.
Figure5.StabilityofPPPL1phageinthefieldsoilat26°C(a)andlowtemperature(0–2°C)(b)
andalsominimumMOIforscaledupproduction(c).Thephagesof10
8
pfu/mLfor(a)and10
10
pfu/mLfor(b)wereusedforassays.Thephagewasincubatedwithhostbacteria(OD
600
=0.5)at
threedifferentMOIs,andthephageconcentrationwasmeasuredattheindicatedtimepoints(c).
Errorbarsindicatestandarddeviationsofthreereplicates(n=3),andthealphabetsonthetopof
errorbars(a)orinthenextlines(b)indicatethedifferentgroupsbasedonsignificantdifferences
atp<0.05byDuncan’smultiplerangetest.
2.5.OptimalConditionsforScaledupProductionofPPPL1Phage
TheoptimalconditionsforscaledupproductionofPPPL1phageneedtobedeter
mined,andwetesteddifferentparameterstooptimizephagetiters.Twoofcriticalcondi
tionsforefficientmassiveproductionofthephagearetheoptimalstageorconcentration
ofhostbacteriaandtheminimumMOI.First,wecheckedtheoptimalbacterialstagefor
Antibiotics2021,10,5548of13
efficientphageproductionwithMOI0.1.Thedatahighlightedthat0.5ofOD600(approxi
mately5×108cfu/mL)wasmoreefficientthan0.2or1.0ofOD600(datanowshown).Next,
wecheckedtheminimumMOIwith0.5ofOD600ofhostbacteria.Forthis,wesetupthree
differentMOIs,MOI0.0005,0.00005,and0.000005,andcheckedphagetitersatseveral
timepoints.ThephagetiterinallthreeMOIsincreasedduringthefirst6hafterinocula
tionofPPPL1phage(Figure5c).However,onlythephagetiterinMOI0.000005increased
moreuntil12hafterinoculation,anditreachedtothehighestamount(Figure5c).These
resultsindicatethatMOI0.000005withOD6000.5ofhostbacteriainliquidmediumisop
timalforscalingupproductionofPPPL1phage.
3.Discussion
BacterialcankercausedbyPsaisadestructivediseaseofkiwifruitandfurthercauses
seriouseconomiclossofkiwifruitproductionworldwide[41].Recently,aseriesofpapers
aboutthepracticalbacterialdiseasecontrolwithPseudomonasphagehavebeenpub
lished.However,thesestudiesfocusondemonstratingphageactivityinvitro,whileafew
studiestodatehavepreviouslyinvestigatedphageactivitybothinvitroandexvivo
[38,42].Oneofthechallengesinbiocontrolwithphagesistheincompatibilityofphage
efficacyunderinvitroandinvivoconditions[33].However,inthisstudy,wedemonstrate
theefficacyofPPPL1phageinsuppressingcankerdiseaseinvivo.
TheresultsofPPPL1applicationinkiwifruitplantsbeforePsainfectionunder
greenhouseconditionsdemonstrateddiseasesuppressionaseffectiveasAgrimycin™—a
commercialantibioticbasedproduct(Figures1and2).Thus,thisphagemightbeaprom
isingbiologicalagentforcontrolofbacterialcankerdisease.However,whenthephage
wasappliedafterPsainfection,itwasunabletosuppressdiseasedevelopment(Figure
3b).Unlikeourresults,theapplicationofaphagecocktailwithfourphages,CHF1,CHF7,
CHF9,andCHF21,in2yearoldkiwifruitplants(cv.‘Hayward’)1hpostinfectionwith
Psasignificantlysuppressedbothbacterialgrowthanddiseasedevelopmentafter30days
[42].TheMOIusedinthisstudywas10,whichwas10‐or100foldmorethanthoseinour
study.Moreover,Psatiterwas100foldlessthanthatofourstudy.Theusageofhigher
concentrationofphagesandlesstiterofPsaintheinvivoexperimentmightresultin
significantcontrolefficacy.Therefore,wesuggestapplyingthisphageearlyspringbefore
thediseaseisoccurredandshouldnotbeusedafterpathogeninfectskiwifruittreesinthe
fieldorchards.Thetimingtoapplychemicalproductsforcontrolofbacterialcankerin
fieldisverycritical[43].
Theapplicationofphagesinfieldfaceswithdifferentchallengessuchastoleranceto
environmentalconditions[33].PPPL1phageisstablebythewayitistreatedorunder
theenvironmentinkiwifruitcultivationregions[39].Thispreviousstudyshowedthat
PPPL1phagewasdemonstratedtobestableupto40°C,atpHrangeof3–11,andunder
UVA.Furthermore,inthisstudy,weshoweditslongevityintheorchardsoilat26°Cand
itsstabilityatlowtemperature(Figure5).Ourresultstogetherwiththepreviousstudies
supportthepotentialofPPPL1phageforbacterialcankercontrolinfieldwherekiwifruit
treesaregrowing.Thestabilityofphagesatnaturalenvironmentincropgrowingregions
isoneofcriticalfactorsforgoodcontrolefficacyagainstbacterialdiseases.Therearemany
caseswherephagesarestableinthecropgrowingconditionsinfield[42,44,45].
