Article

The Effect of Deoxyfluorination and O-Acylation on the Cytotoxicity of N-Acetyl-D-Gluco- and D-Galactosamine Hemiacetals

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Fully acetylated deoxyfluorinated hexosamine analogues and non-fluorinated 3,4,6-tri-O-acylated N-acetyl-hexosamine hemiacetals have previously been shown to display moderate anti-proliferative activity. We prepared a set of deoxyfluorinated GlcNAc and GalNAc hemiacetals that comprised both features: O-acylation at the non-anomeric positions with an acetyl, propionyl and butanoyl group, and deoxyfluorination at selected positions. Determination of the in vitro cytotoxicity towards the MDA-MB-231 breast cancer and HEK-293 cell lines showed that deoxyfluorination enhanced cytotoxicity in most analogues. Increasing the ester alkyl chain length had a variable effect on the cytotoxicity of fluoro analogues, which contrasted with non-fluorinated hemiacetals where butanoyl derivatives had always higher cytotoxicity than acetates. Reaction with 2-phenylethanethiol indicated that the recently described S-glyco-modification is an unlikely cause of cytotoxicity.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Azide reduction with concomitant acetylation then gave 1011. 463 Alternatively, the 4-O-benzyl-protected 1,6-anhydro derivative 988, obtained in four steps from D-glucal as discussed in Scheme 137, was treated with PhSTMS to obtain a separable mixture of thioglycoside anomers α-and β-900. 464 These anomers were separated before deoxyfluorination, given the 1 → 6 migration side reaction of the β-thiophenyl anomer (see Schemes 128 and 129). ...
... 146,451 Epoxide opening with lithium azide led to 1048 in 74% yield with a small amount of regioisomer 1049 observed. The alcohol group in 1048 was now acylated to give the acetate 1050a, 472 463 as well as benzylated to give 1050d. 464 Anhydro-bridge cleavage was effected with PhSTMS to give a mixture of separable anomers 906a−d. ...
... 464 Anhydro-bridge cleavage was effected with PhSTMS to give a mixture of separable anomers 906a−d. 463,464 Interestingly, for the propionate derivative 1050b, a rearrangement byproduct 1051 was also isolated. This is formed through activation of the azido group by ZnI 2 , initiating neighboring group participation from the endoxyclic O5 (not shown). ...
Article
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
... Azide reduction with concomitant acetylation then gave 1011. 463 Alternatively, the 4-O-benzyl-protected 1,6-anhydro derivative 988, obtained in four steps from D-glucal as discussed in Scheme 137, was treated with PhSTMS to obtain a separable mixture of thioglycoside anomers α-and β-900. 464 These anomers were separated before deoxyfluorination, given the 1 → 6 migration side reaction of the β-thiophenyl anomer (see Schemes 128 and 129). ...
... 464 Anhydro-bridge cleavage was effected with PhSTMS to give a mixture of separable anomers 906a−d. 463,464 Interestingly, for the propionate derivative 1050b, a rearrangement byproduct 1051 was also isolated. This is formed through activation of the azido group by ZnI 2 , initiating neighboring group participation from the endoxyclic O5 (not shown). ...
... 429 As explained with Scheme 139, the thiophenyl anomers were separated to avoid dealing with possible 1 → 6 migration side reactions arising from the β-anomer. 430 Hence, the α-anomers α-906a−d were subjected to the DAST-mediated deoxyfluorination conditions, followed by anomeric deprotection and azide reduction/ acetylation to give the 4,6-difluorinated GalNAc derivatives 1054a−d as analogues of the cytotoxic triacetylated GalNAc, 463 and the benzyl ether 1054d. This was then fully deprotected to give 2,4,6-trideoxy-2-acetamido-4,6-difluorogalactose 1055. ...
Article
Full-text available
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Article
In the present study, we synthesized a novel near-infrared turn-on BODIPY probe and a new norbornene-modified glucosamine derivative. The probe exhibits a significant NIR fluorescence emission with a turn-on response and can perform tumour-specific imaging in tumour-bearing mice. The non-natural glucosamine provides metabolic glycoengineering labelling. It can be expressed on cells as chemical tags and further reacted with fluorescence dyes for cell labelling. The combination of the two derivatives enables quick and sensitive cell imaging in vitro and in vivo using the iEDDA reaction.
