ArticlePDF AvailableLiterature Review

Shaping of T Cell Functions by Trogocytosis

Authors:

Abstract and Figures

Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.
Content may be subject to copyright.
Cells2021,10,1155.https://doi.org/10.3390/cells10051155www.mdpi.com/journal/cells
Review
ShapingofTCellFunctionsbyTrogocytosis
MasafumiNakayama*,ArisaHori,SaoriToyouraandShinIchiroYamaguchi
LaboratoryofImmunologyandMicrobiology,CollegeofPharmaceuticalSciences,RitsumeikanUniversity,
Shiga5258577,Japan;ph0137ie@ed.ritsumei.ac.jp(A.H.);ph0134ek@ed.ritsumei.ac.jp(S.T.);
ph0126kk@ed.ritsumei.ac.jp(S.I.Y.)
*Correspondence:mnakayam@fc.ritsumei.ac.jp;Tel.:+81775993264
Abstract:Trogocytosisisanactiveprocesswherebyplasmamembraneproteinsaretransferredfrom
onecelltotheothercellinacellcellcontactdependentmanner.Sincethediscoveryoftheintercel
lulartransferofmajorhistocompatibilitycomplex(MHC)moleculesinthe1970s,trogocytosisof
MHCmoleculesbetweenvariousimmunecellshasbeenfrequentlyobserved.Forinstance,antigen
presentingcells(APCs)acquireMHCclassI(MHCI)fromallografts,tumors,andvirallyinfected
cells,andtheseAPCsaresubsequentlyabletoprimeCD8
+
Tcellswithoutantigenprocessingvia
thepreformedantigenMHCIcomplexes,inaprocesscalledcrossdressing.Tcellsalsoacquire
MHCmoleculesfromAPCsorothertargetcellsviatheimmunologicalsynapseformedatthecell
cellcontactarea,andthisphenomenonimpactsTcellactivation.Comparedwithnaïveandeffector
Tcells,TregulatorycellshaveincreasedtrogocytosisactivityinordertoremoveMHCclassIIand
costimulatorymoleculesfromAPCs,resultingintheinductionoftolerance.Accumulatingevidence
suggeststhattrogocytosisshapesTcellfunctionsincancer,transplantation,andduringmicrobial
infections.Inthisreview,wefocusonTcelltrogocytosisandtherelatedinflammatorydiseases.
Keywords:acquisition;nibbling;stripping;crossdressed;crosspresentation;dendriticcell(DC);
TCR;Treg;chimericantigenreceptor(CAR);fratricide;escapevariant
1.Introduction
Inordertocommunicatewitheachother,immunecellsexpressawidevarietyofcell
surfacemoleculessuchasreceptors,ligands,andadhesionmolecules.Cellcellcommuni
cationisrequiredforthegenerationofappropriateimmuneresponsestovariouspatho
gens.Ithasbeenestablishedthatduringcellcellinteractions,membraneassociatedpro
teinsaretransferredbetweenimmunecells[1–4].Inthepastthisbiologicalphenomenon
hasbeencalledacquisition,nibbling,orstripping,andiscurrentlyreferredtoastrogocy
tosis,derivedfromtheancientGreekwordTrogo,meaning‘gnaw’[5].Incontrasttophag
ocytosis(PhagoistheGreekmeaning‘toeat’),whichisexecutedbyphagocytessuchas
macrophagesanddendriticcells(DCs),trogocytosisisconsideredtobeexecutedbyany
typeofcells,asdescribedbelow.Byacquiringmembraneassociatedproteins,socalled
recipientcellsgainalternativecellularfunctions.Incontrast,donorcellsmaylosethese
proteinsandcellularfunctions(Figure1).Inaddition,undercertainconditions,bidirec
tionaltrogocytosisisobserved[6](seeSection2).Insomecases,trogocytosismediatesthe
intercellulartransfernotonlyofplasmamembranesbutalsoofintracellularcontents[7,8],
whichmayalsoaltercellularfunctions.However,thispossibilityhasnotbeenextensively
investigated.
Thebestcharacterizedtrogocytosisinvolvesthetransferofmajorhistocompatibility
complex(MHC)moleculesfromantigenpresentingcells(APCs)toTcellsduringtheir
interactions[1,3].TrogocytosisofMHCmoleculesshapesTcellfunctionsandisinvolved
invariousTcellmediateddiseases.Trogocytosishasbeenobservednotonlyinimmune
cellinteractions,butalsoduringepithelialcellcommunication[9]andinneuronalsynap
ses[10,11].Further,trogocytosisisusedbyamoebaetokillhostcells[12,13],indicating
Citation:Nakayama,M.;Hori,A.;
Toyoura,S.;Yamaguchi,S.I.
ShapingofTCellFunctionsby
TrogocytosisCells2021,10,1155.
https://doi.org/10.3390/cells10051155
AcademicEditor:RyutaKoyama
andKumikoNakadaTsukui
Received:3April2021
Accepted:6May2021
Published:10May2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://cre
ativecommons.org/licenses/by/4.0/).
Cells2021,10,11552of16
thatthisbiologicalphenomenoniswidelyconservedthroughouteukaryotes.Recentfind
ingsoftrogocytosisinmicrobes[14],mammalianneuronalnetworks[15,16],andnonT
cellimmunecellinteractions[2,17,18]havebeenwellsummarizedbyotherspreviously
andalsointhisissue.Thus,herewemainlyfocusonTcelltrogocytosisandrelateddis
eases.
Figure1.Principalmodelsoftrogocytosis.Whentwotypesofcellsmakephysicalcontactviareceptorligandinteractions,
thedrivingforceforinternalizationofreceptorsexpressedononecell(herecalledrecipient)cooptsligandcontaining
plasmamembranefragmentsfromtheothercell(herecalleddonor).Notonlyarereceptorsandligandsinvolvedinthis
process,butadhesionmoleculesalsoplayarole.Thedonorcellslosemembranemoleculesandtheircellularfunctions,
whereastherecipientcellsgaindonorderivedmembranemoleculesandfunctions.Itisunclearhowdonorderivedmol
eculesexistonrecipientcells.ThethreehypothesizedmodelsareshownasA,B,andC.
2.PossibleMechanismsUnderlyingTrogocytosis
Themolecularmechanismsunderlyingtrogocytosisarenotfullyunderstood.How
ever,trogocytosisoftheTcellreceptor(TCR)andMHCreceptorligandpairhasbeen
extensivelycharacterized.Ofnote,MartinezMartinetal.haveshownthatTcellsacquire
MHCclassI(MHCI)fromAPCsthroughtheactionofsmallGTPasessuchasRhoGand
TC21[19].RhoGisknowntobeinvolvedinphagocytosis[20],andthustrogocytosisis
characterizedasincompletephagocytosis.Indeed,PI3KinhibitorseffectivelyinhibitTCR
trogocytosis[19,21].Likewise,naturalkiller(NK)cellsexpressingNKG2D,anNKactivat
ingreceptor,acquireligands,includingRaeI,MICA,andMICB,fromtumorcellsviaa
PI3Kdependentpathway[22].Takentogether,trogocytosisappearstobeaccompanied
byrecipientcellreceptorinternalization(Figure1).
Donorcellsmayactivelyreleasetheirmembranefragmentstorecipientcells.These
membranefragmentsmayincludeextracellularvesicles(EVs)[23].Choudhurietal.have
shownthatTCRsignalingleadstosecretionofTCRenrichedmicrovesiclesviathecentral
supramolecularactivationcluster(cSMAC)[24].SortingofTCRtothecSMACandthe
productionofEVsisdependentontumorsusceptibilitygene101(TSG101),anessential
Cells2021,10,11553of16
componentoftheendosomalsortingcomplexrequiredfortransport(ESCRT)I[25].These
EVsaretransferredtoandactivateneighboringBcells[24].Ontheotherhand,Kimetal.
havereportedthatTCRsignalingcausesTCRenrichedmicrovilliparticles,calledTcell
microvilliparticles(TMPs),whicharetransferredtoandactivateneighboringDCs[26].