Currently,phagecocktailhasemergedasasolutiontoovercomethelimitationof
singlephagetreatment[33].Wangetal.[46]explainedthreedifferentwaysthatthephage
cocktaildecreasedthebacterialwiltincidenceintomatoincluding(1)individuallyinfect
ingandkillingtargetbacteria,thusreducingthepathogendensity,(2)theslowdevelop
mentofpathogenstrainsviaenforcingphageresistantdevelopment,or(3)encouraging
thedevelopmentofantagonisticbacterialspecies.Furthermore,tousephagecocktailmay
slowdowntheappearanceofresistantpathogensifphagesinphagecocktailaregenet
icallyandmorphologicallydifferent.Ourphagecocktail,KHUφ34,KHUφ38,andPPPL
1,couldsuppressdiseasebythemixedPsainfectionandshowednostatisticaldifference
withPPPL1treatmentaloneinsuppressingdisease(Figure3).Therefore,itwasfailedto
Antibiotics2021,10,5549of13
seetheadvantageofphagecocktailfordiseasecontrolinthisstudy,probablybecausethe
treatmentwithasinglephage,PPPL1,wassoefficient.However,atleast,therewasno
negativeeffectsofthreephagecocktailinkiwifruitleaves.Becausebiovar2and3ofPsa
arepresentinKoreaandalsothereispossibilityofappearanceofresistantpathogenvar
iantsagainstPPPL1phage,thephagecocktailmixtureshouldbeconsideredforlong
termtreatment.
Traditionally,antibioticshavebeenusedtocontrolpathogenicbacteriainnotonly
agriculturebutalsofoodprocessingandhumantherapy.However,theriskofappearance
ofantibioticresistantpathogenswaswarned.Inthecaseofbacterialcankerdisease,strep
tomycinbasedpesticideshavebeenusedtocontrolPsa,andstreptomycinresistant
strainswerealsoreported[29].PPPL1phagesuccessfullyinhibitedthegrowthofseveral
streptomycinresistantPsastrainsisolatedinSouthKorea,comparedtotwostreptomy
cinbasedpesticidesBuramycin™orAgrimycin™(Figure3).Thus,PPPL1phagemight
beusedforcontrollingstreptomycinresistantPsastrains.Furthermore,thecombination
ofPPPL1withantibioticsbasedpesticidesmightalsoenhancethecontrolefficacyofthe
currentantibioticapplicationonlyandalsoreducetheusageofantibioticsbasedpesti
cides.However,furtherexperimentsareneededtoconfirmthesepossibilities.
Althoughsomanypapersdemonstratedtheefficacyofphagesinplantdiseasecon
trol,thereareonlyafewcommercialphagebasedproductssuchasAgriPhageTM,Erwiph
age,andBiolysesavailableworldwide[33].Todeterminethebestconditionforprocessing
ofphageproducts,theconcentrationofhostbacteriaandtheminimumMOIshouldbe
consideredandselected.Inthisstudy,0.5ofOD600ofhostbacteriaandMOIof0.000005
wereshowntobethesuitableconditionforscaledupproduction.Therelativehighcost
ofphageapplicationcomparedtotheconventionalmethodsisgenerallyoriginatedfrom
thescaledupproductionstep,andthisleadstothedifficultyinphagetherapyinfield
conditions[47].However,therapidincreaseinPPPL1concentrationuptoapproximately
1010pfu/mLwithin12hmightbesuitableforscaledupproductionwithinshorttermpe
riod,thuscontributingtothepricereduction.ThesefeaturesofPPPL1phagewillbevery
usefultomakeaphageproductforcommercialization.
4.MaterialsandMethods
4.1.GrowthConditionsofBacterialStrains
SixPsastrainsincludingKBE9,SYS1,KACC10584,andKACC10595,isolatedfrom
A.chinensiscultivar(cv.);‘Hort16AinSouthKorea;andJYS5andYCS3isolatedfromA.
deliciosacv.‘Hayward’inSouthKorea[4]wereusedinthisstudy.Allstrainscorre
spondedtobiovar2exceptSYS1(biovar3).Forexperimentalpurpose,asinglecolonyof
eachstrainonTrypticSoybrothAgar(TSA;Difco,FranklinLakes,NJ,USA)platewas
usedforculturingitin5mLofliquidTrypticSoyBroth(TSB;Difco,FranklinLakes,NJ,
USA)inashakingincubatorat140rpmand26°Cfor18h.Thestreptomycinresistant
strains(JYS5,YCS3,KACC10584,andKACC10595;[29])wereculturedonmediawith50
µg/mLofstreptomycin(DuchefaBiochemie,RVHaarlem,TheNetherlands).
4.2.PhageLysatePreparation
ThephagesPPPL1,KHUφ34,andKHUφ38[37,39]werestoredinsodiumchloride
magnesiumsulfate(SM)buffer(50mMTrisHCl,100mMNaCl,and10mMMgSO47H2O)
at4°Cforroutineuseandat−80°Cbyglycerolstockforlongtermstorage.Asingle
plaqueofeachphagewascollectedbyrecoveryfromglycerolstockusingthepreviously
describedmethodsofplaqueassays[48]andthenresuspendedinSMbuffer.Briefly,the
phagestocksolutionwasinoculatedtomelted5mLTSAcontaining0.4%agar(~42°C)
and100μLofthebacterialsuspensionandthenpouredonTSAsolidplateandincubated
at26°Covernightafterproperlysolidifying.
Forphagelysatepropagation,100μLofplaqueresuspension(~108pfu/mL)wasin
oculatedwith5mLofovernight(18h)liquidcultureofPsaKBE9(OD600=0.5–0.6)ina
Antibiotics2021,10,55410of13
shakingincubatorat140rpmfor6h.Then,thelysatewascollectedbycentrifugationfor
5minat8000×gtoremovetheremainedbacteriaaswellasitsdebris.Ifnecessary,the
supernatantwastreatedby1%chloroformfor30min,andthenthechloroformwasre
movedbycentrifugationfor15minat3000×g.Finally,thesupernatantwasfilteredwith
0.22μmporesizeofPVDFsyringefilter(Futecs,Deajeon,Korea)andstoredin4°C.To
determinethephagelysateconcentration,its10folddilutedserieswasdottedonthesoft
TSA(0.4%agar)plateinoculatedwith100μLofPsaKBE9(OD600=0.5–0.6).Itsconcentra
tionwascalculatedbycountingthenumberofplaquesformedinthedottedarea.