Preprint
Full-text available
Multiple fluorination of glycostructures has emerged as an attractive way of modulating their protein affinity, metabolic stability, and lipophilicity. Here we described the synthesis of a series of mono-, di- and trifluorinated N -acetyl-D-glucosamine and D-galactosamine analogs. The key intermediates were the corresponding multiply fluorinated glucosazide and galactosazide thiodonors prepared from deoxyfluorinated 1,6-anhydro-2-azido-β-D-hexopyranose precursors by ring-opening reaction with phenyltrimethylsilyl sulfide. Nucleophilic deoxyfluorination at C4 and C6 by reaction with DAST, thioglycoside hydrolysis and azide/acetamide transformation completed the synthesis.
Article
Full-text available
Liposomal formulations can be advantageous in a number of scenarios such as targeted delivery to reduce the systemic toxicity of highly potent Active Pharmaceutical Ingredients (APIs), to increase drug bioavailability by prolonging systemic circulation, to protect labile APIs from degradation in the gastrointestinal tract, or to improve skin permeation in dermal delivery. However, not all APIs are suitable for encapsulation in liposomes. Some of the issues are too high permeability of the API across the lipid bilayer, which may lead to premature leakage, too low permeability, which may hinder the drug release process, or too strong membrane affinity, which may reduce the overall efficacy of drug release from liposomes. Since the most reliable way to test API encapsulation and release from liposomes so far has been experimental, an in silico model capable of predicting API transport across the lipid bilayer might accelerate formulation development. In this work, we demonstrate a new in silico approach to compute the temperature dependent permeability of a set of compounds across the bilayer of virtual liposomes constructed by molecular dynamics simulation. To validate this approach, we have conducted a series of experiments confirming the model predictions using a homologous series of fluorescent dyes. Based on the performance of individual molecules, we have defined a set of selection criteria for identifying compatible APIs for stable encapsulation and thermally controlled release from liposomes. To further demonstrate the in silico-based methodology, we have screened the DrugBank database, identified potent drugs suitable for liposome encapsulation and successfully carried out the loading and thermal release of one of them - an antimicrobial compound cycloserine.
Article
Full-text available
Galectins are potential biomarkers and therapeutic targets. However, galectins display broad affinity towards β-galactosides meaning glycan-based (nano)biosensors lack the required selectivity and affinity. Using a polymer-stabilized nanoparticle biosensing platform, we herein demonstrate that the specificity of immobilised lacto-N-biose towards galectins can be ‘turned on/off’ by using site-specific glycan fluorination and in some cases reversal of specificity can be achieved. The panel of fluoro-glycans were obtained by a chemoenzymatic approach, exploiting BiGalK and BiGalHexNAcP enzymes from Bifidobacterium infantis which are shown to tolerate fluorinated glycans, introducing structural diversity which would be very laborious by chemical methods alone. These results demonstrate that integrating non-natural, fluorinated glycans into nanomaterials can encode unprecedented selectivity with potential applications in biosensing.<br/
Article
Full-text available
Fluorinated carbohydrates have become indispensable in glycosciences. This contribution provides an overview of how fluorine introduction modifies physical and chemical properties of carbohydrates along with selected examples of its applications.
Article
Full-text available
There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non‐specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in‐house phage‐display cell‐targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.
Article
Full-text available
Monosaccharide analogs bearing bioorthogonal functionalities, or metabolic chemical reporters (MCRs) of glycosylation, have been used for approximately two decades for the visualization and identification of different glycoproteins. More recently, proteomics analyses have shown that per-O-acetylated MCRs can directly and chemically react with cysteine residues in lysates and potentially cells, drawing into question the physiological relevance of the labeling. Here, we report robust metabolism-dependent labeling by Ac42AzMan but not the structurally similar Ac44AzGal. However, the levels of background chemical-labeling of cell lysates by both reporters are low and identical. We then characterized Ac42AzMan labeling and found that the vast majority of the labeling occurs on intracellular proteins but that this MCR is not converted to previously characterized reporters of intracellular O-GlcNAc modification. Additionally, we used isotope targeted glycoproteomics (IsoTaG) proteomics to show that essentially all of the Ac42AzMan labeling is on cysteine residues. Given the implications this result has for the identification of intracellular O-GlcNAc modifications using MCRs, we then performed a meta-analysis of the potential O-GlcNAcylated proteins identified by different techniques. We found that many of the proteins identified by MCRs have also been found by other methods. Finally, we randomly selected four proteins that had only been identified as O-GlcNAcylated by MCRs and showed that half of them were indeed modified. Together, these data indicate that the selective metabolism of certain MCRs is responsible for S-glycosylation of proteins in the cytosol and nucleus. However, these results also show that MCRs are still good tools for unbiased identification of glycosylated proteins, as long as complementary methods are employed for confirmation.