Interestingly,uponTCRstimulation,microvilliprovideastructuralplatformforTCR
clusteringwhereTSG101andthearrestindomaincontainingprotein1(ARRDC1)colo
calize,andTCRclustersarereleasedfromTcellsbytheprocessoftrogocytosis[26].The
authorsproposethatTCRenrichedEVs[24]mightalsooriginatefrommicrovilli[27].
Takentogether,thesestudiesrevealthat,duringTAPCinteractions,TCRsignalingleads
notonlytoMHCtrogocytosisbutalsotosecretionofTCRenrichedEVs.Byendpoint
analysis,thisseriesofeventswouldbeviewedasbidirectionaltrogocytosis.EVswerealso
recentlyobservedtobereleasedfromcytotoxicTlymphocytes(CTLs)totargettumorcells
uponTCRactivation[28].Thus,theintercellulartransferofTCRsdescribedbelowmay
bemediatedbyEVs.
Innonimmunecells,TSG101andARRDC1arealsoinvolvedinformationandrelease
ofmicrovesicles,whicharecalledARRDC1mediatedmicrovesicles(ARMMs)[29].In
contrasttoexosomes,ARMMsaregeneratedattheplasmamembrane[30].Inaddition,
onecelloftwoconnectedcellsisreportedtoengulfthegapjunctiontotakeupmembrane
andcytosolofitsneighboringcells,whichiscalledaconnexosome[31].Thesephenomena
maybeportionsoftrogocytosisduringnonimmunecellinteractions.
Itisstillunclearhowdonorderivedproteinsexistonrecipientcells(Figure1).The
detectionofdonorproteinsonrecipientcellsbyflowcytometryraisesthefollowingpos
sibilities.Donormembranefragmentsmaybemerelyattached(modelA)orfused(model
B)torecipientcells.Alternatively,donorderivedproteinsmaybereexpressedonrecipi
entcellsafterbeinginternalizedandrecycled(modelC),asproposedinacommentarticle
[32].ElectronmicroscopyshowedthatahumanNKcelllineacquiredAPCplasmamem
branefragments,whichwerenotfusedtobutratherlooselyattachedtotheplasmamem
branesoftheseNKcells[33].SimilarmorphologywasobservedonCD4+Tcellsthatac
quiredAPCplasmamembranefragments(datanotshown,butdiscussed[34]).Astudy
usingbotharatTcellsubclonesynthesizingMHCIIandanothersubclonewithacquired
MHCIIfromAPCsshowedthatonlytheformersubclonewassensitivetoantiMHCII
antibodymediatedcomplementlysis.Thus,thissuggeststheAPCderivedmembrane
fragmentsaremerelyattachedtoTcells[35].Takentogether,thesereportssupportmodel
A(Figure1)inwhichdonorderivedreceptorsnolongertransmitanysignalinrecipient
cells.Incontrast,somestudiesshowedthatdonorderivedreceptorsarefunctionalonre
cipientcells.Forinstance,inacocultureoftwoCD8+Tcellclones,oneCD8+Tcellclone
hasbeenobservedtoacquireTCRfromtheotherTcellcloneandsubsequentlylysetarget
tumorcellsintheacquiredTCRrestrictedmanner,suggestingthatthedonorTCRisfunc
tionalonrecipientTcells[36].ItwasalsoreportedthatNKcellsacquireCCR7,achemo
kinereceptor,fromdonorcells.Further,theseNKcellsgainedmigrationactivity,suggest
ingthatCCR7isfunctionalonrecipientNKcells[37].ThesestudiessupportmodelBor
C(Figure1);however,theintracellularsignalingdownstreamofacquiredreceptorshas
notbeeninvestigated.
IrrespectiveofwhethermodelA,B,orCiscorrect,donorderivedligands(MHC,
costimulatorymolecules,etc.)areprobablyfunctionalonrecipientcells.Indeed,numer
ousstudieshaveshowndonorderivedMHConrecipientcellsplaysimportantrolesin
acquiredimmunityasdescribedinthefollowingsections.
Cells2021,10,11554of16
3.Tumor
3.1.PrimingofCD8+TCellsbyCrossPresentationandCrossDressing
CTLsplayanimportantroleinantitumorimmunity.TodevelopantitumorCTLs,
DCspresenttumorantigenswithMHCItonaïveCD8+Tcells[38–40].DCsarelargely
dividedintoconventionalDCs(cDC)andplasmacytoidDCs(pDCs)[41].pDCsareama
jorproduceroftypeIinterferon(IFNI)inresponsetoviralinfectionwhereascDCsare
themostpotentAPCs[41–43].ThecDCsarefurthersubdividedintoDCtype1cells
(DC1s)andDCtype2cells(DC2s)[41].DC2spresentextracellularantigensonMHCII
throughtheconventionalantigenpresentationpathwaywhereascDC1sareabletopre
sentextracellularantigensnotonlyonMHCII,butalsoonMHCI,calledcrosspresenta
tion(Figure2)[39–41].Ingeneral,asobservedinDC2s,extracellularantigensarepro
cessedandloadedonMHCIIinphagosomes.InDC1s,however,extracellularantigens
arereleasedfromphagosomestothecytosolandthentranslocatedviaTAP(transferas
sociatedwithantigenprocessing)moleculestotheendoplasmicreticulum(ER)whereex
tracellularantigenpeptidesaswellasintracellularantigenpeptidesareassociatedwith
MHCI[44,45].Regardingtheunusualpathwayofextracellularantigensfromphagosomes
tocytosol,ithasbeenrecentlyreportedthatDNGR1(alsoknownasCLEC9A)senses
necroticcellderivedFactin[46,47]anditshemITAMSyksignalinginducesphagosomal
membranerupturetoallowendocytosedantigenstoenterthecytosolinDC1s[48].
Inadditiontothecrosspresentationpathway,severalrecentstudieshavereported
thecrossdressingpathway,inwhichDCsacquireMHCImoleculesfromneighboring
DCsortumorcells(Figure2).TheseMHCIdressed(crossdressed)DCsactivateCD8+T
cellsviathepreformedantigenpeptideMHCIcomplexeswithouttheabovementioned
antigenprocessing[3,49,50].Priortothefirstdemonstrationofthecrossdressingpathway
byDolanetal.[51],thetumorderivedexosomescontainingMHCIwerepreviouslycon
sideredtoprovokeantitumorimmunity[52,53].Inthisstudy,whenFVBmouse(MHC
haplotype:H2q)bonemarrowderivedDCs(BMDCs)werecoculturedwithdyingH2b
tumorcellsexpressingovalbumin(OVA),theH2qBMDCsacquiredtheOVApeptideH
2KbcomplexesfromtumorcellsandsubsequentlyactivatedCD8+TcellsfromOTImice
specificforOVAresidues257–264onH2Kb.Thus,thisindicatesthatBMDMsdonotuse
selfMHC,butinsteadusenonselfMHCmoleculestoactivateTcells.Itshouldbemen
tionedherethatBMDCsareCD11c+MHCII+cellsgeneratedwithGMCSF;however,these
invitroculturedDCsarenotequivalenttoinvivoDCsandareneitherDC1snorDC2s
[54].ToaddresstheroleofcrossdressedDCsinvivo,theauthorsusedCD11cdiphtheria
toxinreceptor(DTR)transgenicBALB/c(H2d)miceinwhichDCsareremovablebydiph
theriatoxin(DT)treatment[55].InthesemiceinoculatedsubcutaneouslywithH2btumor
cellsexpressingOVA,OTICD8+Tcellsvigorouslyproliferated,aneffectabolishedby
DTtreatment,indicatingthatDCsareessentialforOTICD8+Tcellproliferationinre
sponsetothetumorcellderivedOVApeptideH2Kbinvivo[51].Subsequently,cross
dressinghasbeendemonstratedtobeinvolvednotonlyincancer[56–58],butalsoin
transplantationandduringmicrobialinfections(seeSections4.1and5).