4.3.ScaledupProductionandPrecipitationofPhages
Todeterminetheoptimalstageofhostbacteriaforscaledproduction,theovernight
cultureofPsastrainKBE9wasdiluted1000foldin400mLliquidmedium,andtheywere
grownupto0.2(~2×108cfu/mL),0.5(~5×108cfu/mL),and1.0(~109cfu/mL)ofoptical
densityat600nm(OD600).Then,thePPPL1phageformultiplicityofinfection(MOI)0.1
wasaddedtothebacterialsuspension,anditstiterwaschecked12hlater.Next,todeter
minetheminimumMOIforscaledupproduction,400mLbacterialsuspensionofPsa
strainKBE9(OD600=0.5)wasinoculatedwith400μLof2.5×106,2.5×107,and2.5×108
pfu/mLofthephagelysatetoreachMOI0.0005,0.00005,and0.000005.After0,6,12,and
18hofshakingincubationat26°C,thephagelysatewascollectedbycentrifugationat
8000rpmfor10minandfiltrationusingfiltersystem(0.22μm;Corning,NY,USA)with
vacuumpumpsystem,andthephagetiterwascalculatedbytheplaqueassaymethod.
Togethigherphagetiter,thephagelysatewasprecipitatedusing10%polyethylene
glycol6000(DaejungChemical&metals,Siheung,Korea)supplementedwith1MNaCl
(LPSsolution,Daejeon,Korea)asfinalconcentrations.Afterovernightincubationat4°C,
thepelletswerecollectedbycentrifugationat4°Cand9000×gfor20minandthenresus
pendedwith2mLofSMbuffer.Finally,0.1MKClwasaddedtothesuspensionforwell
separationofphagesfromthepellets,andthesuspensionwascentrifugedat12,000×g
and4°Cfor10min.
4.4.ControlEfficacyTestofPPPL1PhageInVivo
ThegraftedkiwifruitplantswithA.chinensiscv.‘Haehyang’(originatedfromthe
highlysusceptiblecv.‘Hongyang’[3])asscionandA.deliciosacv.‘Haywardasrootstock
wereplantedin6Lpotsinthegreenhouse(15–25°C)for6weeks.Forevaluatingthe
controlefficacyofPPPL1phageinvivo,12leaves(about15cmindiameter)of5plants
weretreatedwithphageresuspension(108pfu/mL)onbothsidesusingthesilicon
brusher.After2h,thebacteriasuspension(OD600=0.1,~108cfu/mL)ofPsaKBE9andSYS1
mixtureinsterilizedtapwater(10mMMgCl2bufferwasnotusedbecauseitcausedne
crosisinkiwifruitleaves)wastreatedusingthesamemethod.Forpositivecontrol,leaves
weretreatedwithAgrimycinTM(0.4g/L,SUNGBOChemicals,Seoul,Korea),andsterilized
tapwaterwasusedasmocktreatment.Moreover,thecontrolefficacyofPPPL1phage
wascomparedtotheindividualKHUφ34andKHUφ38phages[38]andalsotophage
cocktailwithallthreephages.Forphagecocktail,thesameamountofeachphagewas
mixedtoreachthefinalconcentrationofeachphageto108pfu/mL.Toenhancetheattach
mentoftreatedphageandbacterialcells,0.02%SilwetL77(Momentive,NY,USA)as
finalconcentrationwasaddedtoalltreatments.Thetreatedleaveswereobservedfor2
weeks,andthenumberofleafspotswerecountedtoevaluatethecontrolefficacy.
TooptimizetheamountofPPPL1phagefortreatment,twophageconcentrations
(107and108pfu/mL)wereexaminedin20leavesof5plantsat2hbeforeorafterinocula
tionofPsaKBE9.Theexperimentswereperformed,asdescribedabove.Thetreatedplants
wereobservedfor5weeksor7days.
Antibiotics2021,10,55411of13
4.5.AntibacterialEffectofPPPL1PhagebyFilterPaperDiscMethodInVitro
TheantibacterialactivityofPPPL1phagewastestedforcomparisonwithrecom
mendedpesticidesagainststreptomycinresistantPsausingdiscdiffusiontest.Briefly,the
sterilizedfilterpaperdiscs(Ø8mm;Advantech,Taipei,Taiwan)wereplacedonTSA
platesincubatedwith5mLofmeltingsoftagarand100μLofeitherPsaKBE9suspension
(OD600=0.5)orstreptomycinresistantPsastrainssuchasYCS3,JYS5,KACC10584,and
KACC10595.Aftercompletelysolidifying,40μLofBuramycin™(1.25g/L;FarmHan
nong,Seoul,Korea),Agrimycin™(0.4g/L)orPPPL1(108pfu/mL)wasdroppedontoeach
disc.Aftercompletedrying,eachplatewassealedandincubatedat26°C.Thediameter
(cm)ofclearzoneswasmeasuredastheindicationofantibacterialactivity.
4.6.StabilityTestofPPPL1PhageintheFieldSoilandLowTemperature
Forstabilitytestinsoil,108pfu/gofPPPL1phagewasinoculatedtothefieldsoil
collectedfromkiwifruitorchardandthenincubatedat26°C.Thelivephagetiterwas
determinedat0,1,2,4,and7daysafterinoculationusingplaqueassayagainstPsastrain
KBE9.Forstabilityatlowtemperature,1mLphagesuspension(~1010pfu/mL)waskept
at0–2°C,andthelivephagetiterwasmeasuredat7daysafterincubation.