Article
Full-text available
Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG.
Article
Full-text available
Itaconate has been recently recognized as an anti-inflammatory metabolite involved in the pathogen–macrophage interface. Due to its weak electrophilicity, itaconate could modify cysteines of the protein KEAP1 and glutathione, which contribute to its anti-inflammatory effect. However, the substrates of itaconate modification in macrophages have not been systematically profiled, which largely impedes the understanding of its roles in immune responses. Here, we developed a specific thiol-reactive probe, 1-OH-Az, for quantitative chemoproteomic profiling of cysteine modifications by itaconate, and provided a global portrait of its proteome reactivity. We found that itaconate covalently modifies key glycolytic enzymes and impairs glycolytic flux mainly through inhibition of fructose-bisphosphate aldolase A (ALDOA). Moreover, itaconate attenuates the inflammatory response in stimulated macrophages by impairing the glycolysis. Our study provides a valuable resource of protein targets of itaconate in macrophages and establishes a negative-feedback link between glycolysis and itaconate, elucidating new functional insights for this anti-inflammatory metabolite.
Article
Full-text available
Chondroitin sulfate proteoglycans (CSPGs) are upregulated in insults to the central nervous system, including multiple sclerosis (MS), an inflammatory demyelinating condition of the central nervous system. CSPGs appear to be detrimental in MS, as they enhance immune responses and act as barriers to oligodendrocyte differentiation and thus remyelination. Despite their deleterious roles, strategies to selectively reduce CSPG production are lacking. The purpose of this study was to develop, screen, and describe a series of glucosamine derivatives and xylosides for their capacity to overcome detrimental CSPGs and inflammatory processes. Specifically, we assess the ability of analogues to interfere with CSPG biosynthesis, promote the outgrowth of oligodendrocyte precursor cells in an inhibitory environment, and lower inflammation by attenuating the proliferation of T lymphocytes. We highlight the beneficial activities of a novel compound, per-O-acetylated 4,4-difluoro-N-acetylglucosamine (Ac-4,4-diF-GlcNAc) in vitro, and report that it reduced inflammation and clinical severity in a mouse model of MS. Thus, this study represents an important advance, as we uncover that targeting CSPG biosynthesis with a potent inhibitor is an effective avenue to ameliorate inflammatory cascades and promote repair processes in MS and other neurological conditions.
Article
Full-text available
N-acetylglucosamine (GlcNAc) branching of Asn (N)–linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6-acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.
Article
Full-text available
Sialic acid sugars on mammalian cells regulate numerous biological processes, while aberrant expression of sialic acid is associated with diseases like cancer and pathogenic infection. Inhibition of the sialic acid biosynthesis may therefore hold considerable therapeutic potential. To effectively decrease sialic acid expression, we synthesized C-5 modified 3-fluoro sialic acid sialyltransferase inhibitors. We found that C-5 carbamates significantly enhanced and prolonged the inhibitory activity in multiple mouse and human cell lines. As underlying mechanism, we have identified that carba-mate-modified 3-fluoro sialic acid inhibitors are more efficiently metabolized to their active CMP-analogs, reaching higher effective inhibitor concentrations inside cells.
Article
Full-text available
Background: Derivatives of D-glucosamine and D-galactosamine represent an important family of the cell surface glycan components and their fluorinated analogs found use as metabolic inhibitors of complex glycan biosynthesis, or as probes for the study of protein-carbohydrate interactions. This work is focused on the synthesis of acetylated 3-deoxy-3-fluoro, 4-deoxy-4-fluoro and 3,4-dideoxy-3,4-difluoro analogs of D-glucosamine and D-galactosamine via 1,6-anhydrohexopyranose chemistry. Moreover, the cytotoxicity of the target compounds towards selected cancer cells is determined. Results: Introduction of fluorine at C-3 was achieved by the reaction of 1,6-anhydro-2-azido-2-deoxy-4-O-benzyl-β-D-glucopyranose or its 4-fluoro analog with DAST. The retention of configuration in this reaction is discussed. Fluorine at C-4 was installed by the reaction of 1,6:2,3-dianhydro-β-D-talopyranose with DAST, or by fluoridolysis of 1,6:3,4-dianhydro-2-azido-β-D-galactopyranose with KHF2. The amino group was introduced and masked as an azide in the synthesis. The 1-O-deacetylated 3-fluoro and 4-fluoro analogs of acetylated D-galactosamine inhibited proliferation of the human prostate cancer cell line PC-3 more than cisplatin and 5-fluorouracil (IC50 28 ± 3 μM and 54 ± 5 μM, respectively). Conclusion: A complete series of acetylated 3-fluoro, 4-fluoro and 3,4-difluoro analogs of D-glucosamine and D-galactosamine is now accessible by 1,6-anhydrohexopyranose chemistry. Intermediate fluorinated 1,6-anhydro-2-azido-hexopyranoses have potential as synthons in oligosaccharide assembly.
