ThesisPDF Available

Electrical Energy Consumption Forecasting for Efficient Energy Management in Smart Grid

Authors:

Abstract

Accurate, fast, and stable electrical energy consumption forecasting plays a vital role in decision making, energy management, effective planning, reliable and secure power system operation. Inaccurate forecasting can lead to the electricity shortage, wastage of energy resources, power outage, and in the worst case, power grid collapse. Contrarily, accurate forecasting enables policymakers and public agencies to make real-time decisions imperative for the energy management and power system’s secure and reliable operation. However, accurate, fast, and stable forecasting is challenging due to consumers’ uncertain and intermittent electrical energy consumption behavior. In this context, a rigid forecasting model with assertive stochastic and non-linear behavior capturing abilities is needed. Thus, several forecasting strategies have been emerged in state-of-the-art work, starting from conventional time series to modern data analytic methods to solve the non-linear electrical consumption prediction problems. The individual techniques partially resolved the forecasting problem by improving forecast accuracy. However, the improvement in accuracy is not up to the mark. Besides, individual techniques (conventional or modern) suffer from their inherent limitations. Due to inherent limitations, forecasting results of individual methods (conventional or modern) are no longer as accurate as required. To solve such problems, hybrid models developed, which fully utilize individual methods’ advantages and have comparatively improved performance. Only some models are commendable that improve accuracy, while others perform better in convergence rate. However, considering only one aspect (accuracy or convergence rate) is insufficient. Thus, accuracy and convergence rate both are of prime importance and can be improved simultaneously. Therefore, scholars and industries have the primary goal of developing a forecasting model, which provides robust, stable, and accurate electrical energy consumption forecasting for efficient energy management. With this motivation, a novel two-stage hybrid model is developed by integrating the electrical energy consumption forecasting stage with the energy management stage. The first stage is for electrical energy consumption forecasting, and the second stage is for efficient energy management. The first stage composed of four modules: (i) a novel cascaded framework based on factored conditional deep belief network (FCDBN), (ii) deep learning based forecaster cascaded with a heuristic algorithm based optimizer framework, (iii) support vector machine (SVM) based forecaster integrated with modified enhanced differential evolution (mEDE) algorithm framework, and (iv) accurate and fast converging deep learning based forecaster framework. The first module framework consists of data preprocessing phase, FCDBN training phase, and FCDBN based forecasting phase. The first module framework is developed in a cascaded manner, where each former phase’s output is fed into the later phase as input, namely cascaded framework. The second module is a hybrid framework composed of data preprocessing and feature selection, training and forecasting, and optimization phases. The third module is an integrated framework of data preprocessing and features engineering, SVM based forecaster, and mEDE based optimizer, namely FA-HELF. The fourth module is a cascaded framework of feature selector, FCRBM based forecaster, and GWDO based optimizer, namely FS-FCRBM-GWDO. The purpose of the modules in the first stage is to provide fast, accurate, and stable electrical energy consumption forecasting. To accomplish this goal first, the data is preprocessed to convert it into a usable format. Secondly, clean and prepared data is passed through feature selection and extraction phases to select the most relevant and desired features from the data. Thirdly, the feature engineering phase’s output is fed to the training phase to empower the forecaster through training and learning processes to accurately forecast electrical energy consumption. Finally, the forecasted electrical energy consumption is given as an input to the optimization phase to further minimize the error in predicted results by optimizing the model’s hyperparameters. The first stage results are fed to the second stage of the proposed model for efficient energy management. The second stage is based on optimization strategies that utilize the forecasted electrical energy consumption pattern for efficient energy management. The second stage comprises three modules: (i) day ahead genetic modified enhanced differential evolution algorithm based module, (ii) genetic modified enhanced differential evolution algorithm based scheduling module, and (iii) genetic wind driven optimization algorithm based energy management controlling module. The purpose of the second stage is to reduce the bill of electricity, mitigate peaks in demand, and acquire the desired tradeoff between electricity bill and user discomfort by utilizing forecasted electrical energy consumption. The proposed model is favorable for both consumers and power companies because it fulfills the need both parties. For consumers, the proposed model minimizes electricity bill and discomfort in terms of waiting time simultaneously. In contrast, the proposed model rewards power companies by alleviating peaks in demand to increase power system stability. Simulation results confirmed the effectiveness and productiveness of the proposed model by comparing it with benchmark models.
A preview of the PDF is not available
... The Smart Grid is, in general, a Transmission and Distribution (T & D) framework that coordinates detecting, checking, and correspondence innovation in order to keep T & D under controlled frameworks [3] to refine misfortunes and unwavering quality. Smart grids ensure that electricity is always available and forestall power outages by methods for computer innovation. ...