4.7.StatisticalAnalysis
Tostatisticallyanalyzeallresults,Duncan’smultiplerangetest(p<0.05)wasper
formedwithSAS(version9.4forWindows;SASInstitute,Cary,NC,USA).Allexperi
mentswererepeatedmorethantwiceusingthreeormoreplantsineachassay.
AuthorContributions:Y.R.S.,N.T.V.,J.P.,I.S.H.,H.J.J.,Y.S.C.,andC.S.O.designedandper
formedexperiments.Y.R.S.,N.T.V.,andC.S.O.wroteapaper.Allauthorsreviewedandapproved
thefinalversionofthemanuscript.
Funding:ThisworkwascarriedoutwiththesupportofKoreaInstituteofPlanningandEvaluation
forTechnologyinFood,Agriculture,Forestry(IPET)throughAgriBioindustryTechnologyDevel
opmentProgram,fundedbyMinistryofAgriculture,FoodandRuralAffairs(MAFRA)(No.317012
4andNo.320041051HD020).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Alldataarecontainedwithinthearticle.
Acknowledgments:WethankYoungJinKohandKoreanAgriculturalCultureCollectionfor
providingPsastrains.
ConflictsofInterest:Theauthorsdeclarethattheyhavenoconflictofinterest.
References
1. Ferrante,P.;Scortichini,M.IdentificationofPseudomonassyringaepv.actinidiaeascausalagentofbacterialcankerofyellow
kiwifruit(ActinidiachinensisPlanchon)incentralItaly.J.Phytopathol.2009,157,768–770.
2. McCann,H.C.;Li,L.;Liu,Y.;Li,D.;Pan,H.;Zhong,C.;Rikkerink,E.H.;Templ e ton,M.D.;Straub,C.;Colombi,E.Originand
evolutionofthekiwifruitcankerpandemic.GenomeBiol.Evol.2017,9,932–944.
3. Wang,F.;Li,J.;Ye,K.;Liu,P.;Gong,H.;Jiang,Q.;Qi,B.;Mo,Q.AninvitroActinidiabioassaytoevaluatetheresistanceto
Pseudomonassyringaepv.actinidiae.PlantPathol.J.2019,35,372.
4. Koh,Y.;Kim,G.;Jung,J.;Lee,Y.;Hur,J.OutbreakofbacterialcankeronHort16A(ActinidiachinensisPlanchon)causedby
Pseudomonassyringaepv.actinidiaeinKorea.N.Z.J.CropHortic.Sci.2010,38,275–282.
5. Donati,I.;Buriani,G.;Cellini,A.;Mauri,S.;Costa,G.;Spinelli,F.Newinsightsonthebacterialcankerofkiwifruit(Pseudomonas
syringaepv.actinidiae).J.BerryRes.2014,4,53–67.
6. Vanneste,J.L.Thescientific,economic,andsocialimpactsoftheNewZealandoutbreakofbacterialcankerofkiwifruit(Pseu
domonassyringaepv.actinidiae).Annu.Rev.Phytopathol.2017,55,377–399.
7. Youn g,J.Pseudomonassyringaepv.actinidiaeinNewZealand.J.PlantPathol.2012,94,S1.5–S1.10.
8. Qin,H.;Gao,X.;Zhao,Z.;Zhu,S.;Li,J.;Huang,L.TheprevalencedynamicsandrulesofbacterialcankerofkiwifruitinShaanxi.
ActaPhytophylacicaSin.2013,40,225–230.
Antibiotics2021,10,55412of13
9. Donati,I.;Cellini,A.;Sangiorgio,D.;Vanneste,J.L.;Scortichini,M.;Balestra,G.M.;Spinelli,F.Pseudomonassyringaepv.actinidiae:
Ecology,infectiondynamicsanddiseaseepidemiology.Microb.Ecol.2020,80,81–102.
10. Guroo,I.;Wani,S.;Wani,S.;Ahmad,M.;Mir,S.;Masoodi,F.Areviewofproductionandprocessingofkiwifruit.Int.J.Food
Process.Techn ol.2017,8,699–705.
11. Tak i kawa,Y.;Serizawa,S.;Ichikawa,T.;Tsuyumu,S.;Goto,M.Pseudomonassyringaepv.actinidiaepv.nov.thecausalbacterium
ofcankerofkiwifruitinJapan.Jpn.J.Phytopathol.1989,55,437–444.
12. Koh,Y.;Park,S.;Lee,D.CharacteristicsofbacterialcankerofkiwifruitoccurringinKoreaanditscontrolbytrunkinjection.
KoreanJ.PlantPathol.1996,12,324–330.
13. Balestra,G.;Renzi,M.;Mazzaglia,A.FirstreportofbacterialcankerofActinidiadeliciosacausedbyPseudomonassyringaepv.
actinidiaeinPortugal.NewDis.Rep.2010,22,10.
14. Balestra,G.;Renzi,M.;Mazzaglia,A.FirstreportofPseudomonassyringaepv.actinidiaeonkiwifruitplantsinSpain.NewDis.
Rep.2011,24,10.
15. Vanneste,J.;Poliakoff,F.;Audusseau,C.;Cornish,D.;Paillard,S.;Rivoal,C.;Yu,J.FirstreportofPseudomonassyringaepv.
actinidiae,thecausalagentofbacterialcankerofkiwifruitinFrance.PlantDis.2011,95,1311.
16. Bastas,K.;Karakaya,A.FirstreportofbacterialcankerofkiwifruitcausedbyPseudomonassyringaepv.actinidiaeinTurkey.Plant
Dis.2012,96,452.