Article
Full-text available
O-linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with D764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between E796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
Article
Full-text available
Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50-60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5'-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.-Van Wijk, X. M., Lawrence, R., Thijssen, V. L., van den Broek, S. A., Troost, R., van Scherpenzeel, M., Naidu, N, Oosterhof, A., Griffioen, A. W., Lefeber, D. J., van Delft, F. L., van Kuppevelt, T. H. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3). © FASEB.
Article
Full-text available
The wound healing assay is used in a range of disciplines to study the coordinated movement of a cell population. In this technical review, we will describe the workflow of the wound healing assay as monitored by optical microscopy. Although the assay is straightforward, a lack of standardization in its application makes it difficult to compare results and reproduce experiments among researchers. We will recommend general guidelines for consistency, including: (1) sample preparation including the creation of the gap, (2) microscope equipment requirements, (3) image acquisition, and (4) the use of image analysis to measure the gap size and its rate of closure over time. We will also describe parameters that are specific to the particular research question, such as seeding density and matrix coatings. All of these parameters must be carefully controlled within a given set of experiments in order to achieve accurate and reproducible results.
Article
Full-text available
Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLeX), and related lectin ligands on effector leukocytes. Based on anti-sLeX antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLeX formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLeX (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLeX structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLeX on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis.
Article
Full-text available
The 2,3,4-trideoxy-2,3,4-trifluoro hexose analogues of d-glucose and d-altrose were prepared and characterised and these novel sugar analogues were explored by 2D-(19)F-EXSY NMR for their potential to cross erythrocyte (red blood cell) membranes, by comparison with the well known capacity of erythrocytes to transport d-glucose.
Article
Full-text available
The first example of sulfonylation-induced N- to O-acetyl migration of 2-acetamidoethanol derivatives is described. This type of reaction could happen with any 2-acetamidoethanol derivatives under typical sulfonylation conditions (TsCl or MsCl, pyridine) and might be a common side reaction of significance. Furthermore, the results reveal that 2-acetamidoethanol derivatives with a sterically encumbered hydroxyl group result in the migration products in high yields. The mechanism of the migration reaction is discussed.
Article
The Tn antigen (GalNAcα1-Thr/Ser) is abundantly expressed in many tumors but rarely found in healthy tissues, which makes it an attractive epitope for antitumor immunotherapy. The use of the Tn antigen in the development of therapeutic antitumor vaccines is hampered by its low immunogenicity, which may be enhanced by deoxyfluorination of the GalNAc moiety. Here, we report the synthesis of protected 3- and 4-fluoro analogues of the threonine-containing Tn antigen. As the stereoselective synthesis of α-linked fluorinated GalNAc is difficult, we prepared a panel of C3 and C4 deoxyfluorinated galactosazide thiodonors and evaluated their stereoselectivity in the glycosylation of carbohydrate acceptors and threonine derivatives. Glycosylation of threonine derivatives with O-benzylated C4 fluoro donors gave only modest but usable α-selectivity of α/β = 2.5-3/1. The use of acyl and silyl protection at the 3- and 6-positions of the C4 fluoro donors did not enhance the selectivity. Installing a 4,6-di-tert-butylsilylene-protecting group in C3 fluoro donors resulted in exclusive α-selectivity and reaffirmed the strong α-directing effect of this protective group in glycosylation with galacto-configured glycosyl donors.
Article
Protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is a unique monosaccharide modification discovered in the early 1980s. With the technological advances in the past several decades, great progress has been made to reveal the biochemistry of O-GlcNAcylation, the substrates of O-GlcNAcylation, and the functional importance of protein O-GlcNAcylation. As a nutrient sensor, protein O-GlcNAcylation plays important roles in almost all biochemical processes examined. Although the functional importance of O-GlcNAcylation of proteins has been extensively reviewed previously, the chemical and biochemical aspects have not been fully addressed. In this review, by critically evaluating key publications in the past 35 years, we aim to provide a comprehensive understanding of this important post-translational modification (PTM) from analytical and biochemical perspectives. Specifically, we will cover (1) multiple analytical advances in the characterization of O-GlcNAc cycling components (i.e., the substrate donor UDP-GlcNAc, the two key enzymes O-GlcNAc transferase and O-GlcNAcase, and O-GlcNAc substrate proteins), (2) the biochemical characterization of the enzymes with a variety of chemical tools, and (3) exploration of O-GlcNAc cycling and its modulating chemicals as potential biomarkers and therapeutic drugs for diseases. Last but not least, we will discuss the challenges and possible solutions for basic and translational research of protein O-GlcNAcylation in the future.