Dependingonexperimentalconditions,crossdressinghasbeenshowntobecon
ductedbybothDC1sandDC2s.Further,DC1sarereportedlyessentialforcrossdressing
ofDNAvaccineantigens[59,60]whereasDC2sshowhighercrossdressingofneighbor
ingDCderivedMHCI[61–63].Thisapparentdiscrepancymaybeascribedtothediffer
enceintypeofdonorcellsthatDCsacquireMHCIfrom.InadditiontocDCs,pDCsalso
acquireantigenMHCcomplexesfromtumorcellsandstimulateMHCrestrictedTcell
proliferation[64].Interestingly,arecentstudyhasshownthatpDCsgivetheantigen
MHCIcomplexestoDC1s,whichcontributetocrossdressing[60].
Cells2021,10,11555of16
Figure2.TrogocytosisinTcellprimingandeffectorphases.Duringtheprimingphase,dendriticcell(DC)type2cells
(DC2s)presentextracellulartumorantigensonMHCIItoactivateCD4
+
TcellswhereasDCtype1cells(DC1s)areableto
presentthemonMHCI,calledcrosspresentation,toactivateCD8
+
Tcells.Inaddition,DC1sand/orDC2sacquirepre
formedantigenMHCIcomplexesforantigenpresentationtoCD8
+
Tcells,whichiscalledcrossdressing.Inthecytotoxic
Tlymphocyte(CTL)effectorphase,CTLsstripofftargetantigensfromtumorcells.TheseCTLswithacquiredtumor
antigenMHCIarethenlysedbytumorunexperiencedCTLsthroughaprocesscalledfratricidecelldeath.Ontheother
hand,tumorcellsloseantigens,resultingingenerationofCTLescapevariants.
3.2.MHCTrogocytosisintheCTLEffectorPhase
TrogocytosisisalsofrequentlyobservedintheCTLeffectorphase.WhenCTLsattack
tumorcells,theyacquireMHCIfromtumorcells(Figure2)[7,65].However,itisstillun
derdebatewhethertrogocytosisenhancesorsuppressesCTLactivity.Giventhepositive
correlationbetweencytotoxicactivityandtrogocytosisability[66,67],CTLswithhigh
avidity(highrecognitionefficiency)mayexertbothhighcytotoxicityandtrogocytosisac
tivity.Alternatively,giventhattheacquiredantigenMHCcomplexeshavebeenproposed
totransmitsustainedTCRsignalsinCD4
+
Tcells[67–70],trogocytosismayprolongCTL
activation.Incontrast,aregulatoryfunctionoftheMHConCTLshasbeenalsoreported.
Forinstance,CTLsthathaveacquiredthetumorantigenMHCcomplexarerecognized
andlysedbytumorunexperiencedCTLs,whichiscalledfratricidecelldeath(Figure2)
[7,65,71].Likewise,itwasrecentlyreportedthattrogocytosismediatedfratricideofchi
mericantigenreceptor(CAR)Tcellscausestumorescape[72](seeSection3.3).
ItisnoteworthythatTCRmediatedtrogocytosisstripstumorantigensfromtarget
tumorcells,causingantigenlossandtumorescape(Figure2)[2,72,73].Forexample,low
avidityCTLsremovetumorantigenMHCIcomplexesfromtargettumorcellswithout
killing,interferingwithtumorkillingbyhighavidityCTLs[73].Likewise,CARandmon
oclonalantibodies(mAbs)alsomediatetumorantigenlossviatrogocytosis[2,72](seeSec
tion3.3).
Cells2021,10,11556of16
3.3.CARMediatedTrogocytosis
CARscombineantigenbindingdomains,mostcommonly,asinglechainvariable
fragment(scFv)derivedfromthevariabledomainsofantibodieswiththesignalingdo
mainsoftheTCRζ chainandadditionalcostimulatorydomainsfromreceptorssuchas
CD28,OX40,and41BB[74].AutologousTcellsengineeredtoexpressaCARspecificfor
CD19(CD19CARTcells)arehighlyeffectiveagainstseveraltypesofBcellmalignancies
andhaverecentlyreceivedFDAapprovalforuseinchildrenandyoungadultswithre
lapseofchemotherapyrefractoryacutelymphoblasticleukemia(ALL)andforadultswith
chemotherapyrefractorynonHodgkinlymphoma(NHL)[75].Despitethehighinitialre
sponseratewithCD19CARTcellsinALL,relapseoccurswithsometumorsbeinganti
gennegativeandothersantigenlow[75–78].Arecentstudyusingamousemodelofleu
kemiademonstratedthatCD19istransferredtoCARTcellsviatrogocytosis,resultingin
removalofthetumorantigen[72].Suchalossoftumorantigenwasalsoobservedduring
cancertherapiesusingmAbssuchasrituximabandepratuzumab[2,79,80].Thisprocess
couldcausetumorescapevariants.Further,CD19acquiredCARTcellswereshownto
bekilledbytumorunexperiencedneighborCARTcells[72],aprocesscalledfratricide
(Figure2)[7].Therefore,theinhibitionoftrogocytosismayimprovetheefficacyofCAR
Ttherapy.Sincethespecificmolecularmechanismsoftrogocytosisremainunknown,as
aninitialstrategy,combinatorialtargetingcouldovercomethistrogocytosisbasedside
effect.
4.Transplantation
4.1.AllospecificTCellPrimingbyCrossDressing
Tcellmediatedrecognitionofallogeneictransplantshasbeenconsideredtooccur
throughtwomainpathways(Figure3).InthedirectpathwayrecipientTcellsrecognize
intactMHCalloantigensondonorDCsresultinginacuterejection[81].Withtheindirect
pathwayallograftantigensareinternalizedandprocessedbyrecipientDCsandrecipient
Tcellssubsequentlyrecognizetheseantigens,whichpromoteschronicrejection[82,83].
Inadditiontothesepathways,thereisaccumulatingevidenceofathird,semidirectpath
way(crossdressingpathway)whereMHCalloantigensareacquiredbyrecipientDCs
(Figure3)[84–86]asdescribedbelow.
InbothhumanandmouseallogeneicDCcocultureassays,recipientDCsacquirean
tigenMHCcomplexesfromdonorDCs,andthesedonorMHCdressedrecipientDCs
primecognateTcellsinadonorMHCrestrictedmanner,suggestingtheroleofcross
dressinginTcellalloreactionsinvitro[84,87].Inseveralmousemodelsofallograft(skin,
heart,orkidney)transplantation,recipientDCsinfiltrateallograftsandacquiredonor
MHC[88,89].Finally,theseDCsprimealloreactiveTcellsinadonorMHCrestrictedman
ner,suggestingthatcrossdressingindeedoccursinallografttransplantation(Figure3)
[88,89].However,thesestudiesdidnotaddresswhethercrossdressedDCsareinvolved
inallograftrejectionandwhichDCsubsetcontributestothecrossdressing[88].
TherelativecontributionofcrosspresentationandcrossdressingtoCD8+Tcellac
tivationcanbeaddressedusingTAP/mice.TAPmoleculesaregenerallyrequiredfor
crosspresentation,butnotforcrossdressing(seeSection3.1).Ontheotherhand,thecon
tributionofDC1stoCD8+TcellactivationcanbeaddressedwithBatf3/mice,asthis
transcriptionfactorisrequiredforthedevelopmentofDC1s,butnotofDC2s[90].Re
cently,Lietal.usedtheseknockoutmiceandshowedthatwhenH2Kdskingraftswere
transplantedintoWTorBatf3/recipientH2Kbmice,Batf3/recipientmiceshowedde
layedrejection,suggestingthatrecipientDC1scontributetoallograftrejection[91].Alt
houghDC1shavecrosspresentingactivity,alloreactiveCD8+Tcellproliferationwasob
servedinTAP/miceaswellasinWTmice,suggestingthatDC1crossdressing,rather
thancrosspresentation,contributestoalloreactiveTcellactivation[91].However,itwas
notdirectlydemonstratedthatcrossdressingisinvolvedinallograftrejection.Tothis
end,Hughesetal.usedB6(H2Kb/b)WTorH2K/recipientmicetransplantedwithH
Cells2021,10,11557of16
2K
b/d
kidneysexpressingthemembraneboundformofOVA;bothrecipientDCswere
foundtoacquireH2K
d
andH2K
b
SIINFEKL(OVAderivedpeptide)complexes.Two
daysaftertransplantation,thesemicewereadoptivelytransferredOTICD8
+
Tcells.In
bothrecipients,acuterejectionwasequallyobserved,indicatingthatrecipientMHCIis
notrequiredforrejection.Toexcludethepossibilityofdirectpathways(Figure3),the
authorsshowedthatgraftsurvivalisprolongedwhenrecipientDCsweredepletedusing
theCD11cDTRsystem.Takentogether,thisstudyclearlydemonstratesthatcross
dressedDCsareinvolvedinallograftrejection[92].