17. Dreo,T.;Pirc,M.;Ravnikar,M.;Žežlina,I.;Poliakoff,F.;Rivoal,C.;Nice,F.;Cunty,A.FirstreportofPseudomonassyringaepv.
actinidiae,thecausalagentofbacterialcankerofkiwifruitinSlovenia.PlantDis.2014,98,1578.
18. Holeva,M.;Glynos,P.;Karafla,C.FirstreportofbacterialcankerofkiwifruitcausedbyPseudomonassyringaepv.actinidiaein
Greece.PlantDis.2015,99,723.
19. Meparishvili,G.;Gorgiladze,L.;Sikharulidze,Z.;Muradashvili,M.;Koiava,L.;Dumbadze,R.;Jabnidze,N.Firstreportofbac
terialcankerofkiwifruitcausedbyPseudomonassyringaepv.actinidiaeinGeorgia.PlantDis.2016,100,517.
20. Sawada,H.;Kondo,K.;Nakaune,R.Novelbiovar(biovar6)ofPseudomonassyringaepv.actinidiaecausingbacterialcankerof
kiwifruit(Actinidiadeliciosa)inJapan.Jpn.J.Phytopathol.2016,82,101–115.
21. Cunty,A.;Poliakoff,F.;Rivoal,C.;Cesbron,S.;FischerLeSaux,M.;Lemaire,C.;Jacques,M.;Manceau,C.;Vanneste,J.Charac
terisationofPseudomonassyringaepv.actinidiae(Psa)isolatedfromFranceandassignmentofstrainsPsabiovar4toadenovo
pathovar:Pseudomonassyringaepv.actinidifoliorumpv.nov.PlantPathol.2015,64,582–596.
22. Koh,Y.J.;Kim,G.H.;Koh,H.S.;Lee,Y.S.;Kim,S.C.;Jung,J.S.OccurrenceofanewtypeofPseudomonassyringaepv.actinidiae
strainofbacterialcankeronkiwifruitinKorea.PlantPathol.J.2012,28,423–427.
23. Mazzaglia,A.;Studholme,D.J.;Taratufolo,M.C.;Cai,R.;Almeida,N.F.;Goodman,T.;Guttman,D.S.;Vinatzer,B.A.;Balestra,
G.M.Pseudomonassyringaepv.actinidiae(PSA)isolatesfromrecentbacterialcankerofkiwifruitoutbreaksbelongtothesame
geneticlineage.PLoSONE2012,7,e36518.
24. Butler,M.I.;Stockwell,P.A.;Black,M.A.;Day,R.C.;Lamont,I.L.;Poulter,R.T.Pseudomonassyringaepv.actinidiaefromrecent
outbreaksofkiwifruitbacterialcankerbelongtodifferentclonesthatoriginatedinChina.PLoSONE2013,8,e57464.
25. McCann,H.C.;Rikkerink,E.H.;Bertels,F.;Fiers,M.;Lu,A.;ReesGeorge,J.;Andersen,M.T.;Gleave,A.P.;Haubold,B.;Wohlers,
M.W.GenomicanalysisofthekiwifruitpathogenPseudomonassyringaepv.actinidiaeprovidesinsightintotheoriginsofan
emergentplantdisease.PLOSPathog.2013,9,e1003503.
26. Cameron,A.;Sarojini,V.Pseudomonassyringaepv.actinidiae:Chemicalcontrol,resistancemechanismsandpossiblealternatives.
PlantPathol.2014,63,1–11.
27. Han,H.S.;Koh,Y.J.;Hur,J.S.;Jung,J.S.OccurrenceofthestrAstrBstreptomycinresistancegenesinPseudomonasspeciesiso
latedfromkiwifruitplants.J.Microbiol.2004,42,365–368.
28. Nakajima,M.;Masao,G.;Tadaaki,H.SimilaritybetweencopperresistancegenesfromPseudomonassyringaepv.actinidiaeand
P.syringaepv.tomato.J.Gen.PlantPathol.2002,68,68–74.
29. Lee,Y.S.;Kim,G.H.;Song,Y.R.;Oh,C.S.;Koh,Y.J.;Jung,J.S.StreptomycinResistantIsolatesofPseudomonassyringaepv.acti
nidiaeinKorea.Res.PlantDis.2020,26,44–47.
30. Jones,J.B.;Jackson,L.;Balogh,B.;Obradovic,A.;Iriarte,F.;Momol,M.Bacteriophagesforplantdiseasecontrol.Annu.Rev.
Phytopathol.2007,45,245–262.
31. Jassim,S.A.;Limoges,R.G.Naturalsolutiontoantibioticresistance:Bacteriophages‘TheLivingDrugs’.WorldJ.Microbiol.Bio
technol2014,30,2153–2170.
32. Brüssow,H.WhatisneededforphagetherapytobecomearealityinWesternmedicine?Virology2012,434,138–142.
33. Vu,N.T.;Oh,C.S.BacteriophageUsageforBacterialDiseaseManagementandDiagnosisinPlants.PlantPathol.J.2020,36,204–
217.
34. Yin,Y.;Ni,P.e.;Deng,B.;Wan g,S.;Xu,W.;Wang, D.IsolationandcharacterisationofphagesagainstPseudomonassyringaepv.
actinidiae.ActaAgric.Scand.BSoilPlantSci.2019,69,199–208.
35. DiLallo,G.;Evangelisti,M.;Mancuso,F.;Ferrante,P.;Marcelletti,S.;Tinari,A.;Superti,F.;Migliore,L.;D’Addabbo,P.;Frezza,
D.IsolationandpartialcharacterizationofbacteriophagesinfectingPseudomonassyringaepv.actinidiae,causalagentofkiwifruit
bacterialcanker.J.BasicMicrobiol.2014,54,1210–1221.