Article
Fucosylation is one of the most prevalent modifications on N- and O-glycans of glycoproteins and it plays an important role in various cellular processes and diseases. Small molecule inhibitors of fucosylation have shown promise as therapeutic agents for sickle cell disease, arthritis and cancer. We describe here the design and synthesis of a panel of fluorinated L-fucose analogs bearing fluorine atoms at the C2 and/or C6 positions of L-fucose as metabolic fucosylation inhibitors. Preliminary study of their effects on cell proliferation revealed that the 6,6-difluoro-L-fucose (3) and 6,6,6-trifluoro-L-fucose (6) showed significant inhibitory activity against proliferation of human colon cancer cells and human umbilical vein endothelial cells. In contrast, the previously reported 2-deoxy-2-fluoro-L-fucose (1) had no apparent effects on proliferations of all the cell lines tested. To understand the mechanism of cell proliferation inhibition by the fluorinated L-fucose analogs, we performed chemoenzymatic synthesis of the corresponding GDP-fluorinated L-fucose analogs and tested their inhibitory activities against the mammalian alpha1,6-fucosyltransferase (FUT8). Interestingly, the corresponding GDP derivatives of 6,6- difluoro-L-fucose (3) and 6,6,6-trifluoro-L-fucose (6), which are the stronger proliferation inhibitors, showed much weaker inhibitory activity against FUT8 than that of the 2-deoxy-2-fluoro-L-fucose (1). These results suggest that FUT8 is not the major target of the 6-fluorinated fucose analogs (3 and 6). Instead, other factors, such as the key enzymes involved in the de novo GDP-fucose biosynthetic pathway and/or other fucosyltransferases involved in the biosynthesis of tumor-associated glyco-epitopes are most likely the targets of the fluorinated L-fucose analogs to achieve cell proliferation inhibition. To our knowledge, this is the first comparative study of various fluorinated L-fucose analogs for suppressing the proliferation of human cancer and primary endothelial cells required for angiogenesis.
Article
Fluorinated sugar-1-phosphates are of emerging importance as intermediates in the chemical and biocatalytic synthesis of modified oligosaccharides, as well as probes for chemical biology. Here we present a systematic study of the activity of a wide range of anomeric sugar kinases (galacto- and N-acetylhexosamine kinases) against a panel of fluorinated monosaccharides, leading to the first examples of polyfluorinated substrates accepted by this class of enzymes. We have discovered four new N-acetylhexosamine kinases with a different substrate scope, thus expanding the number of homologs available in this subclass of kinases. Lastly, we have solved the crystal structure of a galactokinase in complex with 2-deoxy-2-fluorogalactose, giving insight into changes in the active site that may account for the specificity of the enzyme toward certain substrate analogs.
Article
Fluorinated glycans are valuable probes for studying carbohydrate-protein interactions at the atomic level. Glucosamine is a ubiquitous component of glycans, and the stereoselective synthesis of α-linked fluorinated glucosamine is a challenge associated with the chemical synthesis of fluorinated glycans. We found that introducing a 6-O-acyl protecting group onto 3-fluoro and 4-fluoro glucosazide thiodonors endowed them with moderate α-selectivity in the glycosylation of carbohydrate acceptors, which was further improved by adjusting the acceptor reactivity via O-benzoylation. Excellent stereoselectivity was achieved for 3,6-di-O-acyl-4-fluoro analogues. The glycosylation of threonine-derived acceptors enabled the stereoselective synthesis of the protected fluorinated analogue of α-GlcNAc-O-Thr, a moiety abundant in cell-surface O-glycans of protozoan parasite Trypanosoma cruzi. DFT calculations supported the involvement of transient cationic species which resulted from the stabilization of the oxocarbenium ion through O-6 acyl group participation.
Article
UDP-sugar analogs are useful for the study of glycosyltransferases and the production of unnatural glycans. The preparation of five UDP-GlcNAc derivatives is reported with 6-deoxy, 6-azido, 6-amino, 6-mercapto, or 6-fluoro substitutions. A concise chemoenzymatic synthesis was developed using the kinase NahK (B. longum JCM1217) and the uridyl transferase GlmU (E. coli K12).