Article
Full-text available
The advent of the new millennium, with the promises of the digital age and space technology, favors humankind in every perspective. The technology provides us with electric power and has infinite use in multiple electronic accessories. The electric power produced by different sources is distributed to consumers by the transmission line and grid stations. During the electric transmission from primary sources, there are various methods by which to commit energy theft. Energy theft is a universal electric problem in many countries, with a possible loss of billions of dollars for electric companies. This energy contention is deep rooted, having so many root causes and rugged solutions of a technical nature. Advanced Metering Infrastructure (AMI) is introduced with no adequate results to control and minimize electric theft. Until now, so many techniques have been applied to overcome this grave problem of electric power theft. Many researchers nowadays use machine learning algorithms, trying to combat this problem, giving better results than previous approaches. Random Forest (RF) classifier gave overwhelmingly good results with high accuracy. In our proposed solution, we use a novel Convolution Neural Network (CNN) with RUSBoost Manta Ray Foraging Optimization (rus-MRFO) and RUSBoost Bird Swarm Algorithm (rus-BSA) models, which proves to be very innovative. The accuracy of our proposed approaches, rus-MRFO and rus-BSA, are 91.5% and a 93.5%, respectively. The proposed techniques have shown promising results and have strong potential to be applied in future.
Article
Full-text available
The significance of electricity cannot be overlooked as all fields of life like material production, health care, educational sector, etc., depend upon it to render consistent and high-quality services, increase productivity and business continuity. To this end, energy operators have experienced a continuous increasing trend in the electricity demand for the past few decades. This may cause many issues like load shedding, increased electricity bills, imbalance between supply and demand, etc. Therefore, forecasting of electricity demand using efficient techniques is crucial for the energy operators to decide about optimal unit commitment and to make electricity dispatch plans. It also helps to avoid wastage as well as the shortage of energy. In this study, a novel forecasting model, known as ELS-net is proposed, which is a combination of an Ensemble Empirical Mode Decomposition (EEMD) method, multi-model Ensemble Bi Long Short-Term Memory (EBiLSTM) forecasting technique and Support Vector Machine (SVM). In the proposed model, EEMD is used to distinguish between linear and non-linear intrinsic mode functions (IMFs), EBiLSTM is used to forecast the non-linear IMFs and SVM is employed to forecast the linear IMFs. Using separate forecasting techniques for linear and non-linear IMFs decreases the computational complexity of the model. Moreover, SVM requires low computational time as compared to EBiLSTM for linear IMFs. Simulations are performed to examine the effectiveness of the proposed model using two different datasets: New South Wales (NSW) and Victoria (VIC). For performance evaluation, Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used as performance metrics. From the simulation results, it is obvious that the proposed ELS-net model outperforms the start-of-the-art techniques, such as EMD-BILSTM-SVM, EMD-PSO-GA-SVR, BiLSTM, MLP and SVM in terms of forecasting accuracy and minimum execution time.
Article
Full-text available
Electricity is widely used around 80\% of the world. Electricity theft has dangerous effects on utilities in terms of power efficiency and costs billions of dollars per annum. The~enhancement of the traditional grids gave rise to smart grids that enable one to resolve the dilemma of electricity theft detection (ETD) using an extensive amount of data formulated by smart meters. This data are used by power utilities to examine the consumption behaviors of consumers and to decide whether the consumer is an electricity thief or benign. However, the traditional data-driven methods for ETD have poor detection performances due to the high-dimensional imbalanced data and their limited ETD capability. In this paper, we present a new class balancing mechanism based on the interquartile minority oversampling technique and a combined ETD model to overcome the shortcomings of conventional approaches. The combined ETD model is composed of long short-term memory (LSTM), UNet and adaptive boosting (Adaboost), and termed LSTM--UNet--Adaboost. In~this~regard, LSTM--UNet--Adaboost combines the advantages of deep learning (LSTM-UNet) along with ensemble learning (Adaboost) for ETD. {Moreover, the performance of the proposed LSTM--UNet--Adaboost scheme was simulated and evaluated over the real-time smart meter dataset given by the State Grid Corporation of China. The simulations were conducted using the most appropriate performance indicators, such as area under the curve, precision, recall and F1 measure. The proposed solution obtained the highest results as compared to the existing benchmark schemes in terms of selected performance measures. More specifically, it achieved the detection rate of 0.92, which~was the highest among existing benchmark schemes, such as logistic regression, support vector machine and random under-sampling boosting technique. Therefore, the simulation outcomes validate that the proposed LSTM--UNet--Adaboost model surpasses other traditional methods in terms of ETD and is more acceptable for real-time practices.