Inthesemouseexperiments,recipientDCsacquirealloMHCfromthegraftnotonly
viatrogocytosis[87,93,94]butalsoviaextracellularvesicles[88,95],althoughitremains
unknownwhichisthedominantpathwayforcrossdressingintransplantation.Italso
remainsunknownwhetherMHCdonorcellsingraftsareDCsorparenchymalcells.Fur
thermore,themostimportantquestionconcernswhethercrossdressingisessentialfor
allograftrejectionbecausegeneticallyengineeredmiceinwhichcrossdressingpathway
isspecificallyimpairedhavenotbeendevelopedsofar.
Figure3.Trogocytosisinallografttransplantation.AlloreactiveTcellactivationisinducedbythreepathways.Thefirstis
thedirectpathwaywhereintactMHCalloantigensondonorDCsarerecognizedbyrecipientTcells,promotingacute
rejection.ThesecondistheindirectpathwaywhereallograftantigensareinternalizedandprocessedbyrecipientDCs,on
whichdonorantigenrecipientMHCcomplexesarerecognizedbyrecipientTcells,promotingchronicrejection.Thethird
pathwayisasemidirectpathwayofsocalledcrossdressingwhererecipientDCsacquirepreformeddonorantigenMHC
complexesandarerecognizedbyrecipientTcells.
Cells2021,10,11558of16
4.2.InductionofAllospecificTCellTolerancebyCrossDressing
Incontrasttoskingrafts,allogeneiclivergraftsareacceptedinmicewithoutany
immunosuppressivetreatment[96].Inhumans,completeimmunosuppressionwith
drawalhasproventobefeasibleinapproximately20%oflivertransplantrecipients[97].
Theseobservationsledtothehypothesisofspontaneoustoleranceinlivertransplantation,
althoughtheunderlyingmechanismisnotwellunderstood.Onoetal.recentlyreported
that,inamousemodelofallogeneiclivertransplantation,recipientDCsinfiltrateinto
livergrafts,andacquiredonorMHC.ThesecrossdressedDCsexpresshighlevelsofPD
L1,whichinvitrodidnotprimealloreactiveCD8+Tcells,butratherinducedtolerance
[98].Takentogether,theseresultssuggestthatcrossdressingplaysaroleintolerancein
ductionalthoughwhetherthedepletionofPDL1highcrossdressedDCscausesbreakdown
oftolerancehasnotbeenaddressed.
4.3.InductionofAllospecificTCellTolerancebyDoubleNegativeT(DNT)CellTrogocytosis
TCRαβ+CD3+CD4CD8Tcells,socalleddoublenegativeT(DNT)cells,comprisea
smallsubsetofmatureperipheralTcells,andthenumberofDNTcellsareexpandedin
variousinflammatoryconditions[99].Indeed,DNTcellshavebeenreportedtobein
volvedinseveralautoimmunediseasessuchassystemiclupuserythematosus(SLE),
Sjogren’ssyndrome,andpsoriasis,althoughthepreciseoriginandfunctionofDNTcells
isstillunderdebate[99].Incontrasttosuchproinflammatoryactivity,areportedregula
toryfunctionofDNTcellsistheenhancementofallograftsurvival[100–102],inwhich
trogocytosisisinvolved[100,103].Forinstance,inamousemodelofskinallografttrans
plantation,recipientDNTcellsacquiredonorMHCIandinteractwithalloreactiveCD8+
Tcells.Duringthesecellcellinteractions,DNTcellslyseCD8+TcellsthroughtheFas/FasL
pathway,whichpreventsallograftrejection[100,103].Inaddition,ithasbeenrecentlyre
portedthatDNTcelltrogocytosissuppressesCD4+Tcellactivationinamousemodelof
allergy[104](seeSection6).
5.Infection
Crossdressing(seeSection3.1)alsocontributestoantiviralTcellresponses,which
hasbeenclearlydemonstratedbyWakimandBevanusingmousemodelsofviralinfec
tion[62].Inthisstudy,theauthorsutilizedirradiated(H2KdxH2Kb)F1micereconsti
tutedwithH2KdCD11cDTRbonemarrowcells,inwhichDCshaveonlyH2Kdandare
removablebyDTtreatment[62].FollowingadoptivetransferofOTICD8+Tcellsand
infectionwithvesicularstomatitisvirusexpressingOVA,DCsacquiredtheOVApeptide
H2Kbcomplexfromthevirallyinfectedcells.ThesecrossdressedDCswereessentialfor
memory,butnotnaïveOTICD8+Tcellactivation,invivo[62].Smythetal.usedamouse
modelofOVAexpressingadenoviralinfectiontoshowthatcrossdressingactivatesnot
onlymemory,butalsonaïveOTICD8+Tcells[63].BothstudiesdemonstratedthatDC2s
havemorepotentcrossdressingactivitythanDC1sforantiviralimmunity,althoughthey
didnotuseBatf3/mice[62,63].ThediscrepancyregardingcrossdressingofnaïveTcells
maybeascribedtodifferentamountsofMHCIandcostimulatorymoleculesoncross
dressedDCs.Inotherwords,naiveTcellscanbeprimedbyDCswithacquiredmembrane
fragmentsharboringlargeramountsofMHCIandcostimulatorymoleculesofvirallyin
fectedDCs,whereasmemoryTcellscanbeactivatedbyDCsdressedwithmembrane
fragmentsofvirallyinfectedparenchymalcells.
InadditiontocDCs,pDCsplayanimportantroleinimmuneresponsesbyproducing
largeamountofIFNIduringantiviralimmunity(seeSection3.1)[41,43].Althoughitis
stillunderdebatewhetherpDCshaveantigenprocessingmachinery,pDCshavebeen
reportedtohavecrossdressingactivity[64].ItwasalsorecentlyreportedthatpDCsgive
MHCItoDC1s,whichcontributestotheircrossdressing[60].Sincethesestudiesmeas
uredonlyCD8+Tcellactivation,itremainsunknownwhetherdirectorindirectcross
dressingbypDCsindeedcontributestoantiviralimmunity.
Cells2021,10,11559of16
6.Th2Diseases
WhennaiveCD4+TCRsrecognizeantigenMHCIIcomplexesonAPCs,theseCD4+T
cellsexpandanddifferentiateintofunctionallydistincteffectorhelperT(Th)cellsubsets,
suchasTh1,Th2,andTh17cells[105].AmongtheseThsubsets,Th2cellsproduceIL4,
IL5,andIL13,whichplayacentralroleinhumoralimmunityandhostdefenseagainst
parasiteinfection,butalsohaveadetrimentalroleinallergicdiseasessuchasasthmaand
atopicdermatitis[105].TherearenumerousstudiesshowingthatnaïveCD4+Tcellsas
wellasCD8+TcellsacquireantigenMHCcomplexesfromDCsduringthesecellcellin
teractions[68,69,94,106–110].UponinteractionwithDCs,CD4+Tcellsacquirenotonly
MHCII,butalsocostimulatorymoleculesandadhesionmoleculesthatarerecruitedonto
theimmunologicalsynapseformedatthecellcellcontactarea.Therefore,theseMHCII
acquiredCD4+TcellsareconsideredtoactasAPCs[94,106–109,111,112].Inaddition,
MHCIIacquisitioninducesprolongedTCRsignalingevenafterdissociationfromAPCs,
whichimpactsCD4+Tcellactivation,survival,andcytokineproduction[70].