36. Frampton,R.A.;Tayl or,C.;Moreno,A.V.H.;Visnovsky,S.B.;Petty,N.K.;Pitman,A.R.;Fineran,P.C.Identificationofbacterio
phagesforbiocontrolofthekiwifruitcankerphytopathogenPseudomonassyringaepv.actinidiae.Appl.Environ.Microbiol.2014,
80,2216–2228.
Antibiotics2021,10,55413of13
37. Yu,J.G.;Lim,J.A.;Song,Y.R.;Heu,S.;Kim,G.H.;Koh,Y.J.;Oh,C.S.Isolationandcharacterizationofbacteriophagesagainst
Pseudomonassyringaepv.actinidiaecausingbacterialcankerdiseaseinkiwifruit.J.Microbiol.Biotechnol.2016,26,385–393.
38. Pinheiro,L.A.;Pereira,C.;Barreal,M.E.;Gallego,P.P.;Balcão,V.M.;Almeida,A.Useofphageϕ6toinactivatePseudomonas
syringaepv.actinidiaeinkiwifruitplants:Invitroandexvivoexperiments.Appl.Microbiol.Biotechnol.2020,104,1319–1330.
39. Park,J.;Lim,J.A.;Yu,J.G.;Oh,C.S.GenomicfeaturesandlyticactivityofthebacteriophagePPPL1effectiveagainstPseudo
monassyringaepv.actinidiae,acauseofbacterialcankerinkiwifruit.J.Microbiol.Biotechnol.2018,28,1542–1546.
40. Han,H.S.;Nam,H.Y.;Koh,Y.J.;Hur,J.S.;Jung,J.S.MolecularbasesofhighlevelstreptomycinresistanceinPseudomonas
marginalisandPseudomonassyringaepv.actinidiae.J.Microbiol.2003,41,16–21.
41. Scortichini,M.;Marcelletti,S.;Ferrante,P.;Petriccione,M.;Firrao,G.Pseudomonassyringaepv.actinidiae:Areemerging,multi
faceted,pandemicpathogen.Mol.PlantPathol.2012,13,631–640.
42. Flores,O.;Retamales,J.;Núñez,M.;León,M.;Salinas,P.;Besoain,X.;Yañez,C.;Bastías,R.CharacterizationofBacteriophages
againstPseudomonassyringaepv.actinidiaewithPotentialUseasNaturalAntimicrobialsinKiwifruitPlants.Microorganisms2020,
8,974.
43. Preti,M.;Scannavini,M.;Franceschelli,F.;Cavazza,F.;Antoniacci,L.;Rossi,R.;Bugiani,R.;Tommasini,M.;Collina,M.Field
efficacyofsomeproductsagainstthebacterialcankerofkiwifruitinEmiliaRomagnaRegion,Italy.ActaHortic.2015,1243:39
48.
44. Iriarte,F.B.;Obradović,A.;Werns ing,M.H.;Jackson,L.E.;Balogh,B.;Hong,J.A.;Momol,M.T.;Jones,J.B.;Vall a d,G.E.Soil
basedsystemicdeliveryandphyllosphereinvivopropagationofbacteriophages:Twopossiblestrategiesforimprovingbacte
riophagepersistenceforplantdiseasecontrol.Bacteriophage2012,2,e23530.
45. Rombouts,S.;Volckaert,A.;Venneman,S.;Declercq,B.;Vandenheuvel,D.;Allonsius,C.N.;VanMalderghem,C.;Jang,H.B.;
Briers,Y.;Noben,J.P.CharacterizationofnovelbacteriophagesforbiocontrolofbacterialblightinleekcausedbyPseudomonas
syringaepv.porri.Front.Microbiol.2016,7,279.
46. Wang,X.;Wei,Z.;Yang, K.;Wan g,J.;Jousset,A.;Xu,Y.;Shen,Q.;Friman,V.P.Phagecombinationtherapiesforbacterialwilt
diseaseintomato.Nat.Biotechnol.2019,37,1513–1520.
47. Lang,J.M.;Gent,D.H.;Schwartz,H.F.ManagementofXanthomonasleafblightofonionwithbacteriophagesandaplantacti
vator.PlantDis.2007,91,871–878.
48. Kropinski,A.M.;Mazzocco,A.;Waddell,T.E.;Lingohr,E.;Johnson,R.P.Enumerationofbacteriophagesbydoubleagaroverlay
plaqueassay.InBacteriophages;Springer’sHumanaPress:Totowa,NJ,USA,2009;pp.69–76.
... Park et al. [53] revealed that the Podovirus phage PPPL-1 was effective against 16 of the 18 tested Psa strains and most of the tested pathovars of P. syringae. Song et al. [69] reported that the Podovirus phage PPPL-1 isolated from Korea was able to effectively control bacterial cankers in kiwifruit. In addition, phage PPPL-1 exhibited a similar inhibitory effect on bacterial cankers in kiwifruit plants compared with a commercial antibiotic-based product under greenhouse conditions [69]. ...
... Song et al. [69] reported that the Podovirus phage PPPL-1 isolated from Korea was able to effectively control bacterial cankers in kiwifruit. In addition, phage PPPL-1 exhibited a similar inhibitory effect on bacterial cankers in kiwifruit plants compared with a commercial antibiotic-based product under greenhouse conditions [69]. Thus, it can be inferred that the lytic DNA phage might be a promising alternative for controlling bacterial cankers in kiwifruit plants. ...