Article
Full-text available
Due to the increase in the number of electricity thieves, the electric utilities are facing problems in providing electricity to their consumers in an efficient way. An accurate Electricity Theft Detection (ETD) is quite challenging due to the inaccurate classification on the imbalance electricity consumption data, the overfitting issues and the High False Positive Rate (FPR) of the existing techniques. Therefore, intensified research is needed to accurately detect the electricity thieves and to recover a huge revenue loss for utility companies. To address the above limitations, this paper presents a new model, which is based on the supervised machine learning techniques and real electricity consumption data. Initially, the electricity data are pre-processed using interpolation, three sigma rule and normalization methods. Since the distribution of labels in the electricity consumption data is imbalanced, an Adasyn algorithm is utilized to address this class imbalance problem. It is used to achieve two objectives. Firstly, it intelligently increases the minority class samples in the data. Secondly, it prevents the model from being biased towards the majority class samples. Afterwards, the balanced data are fed into a Visual Geometry Group (VGG-16) module to detect abnormal patterns in electricity consumption. Finally, a Firefly Algorithm based Extreme Gradient Boosting (FA-XGBoost) technique is exploited for classification. The simulations are conducted to show the performance of our proposed model. Moreover, the state-of-the-art methods are also implemented for comparative analysis, i.e., Support Vector Machine (SVM), Convolution Neural Network (CNN), and Logistic Regression (LR). For validation, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Receiving Operating Characteristics Area Under Curve (ROC-AUC), and Precision Recall Area Under Curve (PR-AUC) metrics are used. Firstly, the simulation results show that the proposed Adasyn method has improved the performance of FA-XGboost classifier, which has achieved F1-score, precision, and recall of 93.7%, 92.6%, and 97%, respectively. Secondly, the VGG-16 module achieved a higher generalized performance by securing accuracy of 87.2% and 83.5% on training and testing data, respectively. Thirdly, the proposed FA-XGBoost has correctly identified actual electricity thieves, i.e., recall of 97%. Moreover, our model is superior to the other state-of-the-art models in terms of handling the large time series data and accurate classification. These models can be efficiently applied by the utility companies using the real electricity consumption data to identify the electricity thieves and overcome the major revenue losses in power sector.
Article
Full-text available
Multi-microgrid (MMG) system is a new method that concurrently incorporates different types of distributed energy resources, energy storage systems and demand responses to provide reliable and independent electricity for the community. However, MMG system faces the problems of management, real-time economic operations and controls. Therefore, this study proposes an energy management system (EMS) that turns an infinite number of MMGs into a coherence and efficient system, where each MMG can achieve its goals and perspectives. The proposed EMS employs a cooperative game to achieve efficient coordination and operations of the MMG system and also ensures a fair energy cost allocation among members in the coalition. This study considers the energy cost allocation problem when the number of members in the coalition grows exponentially. The energy cost allocation problem is solved using a column generation algorithm. The proposed model includes energy storage systems, demand loads, real-time electricity prices and renewable energy. The estimate of the daily operating cost of the MMG using a proposed deep convolutional neural network (CNN) is analyzed in this study. An optimal scheduling policy to optimize the total daily operating cost of MMG is also proposed. Besides, other existing optimal scheduling policies, such as approximate dynamic programming (ADP), model prediction control (MPC), and greedy policy are considered for the comparison. To evaluate the effectiveness of the proposed model, the real-time electricity prices of the electric reliability council of Texas are used. Simulation results show that each MMG can achieve energy cost savings through a coalition of MMG. Moreover, the proposed optimal policy method achieves MG's daily operating cost reduction up to 87.86% as compared to 79.52% for the MPC method, 73.94% for the greedy policy method and 79.42% for ADP method.
Article
Full-text available
An operative and versatile household energy management system is proposed to develop and implement demand response (DR) projects. These are under the hybrid generation of the energy storage system (ESS), photovoltaic (PV), and electric vehicles (EVs) in the smart grid (SG). Existing household energy management systems cannot offer its users a choice to ensure user comfort (UC) and not provide a sustainable solution in terms of reduced carbon emission. To tackle these problems, this research work proposes a heuristic-based programmable energy management controller (HPEMC) to manage the energy consumption in residential buildings to minimize electricity bills, reduce carbon emissions, maximize UC and reduce the peak-to-average ratio (PAR). We used our proposed hybrid genetic particle swarm optimization (HGPO) algorithm and existing algorithms like a genetic algorithm (GA), binary particle swarm optimization algorithm (BPSO), ant colony optimization (ACO), wind-driven optimization algorithm (WDO), bacterial foraging algorithm (BFA) to schedule smart appliances optimally to attain our desired objectives. In the proposed model, consumers use solar panels to produce their energy from microgrids. We also perform MATLAB simulations to validate our proposed HGPO-HPEMC (HHPEMC), and results confirm the efficiency and productivity of our proposed HPEMC based strategy. The proposed algorithm reduced the electricity cost by 25.55%, PAR by 36.98%, and carbon emission by 24.02% as compared to the case of without scheduling.