InadditiontoCD4+TcellsandDCs,variousimmunecellsacquireMHCIIandare
involvedinTh2responses.Forinstance,basophils,themajorproducerofIL4[113],ac
quireMHCIIandactasAPCsforTh2differentiation[114].Group2innatelymphoidcells
(ILC2s),whichalsoproducehighamountsofTh2cytokines[115],persesynthesizeMHCII
butalsoacquireMHCIIfromDCsandactasAPCsinantiparasiticimmunity[116].
DNTcells(seeSection4.3)arealsoinvolvedinallergicasthma.Forinstance,ina
mousemodelofOVAinducedallergicasthma,adoptivetransferofDNTcellsameliorates
lunginflammation,mucusproduction,andOVAspecificIgG/IgEproduction[104].In
thismousestudy,DNTcellsacquiredMHCIImoleculesfromDCsviaLag3/CD223,aCD4
homologue[117]thatbindstoMHCII.However,itremainsunknownhowthistrogocy
tosisisinvolvedinsuppressionofallergicinflammation.LikeTregulatorycells(Tregs)
[118](seeSection7),DNTcellsmayimpairtheantigenpresentingactivityofDCsbystrip
pingoffMHCIIfromtheirsurface.Alternatively,MHCIIacquiredDNTcellsactasregu
latoryAPCs,suchasMHCIIacquiredNKcells[119]orlymphnodestromacells[120],
whichdonotexpresscostimulatorymoleculesandthusinduceCD4+Tcelltolerance[3].
7.TregTrogocytosis
TregssuppressconventionalTcellactivationviamultiplemechanisms[121,122].For
instance,TregsabsorbIL2andproduceimmunosuppressivecytokinessuchasIL10and
TGF‐β toinhibitTcellproliferationandfunction[121,122].Inadditiontothesedirectef
fectsonTcells,TregsconstitutivelyexpressCTLA4todownregulatetheexpressionof
costimulatoryligandssuchasCD80andCD86onDCs[123].Thisextrinsicfunctionof
CTLA4onTregsisdifferentfromthatoneffectorTcells,inwhichCTLA4transmitsthe
intrinsicinhibitorysignal.TregspecificCTLA4deletionindicatesthatTregCTLA4is
crucialforimmunesuppression[123].Interestingly,trogocytosisisinvolvedinthispro
cess.Specifically,TregshavebeenreportedtouseCTLA4toacquireCD80andCD86
fromDCsviatrogocytosis(Figure4)[124,125].Arecentstudyalsoreportedthatinduced
Tregs(iTregs)havehightrogocytosisactivitytoremovetheantigenMHCIIcomplexfrom
DCs[118].ThisactivityofiTregsishigherthanthatofnaïveandeffectorTcells[118],
whichisprobablyduetotheTregsformhavingamorestableimmunologicalsynapse(IS)
thanconventionalTcellsbyexcludingproteinkinaseC‐θ(PKC‐θ)fromtheIS[126].PKC
θhasshowntodestabilizetheIS[127].Takentogether,trogocytosismaybeinvolvedin
inductionofantigenspecifictolerancebyiTregs(Figure4).
Cells2021,10,115510of16
Figure4.TrogocytosisinTregmediatedimmunesuppression.TregcellsstripoffMHCIIandcostimula
torymoleculesfromDCsandasaresulttheseDCshaveanimpairedantigenpresentingactivity.
8.ApplicationofTrogocytosis
Asdescribedabove,Tcellsmediatevariousdiseasessuchascancer,autoimmunity,
allergy,andinfectiousdiseases.However,inmanycases,pathogenicTcellsandtheirTCR
antigensremaintobeidentified,whichhampersunderstandingofpathogenesisandde
velopmentoftherapeuticapproaches.Toovercomethisproblem,severalapproachesfor
identificationofTCRantigenshavebeendeveloped[128–130].Inthiscontext,trogocytosis
mayalsobeappliedforclinicaldiagnosis.Specifically,severalstudieshaveutilizedthe
abilityofCD8
+
TcellstoacquireantigenpeptideMHCIcomplexesinordertodetectan
tigenspecificTcellsinperipheralbloodmononuclearcells(PBMCs)frompatientsin
fectedwithhumanTcelllymphotropicvirustypeI(HTLV1)orlymphocyticchoriomen
ingitisvirus(LCMV).Tomaruetal.firstsuccessfullyidentifiedTcellpopulationsthat
specificallyrecognizetheHTLVITax(11–19)peptidepresentedonHLAA*201[131].In
thisstudy,theauthorsestablishedHmy2.CIRcells,anHLAAandHLABlocusdefective
immortalizedBcellline,transducedwithHLAA*201fusedwithGFP.Whenthesecells
werecoculturedwithpatientPBMCs,HTLVIspecificTcellsacquiredthepeptideHLA
GFPcomplexandbecameGFPpositive[131].Thisisusefulfordetectionofantigenspe
cificTcellsfrombulkPBMCs;however,thisapproachislimitedbycelltype,colorspec
trumofGFPandrelatedproteins,andrestrictionofeachconstructtoasingleMHC.To
overcometheselimitations,BeadlingandSlifkadevelopedasimpleandversatilemethod
todetectpathogenspecificTcellscalledTcellrecognitionofAPCsbyproteintransfer
(TRAP)assay[132].Specifically,theauthorsbiotinylatedthesurfaceofAPCs,followed
bylabelingwithstreptavidinfluorochrome.WhencoculturedwithLCMVinfectedAPCs
labeledwithfluorochrome,virusspecificTcellsacquiredAPCmembranefragmentsand
becamefluorochromepositive.Likewise,Daubeufetal.establishedamethodtodetect
antigenspecificCD8
+
TcellsbyusingDillabeledAPCs[66].Importantly,thissimple
methodisnotlimitedbytypeofAPCandMHC[132].
InthecocultureofTcellsandAPCs,TcellsinitiallyacquiretheantigenpeptideMHC
complexfromAPCsandsubsequentTCRsignalingstimulatesthesecretionofextracellu
larvesicles,whichareacquiredbyAPCs[26].Asaconsequence,thecellcellcontactde
pendentintercellulartransferofmembranefragments/vesiclesisviewedasbidirectional
trogocytosis(seeSection2).ByfocusingonAPCsthatacquireTcellmembranefragments
containingTCR,Lietal.haverecentlydevelopedthemethodtoidentifyTCRligand[6].
TheauthorsfirstgeneratedtheHLAA2restrictedsinglechaintrimercDNAlibrarycon
tainingmelanomaneoepitopesandthentransducedK562cells.WhencognateTCRrec
ognizesantigenpeptides,K562cellsacquiretheTCR,whichishighlydetectablebyFACS.
Aftersortpurification,readingofthelibraryderivedantigensequenceenabledidentifi
cationofneotumorantigens[6].
Cells2021,10,115511of16
9.Conclusions
Trogocytosishasbeenfrequentlyobservedduringimmunecellinteractionsandap
pearstobeinvolvedinvariousdiseases.Nevertheless,themolecularmechanismsunder
lyingtrogocytosisarestillpoorlyunderstood.Forinstance,crossdressingisinvolvedin
CD8+Tcellactivationincancer,viralinfection,andtransplantation;however,itremains
unknownhowDCsacquireMHCIfromdonorcellssuchasotherDCs,tumorcells,or
virallyinfectedcells.Moreover,howthedonorcellderivedMHCImoleculesareex
pressedontherecipientDCshasnotbeencarefullyaddressed.Asadetrimentaleffectof
trogocytosisduringtheCTLeffectorphase,theTCRaswellasCARstripofftargetanti
gensfromtumorcells,resultinginthegenerationofescapevariants.Thus,theinhibition
ofreceptormediatedtrogocytosismayimprovetheefficacyofsomecancertherapies;
however,itiscurrentlyimpossibletoinhibittrogocytosiswithoutimpairmentofreceptor
functions.Itisalsounknownhowdonorcellsgivetheirmembranefragmentstorecipient
cells.Understandingofthemolecularmechanismsunderlyingtheseprocesseswillenable
thespecificperturbationoftrogocytosispathways,resultinginthedevelopmentofnew
therapeuticstrategiesfortreatmentofimmunediseases.