... Several studies have shown that the use of either phage cocktails or combined therapies can not only increase the effectiveness of phage therapy but also prevent the emergence of bacterial resistance to phages [70]. For example, Song et al. [69] reported that bacterial canker disease in kiwifruit could be effectively suppressed when applying phage PPPL-1 in combination with KHUΦ34 and KHUΦ38, while the pretreatment of PPL-1 phage could efficiently control bacterial cankers in kiwifruit as much as the treatment of the antibiotics product. Flores et al. [48] observed that four phages (CHF1, 7, 19, and 21) isolated from Chile, individually or combined in a cocktail, have great potential for the biological control of Psa infection in kiwifruit plants, while the cocktail of phages was able to reduce the Psa load in kiwifruit leaves by more than 75% in comparison with untreated plants after 24 h of infection with Psa. ...
Article
Full-text available
Over the last several decades, kiwifruit production has been severely damaged by the bacterial plant pathogen Pseudomonas syringae pv. actinidiae (Psa), resulting in severe economic losses worldwide. Currently, copper bactericides and antibiotics are the main tools used to control this bacterial disease. However, their use is becoming increasingly ineffective due to the emergence of antibiotic resistance. In addition, environmental issues and the changes in the composition of soil bacterial communities are also concerning when using these substances. Although biocontrol methods have shown promising antibacterial effects on Psa infection under in vitro conditions, the efficiency of antagonistic bacteria and fungi when deployed under field conditions remains unclear. Therefore, it is crucial to develop a phage-based biocontrol strategy for this bacterial pathogen. Due to the specificity of the target bacteria and for the benefit of the environment, bacteriophages (phages) have been widely regarded as promising biological agents to control plant, animal, and human bacterial diseases. An increasing number of studies focus on the use of phages for the control of plant diseases, including the kiwifruit bacterial canker. In this review, we first introduce the characteristics of the Psa-induced kiwifruit canker, followed by a description of the diversity and virulence of Psa strains. The main focus of the review is the description of recent advances in the isolation of Psa phages and their characterization, including morphology, host range, lytic activity, genome characterization, and lysis mechanism, but we also describe the biocontrol strategies together with potential challenges introduced by abiotic factors, such as high temperature, extreme pH, and UV irradiation in kiwifruit orchards. The information presented in this review highlights the potential role of phages in controlling Psa infection to ensure plant protection.
... Kiwifruit (Actinidia deliciosa) is a berry fruit belonging to the Actinidiaceae family and it is rich in vitamin C and a variety of mineral elements [1,2]. Kiwifruit is often infected by plant pathogens, causing its food value and economic value to be seriously damaged by diseases, including soft rot, bacterial canker, and crown gall disease [3][4][5][6]. The pathogenic bacteria in Agrobacterium spp. ...
... Each treatment was repeated thrice, and the culture was shaken at 150 rpm for 24 h, followed by the determination of the OD 600 nm value of the fermentation broth. Carbon source: beef extract was replaced in the basic medium with glucose, maltose, starch, cellobiose, galactose, mannitol, lactose, maltitol, sucrose, sorbitol and arabinose; nitrogen source: we used NaNO 3 , ammonium acetate, peptone, Ca(N0 3 ) 2 , KNO 3 , urea, yeast extract, NH 4 ...
Article
Full-text available
Kiwifruit is moderately sweet and sour and quite popular among consumers; it has been widely planted in some areas of the world. In 2019, the crown gall disease of kiwifruit was discovered in the main kiwifruit-producing area of Guizhou Province, China. This disease can weaken and eventually cause the death of the tree. The phylogeny, morphological and biological characteristics of the bacteria were described, and were related to diseases. The pathogenicity of this species follows the Koch hypothesis, confirming that A. fabacearum is the pathogen of crown gall disease of kiwifruit in China. In this study, Loop-mediated isothermal amplification (LAMP) analysis for genome-specific gene sequences was developed for the specific detection of A. fabacearum. The detection limit of the LAMP method is 5 × 10−7 ng/μL, which has high sensitivity. At the same time, the amplified product is stained with SYBR Green I after the reaction is completed, so that the amplification can be detected with the naked eye. LAMP analysis detected the presence of A. fabacearum in the roots and soil samples of the infected kiwifruit plant. The proposed LAMP detection technology in this study offers the advantages of ease of operation, visibility of results, rapidity, accuracy and high sensitivity, making it suitable for the early diagnosis of crown gall disease of kiwifruit.
... Currently, Pseudomonas phages have been reported to be isolated from various environmental sources such as sewage [10], soil [6], lake [11], river [12] and wastewater [13], and have been successfully applied to biological control, for example, a biocontrol agent potentially used for prevention of Pst associated phage Eir4 was found to be e cient against Pst in vitro [2], phage PPPL − 1 reported to e ciently control kiwifruit canker caused by P. syringae pv. actinidiae [14]. Furthermore, bacteriophage has been successful used in the treatment of chronic otitis [15], respiratory tract infections [16] and trophic ulcers caused by P. aeruginosa and other bacteria [17]. ...
Preprint
Full-text available
Pseudomonas syringae is a gram-negative plant pathogen that generally infects plants such as tomato and threatens global crop production. In this study, a novel lytic phage (named Pseudomonas phage D6) infecting P. syringae pv. tomato DC3000 was isolated from the karst cave sediments and characterized. The latent period of phage D6 was shown to be 60 min, and the burst size was 16 plaque forming units/cell. Phage D6 was stable at 30 − 40°C and lost infectivity after heated to 70°C. The infectivity of phage D6 was unaffected at pH 6 − 10, but was inactivated at pH ≤ 5 or ≥ 12. The genome of phage D6 is a linear double-stranded DNA of 307,402 bp with a G + C content of 48.43%. It showed low similarity to known phage genomes in the GenBank database and Viral sequence database. Genomic and phylogenetic analyses revealed that phage D6 is a newly discovered phage. A total of 410 open reading frames (ORFs) and 14 tRNAs were predicted in the genome, 92 of which encode for proteins with predicted functions. In conclusion, the lytic phage D6 identified in this study belongs to a novel phage of the class Caudoviricetes, and has potential application in biological control of plant diseases.