Article
Deposition of hyperphosphorylated and aggregated tau protein in the central nervous system is characteristic of Alzheimer's disease (AD) and other tauopathies. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification, and O-GlcNAcylation of tau has been shown to influence tau phosphorylation and aggregation. Inhibition of O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc moieties, is a novel strategy to attenuate the formation of pathological tau. Here we described the in vitro and in vivo pharmacological properties of a novel and selective OGA inhibitor, MK-8719. In vitro, this compound is a potent inhibitor of the human OGA enzyme with comparable activity against the corresponding enzymes from mouse, rat, and dog. In vivo, oral administration of MK-8719 elevates brain and PBMC O-GlcNAc levels in a dose-dependent manner. In addition, positron emission tomography (PET) imaging studies demonstrate robust target engagement of MK-8719 in the brains of rats and rTg4510 mice. In the rTg4510 mouse model of human tauopathy, MK-8719 significantly increases brain O-GlcNAc levels and reduces pathological tau. The reduction in tau pathology in rTg4510 mice is accompanied by attenuation of brain atrophy, including reduction of forebrain volume loss as revealed by volumetric magnetic resonance imaging (vMRI) analysis. These findings suggest that OGA inhibition may reduce tau pathology in tauopathies. However, since hundreds of O-GlcNAcylated proteins may be influenced by OGA inhibition, it will be critical to understand the physiological and toxicological consequences of chronic O-GlcNAc elevation in vivo. SIGNIFICANCE STATEMENT: MK-8719 is a novel, selective, and potent OGA inhibitor that inhibits OGA enzyme activity across multiple species with comparable in vitro potency. In vivo, MK-8719 elevates brain O-GlcNAc levels, reduces pathological tau, and ameliorates brain atrophy in the rTg4510 mouse model of tauopathy. These findings indicate that OGA inhibition may be a promising therapeutic strategy for the treatment of AD and other tauopathies.
Article
Per-O-acetylated unnatural monosaccharides containing a bioorthogonal group have been widely used for metabolic glycan labeling (MGL) in live cells for two decades but it is only until recently that we discovered the existence of an artificial “S-glycosylation” between protein cysteines and per-O-acetylated sugars. While efforts being made to avoid this nonspecific reaction in MGL, the reaction mechanism remains unknown. Here, we present a detailed mechanistic investigation, which unveils an atypical glycosylation termed protein S-glyco-modification. In alkaline protein microenvironments, per-O-acetylated monosaccharides undergo base-promoted β-elimination to form thiol-reactive α,β-unsaturated aldehydes, which then react with cysteine residues via Michael addition. This S-glyco-modification produces 3-thiolated sugars in the hemiacetal form, rather than typical glycosides. The elimination-addition mechanism guides us to develop 1,6-di-O-propionylated N-azidoacetylgalactosamine (1,6-Pr2GalNAz) as an improved unnatural monosaccharide for MGL.
Article
We present the new and entirely mechanistic COSMOperm method to predict passive membrane permeabilities for neutral compounds, as well as anions and cations. The COSMOperm approach is based on compound specific free energy profiles within a biomembrane of interest from COSMO-RS (Conductor-like Screening Model for Realistic Solvation) calculations. These are combined with membrane layer specific diffusion coefficients, for example, in the water phase, the polar head groups and the alkyl tails of biochemical phospholipid bilayers. COSMO-RS utilizes first-principle quantum chemical structures and physically sound intermolecular interactions (electrostatic, hydrogen bond and van der Waals). For this reason, it is unbiased towards different application scenarios, such as cosmetics, industrial chemical or pharmaceutical industries. A fully predictive calculation of passive permeation through phospholipid bilayer membranes results in a performance of r2 = 0.92; rmsd = 0.90 log10 units for neutral compounds and anions, as compared to gold standard black lipid membrane (BLM) experiments. It will be demonstrated that new membrane types can be generated by the related COSMOplex method and directly used for permeability studies by COSMOperm.
Article
Inhibition of O-GlcNAcase (OGA) has emerged as a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer’s disease and progressive supranuclear palsy. Beginning with carbohydrate-based lead molecules, we pursued an optimization strategy of reducing polar surface area to align the desired drug-like properties of potency, selectivity, high central nervous system (CNS) exposure, metabolic stability, favorable pharmacokinetics, and robust in vivo pharmacodynamic response. Herein, we describe the medicinal chemistry and pharmacological studies that led to the identification of (3aR,5S,6S,7R,7aR)-5-(difluoromethyl)-2-(ethylamino)-3a,6,7,7a-tetrahydro-5H-pyrano[3,2-d]thiazole-6,7-diol 42 (MK-8719), a highly potent and selective OGA inhibitor with excellent CNS penetration that has been advanced to first-in-human Phase I clinical trials.