AuthorContributions:M.N.wrotethemanuscript.A.H.,S.T.,andS.I.Y.editedthemanuscript.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:WorkintheNakayamalaboratoryissupportedbyJapanScienceandTechnologyAgency
(JST)PRESTO[JPMJPR17H9],JapanSocietyforthePromotionofScience(JSPS)[19H03880],and
UeharaMemorialFoundation.s
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Ahmed,K.A.;Munegowda,M.A.;Xie,Y.;Xiang,J.Intercellulartrogocytosisplaysanimportantroleinmodulationofimmune
responses.Cell.Mol.Immunol.2008,5,261–269.
2. Tay l or,R.P.;Lindorfer,M.A.FcgammareceptormediatedtrogocytosisimpactsmAbbasedtherapies:Historicalprecedence
andrecentdevelopments.Blood2015,125,762–726.
3. Nakayama,M.AntigenpresentationbyMHCdressedcells.Front.Immunol.2015,5,672.
4. Dance,A.CoreConcept:Cellsnibbleoneanotherviatheunderappreciatedprocessoftrogocytosis.Proc.Natl.Acad.Sci.USA
2019,116,17608–17610.
5. Joly,E.;Hudrisier,D.Whatistrogocytosisandwhatisitspurpose?Nat.Immunol.2003,4,815.
6. Li,G.;Bethune,M.T.;Wong,S.;Joglekar,A.V.;Leonard,M.T.;Wang, J.K.;Kim,J.T.;Cheng,D.;Peng,S.;Zaretsky,J.M.;etal.T
cellantigendiscoveryviatrogocytosis.Nat.Methods2019,16,183–190.
7. Trambas,C.M.;Griffiths,G.M.Deliveringthekissofdeath.Nat.Immunol.2003,4,399–403.
8. Steele,S.;Radlinski,L.;Taft Benz,S.;Brunton,J.;Kawula,T.H.Trogocytosisassociatedcelltocellspreadofintracellular
bacterialpathogens.eLife2016,5.e10625.
9. Valenzuela,J.I.;Perez,F.Localizedintercellulartransferofephrinasbytransendocytosisenableslongtermsignaling.Dev.Cell
2020,52,104–117e5.
10. Weinhard,L.;diBartolomei,G.;Bolasco,G.;Machado,P.;Schieber,N.L.;Neniskyte,U.;Exiga,M.;Vadi siut e ,A.;Raggioli,A.;
Schertel,A.;etal.Microgliaremodelsynapsesbypresynaptictrogocytosisandspineheadfilopodiainduction.Nat.Commun.
2018,9,1228.
11. Andoh,M.;Shibata,K.;Okamoto,K.;Onodera,J.;Morishita,K.;Miura,Y.;Ikegaya,Y.; Koyama,R.Exercisereversesbehavioral
andsynapticabnormalitiesaftermaternalinflammation.CellRep.2019,27,2817–2825e5.
12. Ralston,K.S.;Solga,M.D.;MackeyLawrence,N.M.;Somlata;Bhattacharya,A.;Petri,W.A.,Jr.TrogocytosisbyEntamoeba
histolyticacontributestocellkillingandtissueinvasion.Nature2014,508,526–530.
13. SaitoNakano,Y.;Wahy uni, R.;NakadaTsukui,K.;Tomii,K.;Nozaki,T.Rab7DsmallGTPaseisinvolvedinphago,trogocytosis
andcytoskeletalreorganizationintheentericprotozoanEntamoebahistolytica.Cell.Microbiol.2021,23,e13267.
14. Bettadapur,A.;Miller,H.W.;Ralston,K.S.Bitingoffwhatcanbechewed:Trogocytosisinhealth,infection,anddisease.Infect.
Immun.2020,88.e0093019.
15. Thion,M.S.;Ginhoux,F.;Garel,S.Microgliaandearlybraindevelopment:Anintimatejourney.Science2018,362,185–189.
16. Otto,G.Synapticnibbling.Nat.Rev.Neurosci.2018,19,322.
Cells2021,10,115512of16
17. Li,K.J.;Wu,C.H.;Lu,C.H.;Shen,C.Y.;Kuo,Y.M.;Tsa i,C.Y.;Hsieh,S.C.;Yu,C.L.Trogocytosisbetweennonimmunecellsfor
cellclearance,andamongImmunerelatedcellsformodulatingimmuneresponsesandautoimmunity.Int.J.Mol.Sci.2021,22,
2236.
18. Karasuyama,H.;Miyake,K.;Yoshikawa,S.;Kawano,Y.;Yamanis h i , Y.HowdobasophilscontributetoTh2celldifferentiation
andallergicresponses?Int.Immunol.2018,30,391–396.
19. MartinezMartin,N.;FernandezArenas,E.;Cemerski,S.;Delgado,P.;Tur ner ,M.;Heuser,J.;Irvine,D.J.;Huang,B.;Bustelo,
X.R.;Shaw,A;etal.TcellreceptorinternalizationfromtheimmunologicalsynapseismediatedbyTC21andRhoGGTPase
dependentphagocytosis.Immunity2011,35,208–222.
20. Goodridge,H.S.;Underhill,D.M.;Touret,N.MechanismsofFcreceptoranddectin1activationforphagocytosis.Traffic2012,
13,1062–1071.
21. Auc h er,A.;Magdeleine,E.;Joly,E.;Hudrisier,D.Captureofplasmamembranefragmentsfromtargetcellsbytrogocytosis
requiressignalinginTcellsbutnotinBcells.Blood2008,111,5621–5628.
22. Nakamura,K.;Nakayama,M.;Kawano,M.;Amagai,R.;Ishii,T.;Harigae,H.;Ogasawara,K.Fratricideofnaturalkillercells
dressedwithtumorderivedNKG2Dligand.Proc.Natl.Acad.Sci.USA2013,110,9421–9426.
23. Mathieu,M.;MartinJaular,L.;Lavieu,G.;Thery,C.Specificitiesofsecretionanduptakeofexosomesandotherextracellular
vesiclesforcelltocellcommunication.Nat.CellBiol.2019,21,9–17.
24. Choudhuri,K.;Llodra,J.;Roth,E.W.;Tsai, J.;Gordo,S.;Wucherpfennig,K.W.;Kam,L.C.;Stokes,D.L.;Dustin,M.L.Polarized
releaseofTcellreceptorenrichedmicrovesiclesattheimmunologicalsynapse.Nature2014,507,118–123.
25. Vietri,M.;Radulovic,M.;Stenmark,H.ThemanyfunctionsofESCRTs.Nat.Rev.Mol.CellBiol.2020,21,25–42.
26. Kim,H.R.;Mun,Y.; Lee,K.S.;Park,Y.J.;Park,J.S.;Park,J.H.;Jeon,B.N.;Kim,C.H.;Jun,Y.;Hyun,Y. M. ;etal.Tcellmicrovilli
constituteimmunologicalsynaptosomesthatcarrymessagestoantigenpresentingcells.Nat.Commun.2018,9,3630.
27. Kim,H.R.;Jun,C.D.Tcellmicrovilli:Sensorsorsenders?Front.Immunol.2019,10,1753.
28. Balint,S.;Muller,S.;Fischer,R.;Kessler,B.M.;Harkiolaki,M.;Valitutti,S.;Dustin,M.L.Supramolecularattackparticlesare
autonomouskillingentitiesreleasedfromcytotoxicTcells.Science2020,368,897–901.
29. Wang , Q.;Yu,J.;Kadungure,T.;Beyene,J.;Zhang,H.;Lu,Q.ARMMsasaversatileplatformforintracellulardeliveryof
macromolecules.Nat.Commun.2018,9,960.
30. Nabhan,J.F.;Hu,R.;Oh,R.S.;Cohen,S.N.;Lu,Q.Formationandreleaseofarrestindomaincontainingprotein1mediated
microvesicles(ARMMs)atplasmamembranebyrecruitmentofTSG101protein.Proc.Natl.Acad.Sci.USA2012,109,4146–4151.