Article
Full-text available
Forecasting in the smart grid (SG) plays a vital role in maintaining the balance between demand and supply of electricity, efficient energy management, better planning of energy generation units and renewable energy sources and their dispatching and scheduling. Existing forecasting models are being used and new models are developed for a wide range of SG applications. These algorithms have hy-perparameters which need to be optimized carefully before forecasting. The optimized values of these algorithms increase the forecasting accuracy up-to a significant level. In this paper, we present a brief literature review of forecasting models and the optimization methods used to tune their hyperparam-eters. In addition, we have also discussed the data preprocessing methods. A comparative analysis of these forecasting models, according to their hyperparameter optimization, error methods and prepro-cessing methods, is also presented. Besides, we have critically analyzed the existing optimization and data preprocessing models and highlighted the important findings. A survey of existing survey papers is also presented and their recency score is computed based on the number of recent papers reviewed in them. By recent, we mean that the year in which a survey paper is published and its previous three years. Finally, future research directions are discussed in detail.
Article
Under the liberalization and deregulation of the power industry, price forecasting has become a cornerstone for market participants' decision-making such as bidding strategies and purchase plans. However, the exclusive nonlinearity dynamics of electricity price is a challenge problem that largely affects forecasting accuracy. To address this task, this paper presents a hybrid forecasting framework for short-term electricity price forecasting by exploiting and mining the important information hidden in the electricity price signal. Moreover, a hybrid feature selection method (HFS) is introduced into the forecasting strategy. To exhibit the dynamical characteristics of electricity price, we primarily perform a singular spectrum analysis (SSA)-based systematic analysis process by using the merit of SSA and analyzing the multiple seasonal patterns of short-term electricity price series, providing a meaningful representation of the hidden patterns and time-varying volatility of electricity price series. Aiming at selecting the key features, the candidate variables are constructed considering the dynamic behavior of price series; further, to capture the optimal features from the candidates, the correlation threshold θ is defined for the adjustable parameters in HFS and optimally determined by the intelligent search algorithm. Additionally, triangulation based on the Pearson, Spearman and Kendall rank correlation coefficient is performed to strengthen the reliability of the proposed method. The proposed hybrid forecasting framework is validated in the New South Wales electricity market, which demonstrates that the developed approach is truly better than the benchmark models used and a reliable and promising tool for short-term electricity price forecasting.
Article
Forecasts of electricity consumption and peak demand over time horizons of one or two decades are a key element in electric utilities’ meeting their core objective and obligation to ensure reliable and affordable electricity supplies for their customers while complying with a range of energy and environmental regulations and policies. These forecasts are an important input to integrated resource planning (IRP) processes involving utilities, regulators, and other stake-holders. Despite their importance, however, there has been little analysis of long term utility load forecasting accuracy. We conduct a retrospective analysis of long term load forecasts on twelve Western U. S. electric utilities in the mid-2000s to find that most overestimated both energy consumption and peak demand growth. A key reason for this was the use of assumptions that led to an overestimation of economic growth. We find that the complexity of forecast methods and the accuracy of these forecasts are mildly correlated. In addition, sensitivity and risk analysis of load growth and its implications for capacity expansion were not well integrated with subsequent implementation. We review changes in the utilities load forecasting methods over the subsequent decade, and discuss the policy implications of long term load forecast inaccuracy and its underlying causes.
Article
Forecasting of energy-related variables is crucial for accurate planning and management of electrical power grids, aiming at improving overall efficiency and performance. In this paper, an artificial neural network (ANN)-based model is investigated for short-term forecasting of the hourly wind speed, solar radiation, and electrical power demand. Specifically, the non-linear autoregressive network with exogenous inputs (NARX) ANN is considered, compared to other models, and then selected to perform multi-step-ahead forecasting. Different time horizons have been considered in the range between 8 and 24 h ahead. The simulation analysis has put in evidence the main advantage of the proposed method, i.e., its capability to reconcile good forecasting performance in the short-term time horizon with a very simple network structure, which is potentially implementable on a low-cost processing platform.