Article
Control of anomeric stereoselectivity in glycosylation with deoxofluorinated glycosyl donors is critical for assembly of fluorinated oligosaccharides. Here, we report the synthesis of benzylated 3-fluoro and 4-fluoro analogues of phenyl 1-thioglucosazide and galactosazide donors and evaluation of their stereoselectivity in glycosylation of a series of model carbohydrate acceptors using the Tf2O/Ph2SO promoter system. Low-temperature NMR revealed formation of covalent α-triflate and both anomers of oxosulfonium triflates under selected glycosylation conditions. This study demonstrates how the stereoselectivity depends on acceptor reactivity and glycosyl donor configuration. Reactive acceptors favor formation of 1,2- trans-β-glycosides with both d- gluco and d- galacto donors, whereas poorly reactive acceptors favor formation of 1,2- cis-α-glycosides with d- galacto donors but are unselective with d- gluco donors.
Article
We have developed a new approach, to our knowledge, to quantify the equilibrium exchange kinetics of carrier-mediated transmembrane transport of fluorinated substrates. The method is based on adapted kinetic theory that describes the concentration dependence of the transmembrane exchange rates of two competing, simultaneously transported species. Using the new approach, we quantified the kinetics of membrane transport of both anomers of three monofluorinated glucose analogs in human erythrocytes (red blood cells) using ¹⁹F NMR exchange spectroscopy. An inosine-based glucose-free medium was shown to promote survival and stable metabolism of red blood cells over the duration of the experiments (several hours). Earlier NMR studies only yielded the apparent rate constants and transmembrane fluxes of the anomeric species, whereas we could categorize the two anomers in terms of the catalytic activity (specificity constants) of the glucose transport protein GLUT1 toward them. Differences in the membrane permeability of the three glucose analogs were qualitatively interpreted in terms of local perturbations in the bonding of substrates to key amino acid residues in the active site of GLUT1. The methodology of this work will be applicable to studies of other carrier-mediated membrane transport processes, especially those with competition between simultaneously transported species. The GLUT1-specific results can be applied to the design of probes of glucose transport or inhibitors of glucose metabolism in cells, including those exhibiting the Warburg effect.
Article
In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFA (e.g., acetate vs. n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g, N-acetyl vs. N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates. Keywords: Metabolic Oligosaccharide Engineering, P450, hERG, Pgp Efflux, Carbohydrate Drug Design
Article
The efficacy of therapeutic antibodies that induce antibody-dependent cellular cytotoxicity can be improved by reduced fucosylation. Consequently fucosylation is a critical product attribute of monoclonal antibodies produced as protein therapeutics. Small molecule fucosylation inhibitors have also shown promise as potential therapeutics in animal models of tumor, arthritis, and sickle cell disease. Potent small molecule metabolic inhibitors of cellular protein fucosylation, 6,6,6-trifluorofucose per-O-acetate and 6,6,6-trifluorofucose (fucostatin I) were identified that reduced the fucosylation of recombinantly expressed antibodies in cell culture in a concentration-dependent fashion enabling the controlled modulation of protein fucosylation levels. 6,6,6-Trifluorofucose binds at an allosteric site of GDP-mannose 4,6-dehydratase (GMD) as revealed for the first time by the X-ray co-crystal structure of a bound allosteric GMD inhibitor. 6,6,6-Trifluorofucose was found to be incorporated in place of fucose at low levels (< 1%) in the glycans of recombinantly expressed antibodies. A fucose-1-phosphonate analog, fucostatin II, was designed that inhibits fucosylation with no incorporation into antibody glycans, allowing the production of afucosylated antibodies in which the incorporation of non-native sugar is completely absent-a key advantage in the production of therapeutic antibodies especially biosimilar antibodies. Inhibitor structure-activity relationships, identification of cellular and inhibitor metabolites in inhibitor-treated cells, fucose competition studies, and the production of recombinant antibodies with varying levels of fucosylation are described.
Article
Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log P) modulation. However, the determination of log P is cumbersome for non-UV-active compounds. A new variation of the shake-flask log P determination method is presented, enabling the measurement of log P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reported.