31. Norris,R.P.Transferofmitochondriaandendosomesbetweencellsbygapjunctioninternalization.Traffic2021,
doi:10.1111/tra.12786.Onlineaheadofprint.
32. Dopfer,E.P.;Minguet,S.;Schamel,W.W.Anewvampiresaga:ThemolecularmechanismofTcelltrogocytosis.Immunity2011,
35,151–153.
33. Williams,G.S.;Collinson,L.M.;Brzostek,J.;Eissmann,P.;Almeida,C.R.;McCann,F.E.;Burshtyn,D.;Davis,D.M.Membranous
structurestransfercellsurfaceproteinsacrossNKcellimmunesynapses.Traffic2007,8,1190–1204.
34. Hudrisier,D.;Clemenceau,B.;Balor,S.;Daubeuf,S.;Magdeleine,E.;Daeron,M.;Bruhns,P.;Vie,H.Ligandbindingbut
undetectedfunctionalresponseofFcRaftertheircapturebyTcellsviatrogocytosis.J.Immunol.2009,183,6102–6113.
35. Patel,D.M.;Dudek,R.W.;Mannie,M.D.IntercellularexchangeofclassIIMHCcomplexes:Ultrastructurallocalizationand
functionalpresentationofadsorbedIA/peptidecomplexes.Cell.Immunol.2001,214,21–34.
36. Chaudhri,G.;Quah,B.J.;Wa ng, Y.;Tan, A.H.;Zhou,J.;Karupiah,G.;Paris h,C.R.TcellreceptorsharingbycytotoxicT
lymphocytesfacilitatesefficientviruscontrol.Proc.Natl.Acad.Sci.USA2009,106,14984–14989.
37. Somanchi,S.S.;Somanchi,A.;Cooper,L.J.;Lee,D.A.Engineeringlymphnodehomingofexvivoexpandedhumannatural
killercellsviatrogocytosisofthechemokinereceptorCCR7.Blood2012,119,5164–5172.
38. Palucka,K.;Banchereau,J.Cancerimmunotherapyviadendriticcells.Nat.Rev.Cancer2012,12,265–277.
39. Cruz,F.M.;Colbert,J.D.;Merino,E.;Kriegsman,B.A.;Rock,K.L.Thebiologyandunderlyingmechanismsofcrosspresentation
ofexogenousantigensonMHCImolecules.Annu.Rev.Immunol.2017,35,149–176.
40. Blander,J.M.Regulationofthecellbiologyofantigencrosspresentation.Annu.Rev.Immunol.2018,36,717–753.
41. CabezaCabrerizo,M.;Cardoso,A.;Minutti,C.M.;PereiradaCosta,M.;Reis,E.S.C.Dendriticcellsrevisited.Annu.Rev.Immunol.
2021,39,131–166.
42. Veglia,F.;Gabrilovich,D.I.Dendriticcellsincancer:Therolerevisited.Curr.Opin.Immunol.2017,45,43–51.
43. Reizis,B.Plasmacytoiddendriticcells:Development,regulation,andfunction.Immunity2019,50,37–50.
44. Joffre,O.P.;Segura,E.;Savina,A.;Amigorena,S.Crosspresentationbydendriticcells.Nat.Rev.Immunol.2012,12,557–569.
45. Colbert,J.D.;Cruz,F.M.;Rock,K.L.CrosspresentationofexogenousantigensonMHCImolecules.Curr.Opin.Immunol.2020,
64,1–8.
46. Sancho,D.;Joffre,O.P.;Keller,A.M.;Rogers,N.C.;Martinez,D.;HernanzFalcon,P.;Rosewell,I.;ReiseSousa,C.Identification
ofadendriticcellreceptorthatcouplessensingofnecrosistoimmunity.Nature2009,458,899–903.
47. Ahrens,S.;Zelenay,S.;Sancho,D.;Hanc,P.;Kjaer,S.;Feest,C.;Fletcher,G.;Durkin,C.;Postigo,A.;Skehel,M.;etal.Factinis
anevolutionarilyconserveddamageassociatedmolecularpatternrecognizedbyDNGR1,areceptorfordeadcells.Immunity
2012,36,635–645.
Cells2021,10,115513of16
48. Canton,J.;Blees,H.;Henry,C.M.;Buck,M.D.;Schulz,O.;Rogers,N.C.;Childs,E.;Zelenay,S.;Rhys,H.;Domart,M.C.;etal.
ThereceptorDNGR1signalsforphagosomalrupturetopromotecrosspresentationofdeadcellassociatedantigens.Nat.
Immunol.2021,22,140–153.
49. Pitt,J.M.;Charrier,M.;Viaud,S.;Andre,F.;Besse,B.;Chaput,N.;Zitvogel,L.Dendriticcellderivedexosomesas
immunotherapiesinthefightagainstcancer.J.Immunol.2014,193,1006–1011.
50. Campana,S.;DePasquale,C.;Carrega,P.;Ferlazzo,G.;Bonaccorsi,I.Crossdressing:Analternativemechanismforantigen
presentation.Immunol.Lett.2015,168,349–354.
51. Dolan,B.P.;Gibbs,K.D.;Jr.;OstrandRosenberg,S.DendriticcellscrossdressedwithpeptideMHCclassIcomplexesprime
CD8+Tcells.J.Immunol.2006,177,6018–6024.
52. Wolfers,J.;Lozier,A.;Raposo,G.;Regnault,A.;Thery,C.;Masurier,C.;Flament,C.;Pouzieux,S.;Faure,F.;Tur sz, T.;etal.
Tum orderivedexosomesareasourceofsharedtumorrejectionantigensforCTLcrosspriming.Nat.Med.2001,7,297–303.
53. Andre,F.;Schartz,N.E.;Movassagh,M.;Flament,C.;Pautier,P.;Morice,P.;Pomel,C.;Lhomme,C.;Escudier,B.;LeChevalier,
T.;etal.Malignanteffusionsandimmunogenictumourderivedexosomes.Lancet2002,360,295–305.
54. Helft,J.;Bottcher,J.;Chakravarty,P.;Zelenay,S.;Huotari,J.;Schraml,B.U.;Goubau,D.;ReiseSousa,C.GMCSFmousebone
marrowculturescompriseaheterogeneouspopulationofCD11c+MHCII+macrophagesanddendriticcells.Immunity2015,42,
1197–1211.
55. Jung,S.;Unutmaz,D.;Wong,P.;Sano,G.;DelosSantos,K.;Sparwasser,T.;Wu,S.;Vuthoori,S.;Ko,K.;Zavala,F.;etal.Invivo
depletionofCD11c+dendriticcellsabrogatesprimingofCD8+Tcellsbyexogenouscellassociatedantigens.Immunity2002,17,
211–220.
56. Zhang,Q.J.;Li,X.L.;Wang ,D.;Huang,X.C.;Mathis,J.M.;Duan,W.M.;Knight,D.;Shi,R.;Glass,J.;Zhang,D.Q.;etal.
TrogocytosisofMHCI/peptidecomplexesderivedfromtumorsandinfectedcellsenhancesdendriticcellcrossprimingand
promotesadaptiveTcellresponses.PLoSONE2008,3,e3097.
57. Ziegler,P.K.;Bollrath,J.;Pallangyo,C.K.;Matsutani,T.;Canli,O.;DeOliveira,T.;Diamanti,M.A.;Muller,N.;Gamrekelashvili,
J.;Putoczki,T.;etal.Mitophagyinintestinalepithelialcellstriggersadaptiveimmunityduringtumorigenesis.Cell2018,174,
88–101.e16.
58. DasMohapatra,A.;Tirrell,I.;Benechet,A.P.;Pattnayak,S.;Khanna,K.M.;Srivastava,P.K.CrossdressingofCD8+dendritic
cellswithantigensfromlivemousetumorcellsisamajormechanismofcrosspriming.CancerImmunol.Res.2020,8,1287–1299.
59. Li,L.;Kim,S.;Herndon,J.M.;Goedegebuure,P.;Belt,B.A.;Satpathy,A.T.;Fleming,T.P.;Hansen,T.H.;Murphy,K.M.;
Gillanders,W.E.CrossdressedCD8+/CD103+dendriticcellsprimeCD8+Tcellsfollowingvaccination.Proc.Natl.Acad.Sci.