... tomato infections of tomatoes (Balogh et al. 2003). Despite that, no effective system for the control of kiwifruit bacterial canker has been developed so far, and few studies have evaluated the effectiveness of phage treatment on kiwifruit plants in vivo (Flores et al. 2020;Pinheiro et al. 2020;Song et al. 2021). ...
Article
Great efforts have been made with chemicals and pesticides to contain the spread of Pseudomonas syringae pv. actinidiae (Psa) responsible for kiwifruit canker. Unfortunately, only partial results were obtained for this bacterial pandemic and alternative remedies were proposed to avoid soil pollution and the onset of antibiotic resistance. Among these, phage therapy represents a possible tool with low environmental impact and high specificity. Several phages have been isolated and tested for the capacity to kill Psa in vitro, but experiments to verify their efficacy in vivo are still lacking. In the present study, we demonstrated that the phage φPSA2, previously characterized, contains the spread of Psa inside plant tissue and reduces the symptoms of the disease. Our data are a strong indication for the efficiency of this phage treatment and open the possibility of developing a phage therapy based on φPSA2 to counteract the bacterial canker of kiwifruit.
... Further studies from our group and others have characterized various phages with biocontrol potential against Psa (Frampton et al., 2015;Martino et al., 2021;Park et al., 2018;Wojtus et al., 2019;Yin et al., 2019;Yu et al., 2015). While these studies focused on basic phage characterization, recent work has illustrated the potential efficacy of phage treatment of Psainfected kiwifruit plants (Flores et al., 2020;Song et al., 2021). Although such research illustrates the promise of utilizing phage cocktails against Psa, it highlights the need for rational cocktail design, since the five phages used by Flores et al. were highly similar. ...
Article
Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in‐depth examination of the genome of ΦPsa374‐like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo‐electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374‐like phages that informs their use as antimicrobials against Psa.
... Erwinia amylovora, which developed resistance to streptomycin, has led to the evaluation of phage biocontrol with promising outcomes in some cases [14][15][16]. Due to the broad spectrum of plants infected by Pseudomonas syringae spp., multiple biocontrol trails have been conducted in the past, but with a special effort on citrus canker disease [17][18][19][20][21][22][23]. Xylella fastidiosa is a major threat to olive trees in Europe, where first phages have been isolated and tested [24][25][26]. ...
Article
Full-text available
The genus of Xanthomonas contains many well-known plant pathogens with the ability to infect some of the most important crop plants, thereby causing significant economic damage. Unfortunately, classical pest-control strategies are neither particularly efficient nor sustainable and we are, therefore, in demand of alternatives. Here, we present the isolation and characterization of seven novel phages infecting the plant-pathogenic species Xanthomonas translucens and Xanthomonas campestris. Transmission electron microscopy revealed that all phages show a siphovirion morphology. The analysis of genome sequences and plaque morphologies are in agreement with a lytic lifestyle of the phages making them suitable candidates for biocontrol. Moreover, three of the isolated phages form the new genus “Shirevirus”. All seven phages belong to four distinct clusters underpinning their phylogenetic diversity. Altogether, this study presents the first characterized isolates for the plant pathogen X. translucens and expands the number of available phages for plant biocontrol.
... Further studies from our group and others have characterized various phages with biocontrol potential against Psa (Frampton et al., 2015;Yu et al., 2015;Park et al., 2018;Wojtus et al., 2019;Yin et al., 2019;Martino et al., 2021). While these studies focused on basic phage characterization, recent work has illustrated the potential efficacy of phage treatment of Psa-infected kiwifruit plants (Flores et al., 2020;Song et al., 2021). Although such research illustrates the promise of utilizing phage cocktails against Psa, it highlights the need for rational cocktail design, since the five phages used by Flores et al. were highly similar. ...
Preprint
Full-text available
Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae ( Psa ), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T=9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage-resistance is overcome by mutations in a tail fiber and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa . Originality-Significance Statement The rise of phytopathogen resistance to agrichemicals poses a significant threat to crop production, and requires urgent attention. The work presented here examines a phage genus, members of which utilize LPS as a receptor, and show potential as biocontrol agents of Psa . Studies in planta showed the development of Psa resistance to the phage, whilst maintaining bacterial virulence. This finding underscores the importance of examining phages in their ecological context for the informed design of phage cocktails that are effective in phytopathogen control.
... A propagation of P. syringae pv. actinidiae, a kiwifruit pathogen affecting orchards, has been successfully reduced with phages directly inoculated into the bacteria infected leaves (Lallo et al. 2014;Pinheiro et al. 2020;Song et al. 2021). The tomato pathogen P. syringae pv. ...
Article
Full-text available
Phytopathogenic bacteria are one of the most significant causes of crop yield losses. Until now, the direct treatment of bacterioses was limited to the application of antibacterial compounds or resistance inducers. This is about to change due to the revolutionary discovery of phages. Indeed, bacteriophages look very promising as therapy agents: cheap, self-amplifying, self-eliminating, and safe for the host organism. However, phage therapy of plant diseases remains a “direction with high potential”, which, so far, has very few successful implication cases. Here, we discuss recent advances in phage research, focusing on the challenges associated with the evaluation of phage biological activity, under both laboratory and environmental conditions.