USA2012,109,12716–12721.
60. Fu,C.;Peng,P.;Loschko,J.;Feng,L.;Pham,P.;Cui,W.;Lee,K.P.;Krug,A.B.;Jiang,A.Plasmacytoiddendriticcellscrossprime
naiveCD8Tcellsbytransferringantigentoconventionaldendriticcellsthroughexosomes.Proc.Natl.Acad.Sci.USA2020.117,
2373023741.
61. Smyth,L.A.;Harker,N.;Turnbull,W.;ElDoueik,H.;Klavinskis,L.;Kioussis,D.;Lombardi,G.;Lechler,R.Therelative
efficiencyofacquisitionofMHC:peptidecomplexesandcrosspresentationdependsondendriticcelltype.J.Immunol.2008,
181,3212–3220.
62. Waki m ,L.M.;Bevan,M.J.CrossdresseddendriticcellsdrivememoryCD8+Tcellactivationafterviralinfection.Nature2011,
471,629–632.
63. Smyth,L.A.;Hervouet,C.;Hayday,T.;Becker,P.D.;Ellis,R.;Lechler,R.I.;Lombardi,G.;Klavinskis,L.S.Acquisitionof
MHC:peptidecomplexesbydendriticcellscontributestothegenerationofantiviralCD8+Tcellimmunityinvivo.J.Immunol.
2012,189,2274–2282.
64. Bonaccorsi,I.;Morandi,B.;Antsiferova,O.;Costa,G.;Oliveri,D.;Conte,R.;Pezzino,G.;Vermigl io, G.;Anastasi,G.P.;Navarra,
G.;etal.Membranetransferfromtumorcellsovercomesdeficientphagocyticabilityofplasmacytoiddendriticcellsforthe
acquisitionandpresentationoftumorantigens.J.Immunol.2014,192,824–832.
65. Huang,J.F.;Ya n g , Y.; Sepulveda,H.;Shi,W.;Hwang,I.;Peterson,P.A.;Jackson,M.R.;Sprent,J.;Cai,Z.TCRmediated
internalizationofpeptideMHCcomplexesacquiredbyTcells.Science1999,286,952–954.
66. Daubeuf,S.;Puaux,A.L.;Joly,E.;Hudrisier,D.Asimpletrogocytosisbasedmethodtodetect,quantify,characterizeandpurify
antigenspecificlivelymphocytesbyflowcytometry,viatheircaptureofmembranefragmentsfromantigenpresentingcells.
Nat.Protoc.2006,1,2536–2542.
67. Machlenkin,A.;Uzana,R.;Frankenburg,S.;Eisenberg,G.;Eisenbach,L.;Pitcovski,J.;Gorodetsky,R.;Nissan,A.;Peretz,T.;
Lotem,M.CaptureoftumorcellmembranesbytrogocytosisfacilitatesdetectionandisolationoftumorspecificfunctionalCTLs.
CancerRes.2008,68,2006–2013.
68. Wet z el, S.A.;McKeithan,T.W.;Parker,D.C.PeptidespecificintercellulartransferofMHCclassIItoCD4+Tcellsdirectlyfrom
theimmunologicalsynapseuponcellulardissociation.J.Immunol.2005,174,80–89.
69. Osborne,D.G.;Wetze l,S.A.TrogocytosisresultsinsustainedintracellularsignalinginCD4+Tcells.J.Immunol.2012,189,4728–
4739.
70. Reed,J.;Wetzel ,S.A.TrogocytosismediatedintracellularsignalinginCD4+TcellsdrivesTH2associatedeffectorcytokine
productionanddifferentiation.J.Immunol.2019,202,2873–2887.
71. Stinchcombe,J.C.;Bossi,G.;Booth,S.;Griffiths,G.M.TheimmunologicalsynapseofCTLcontainsasecretorydomainand
membranebridges.Immunity.2001,15,751–761.
Cells2021,10,115514of16
72. Hamieh,M.;Dobrin,A.;Cabriolu,A.;vanderStegen,S.J.C.;Giavridis,T.;MansillaSoto,J.;Eyquem,J.;Zhao,Z.;Whitlock,B.M.;
Miele,M.M.;etal.CARTcelltrogocytosisandcooperativekillingregulatetumourantigenescape.Nature2019,568,112–116.
73. Chung,B.;Stuge,T.B.;Murad,J.P.;Beilhack,G.;Andersen,E.;Armstrong,B.D.;Weber, J.S.;Lee,P.P.Antigenspecificinhibition
ofhighavidityTcelltargetlysisbylowavidityTcellsviatrogocytosis.CellRep.2014,8,871–882.
74. June,C.H.;O’Connor,R.S.;Kawalekar,O.U.;Ghassemi,S.;Milone,M.C.CARTcellimmunotherapyforhumancancer.Science
2018,359,1361–1365.
75. Salter,A.I.;Pont,M.J.;Riddell,S.R.ChimericantigenreceptormodifiedTcells:CD19andtheroadbeyond.Blood2018,131,
2621–2629.
76. Sadelain,M.;Riviere,I.;Riddell,S.TherapeuticTcellengineering.Nature2017,545,423–431.
77. Schuster,S.J.;Svoboda,J.;Chong,E.A.;Nasta,S.D.;Mato,A.R.;Anak,O.;Brogdon,J.L.;PruteanuMalinici,I.;Bhoj,V.;
Landsburg,D.;etal.ChimericantigenreceptorTcellsinrefractoryBcelllymphomas.N.Engl.J.Med.2017,377,2545–2554.
78. Majzner,R.G.;Mackall,C.L.Tumor antigenescapefromCARTcelltherapy.CancerDiscov.2018,8,1219–1226.
79. Lee,D.S.W.;Rojas,O.L.;Gommerman,J.L.Bcelldepletiontherapiesinautoimmunedisease:Advancesandmechanisticinsights.
Nat.Rev.DrugDiscov.2020,20,179–199.
80. Salles,G.;Barrett,M.;Foa,R.;Maurer,J.;OʹBrien,S.;Val e n te,N.;Wen ger ,M.;Maloney,D.G.RituximabinBcellhematologic
malignancies:Areviewof20yearsofclinicalexperience.Adv.Ther.2017,34,2232–2273.
81. Sherman,L.A.;Chattopadhyay,S.Themolecularbasisofallorecognition.Ann.Rev.Immunol.1993,11,385–402.
82. Auchincloss,H.,Jr.;Lee,R.;Shea,S.;Markowitz,J.S.;Grusby,M.J.;Glimcher,L.H.Theroleof“indirect”recognitionin
initiatingrejectionofskingraftsfrommajorhistocompatibilitycomplexclassIIdeficientmice.Proc.Natl.Acad.Sci.USA1993,
90,3373–3377.
83. Shoskes,D.A.;Wood,K.J.IndirectpresentationofMHCantigensintransplantation.Immunol.Today1994,15,32–38.
84. Herrera,O.B.;Golshayan,D.;Tibbott,R.;SalcidoOchoa,F.;James,M.J.;MarelliBerg,F.M.;Lechler,R.I.Anovelpathwayof
alloantigenpresentationbydendriticcells.J.Immunol.2004,173,4828–4837.
85. Smyth,L.A.;Afzali,B.;Tsan g,J.;Lombardi,G.;Lechler,R.I.IntercellulartransferofMHCandimmunologicalmolecules:
Molecularmechanismsandbiologicalsignificance.Am.J.Transplant.2007,7,1442–1449.
86. Siu,J.H.Y.;Surendrakumar,V.;Richards,J.A.;Pettigrew,G.J.Tcellallorecognitionpathwaysinsolidorgantransplantation.
Front.Immunol.2018,9,2548.
87. Russo,V.;Zhou,D.;Sartirana,C.;Rovere,P.;Villa,A.;Rossini,S.;Traversari,C.;Bordignon,C.Acquisitionofintactallogeneic
humanleukocyteantigenmoleculesbyhumandendriticcells.Blood2000,95,3473–3477.
88. Marino,J.;Babiker