Article
Inexpensive 3-(dimethylamino)-1-propylamine (DMAPA) was found to be effective in anomeric deacylation reactions giving 1-O deprotected sugars in high yield as precursors for the formation of imidate glycosyl donors. DMAPA was also found to be useful for removing excess reagents such as benzoyl chloride, tosyl chloride, and 2,2,2-trifluoro-N-phenylacetimidoyl chloride. The deacylation reaction could be conducted in moist THF and did not require chromatographic purification since an acidic wash was sufficient to remove excess reagent and the formed byproduct.
Article
Benzyl 2-acetamido-2-deoxy-α, and β-d-glucopyranoside were converted in high yield into the corresponding d-galacto analogues through a three-step procedure. These later were transformed in a straightforward manner into benzyl 2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy-α, and β-d-galactopyranoside, respectively, which served as acceptors in glycosylation reactions with variously activated derivatives of methyl . Condensation of the chloride derivative promoted by silver triflate led unexpectedly to the formation of the β-linked disaccharide, whereas the trichloroacetimidoyl derivative afforded the expected α-linked disaccharide in 63% yield. O-Dechloroacetylation of this later, followed by 4-methoxybenzylation at O-4 of the uronic acid moiety, saponification of the esters, O-sulfonation of the free hydroxyls, and catalytic hydrogenation provided the title disaccharide in high yield, as its sodium salt.
Article
A complete series of 2,3-dideoxy-2,3-epimino- and 3,4-dideoxy-3,4-epimino-1,6-anhydro-beta -D-hexopyranoses were prepared by lithium aluminum hydride reduction of the corresponding trans-azido tosylates or trans-azido epoxides of 1,6-anhydro-beta -D-hyxopyranoses. The structure of the epimino derivatives was confirmed by (1)H and (13)C NMR spectra.
Article
1,6-Anhydro derivatives of D-glucopyranose, maltose, and maltotriose reacted at room temperature with trimethylsilylated benzenethiol (2) and cyclohexanethiol (3) in the presence of zinc iodide (Znl2) or trimethylsilyl triflate (TMSOTf), giving the corresponding thioglycosides with predominance of one anomer in high yield. 1,6-Anhydro-2,3,4-tri-O-benzyl-β-D-glucopyranose (1) condensed with a more complex thiol derivative, methyl 2,3,6-tri-O-benzyl-4-thio-4-S-trimethylsilyl-α-D-glucopyranoside (19), to give the 4-thiomaltose derivative (20), whereas no condensation took place between the 1,6-anhydro disaccharide homologue (21) and thiol derivative (19). The difference in reactivity between 1,6-anhydro mono- and di-saccharides was utilized for a specific cross-coupling reaction.
Article
The 19F NMR is gaining interest as a tool for diverse physiological and pharmaceutical investigations. The relatively high sensitivity of 19F and lack of interfering background signal in the body have enabled the observation of exogenously administered agents and their metabolites. The high gyromagnetic ratio often allows the use of existing proton NMR instrumentation with the minimum of component adjustments. 19F NMR is particularly attractive for in vivo applications since there is essentially no endogenous signal from tissues. 19F is exceptionally sensitive to molecular and microenvironmental changes as exemplified by the many 19F-based reporter molecules designed to interrogate physiological phenomena in vivo. The presence of the 19F atom may modulate molecular properties, most notably hydrophobicity and this becomes more significant for multiple fluorines, as encountered in CF3 groups.
Article
The key role played by fucose in glycoprotein and cellular function has prompted significant research toward identifying recombinant and biochemical strategies for blocking its incorporation into proteins and membrane structures. Technologies surrounding engineered cell lines have evolved for the inhibition of in vitro fucosylation, but they are not applicable for in vivo use and drug development. To address this, we screened a panel of fucose analogues and identified 2-fluorofucose and 5-alkynylfucose derivatives that depleted cells of GDP-fucose, the substrate used by fucosyltransferases to incorporate fucose into protein and cellular glycans. The inhibitors were used in vitro to generate fucose-deficient antibodies with enhanced antibody-dependent cellular cytotoxicity activities. When given orally to mice, 2-fluorofucose inhibited fucosylation of endogenously produced antibodies, tumor xenograft membranes, and neutrophil adhesion glycans. We show that oral 2-fluorofucose treatment afforded complete protection from tumor engraftment in a syngeneic tumor vaccine model, inhibited neutrophil extravasation, and delayed the outgrowth of tumor xenografts in immune-deficient mice. The results point to several potential therapeutic applications for molecules that selectively block the endogenous generation of fucosylated glycan structures.
Article
A simple and convenient synthesis of β-D-galactopyranose derivatives selectively modified at C-1 and C-6 is described. A key feature is the selective protection of the 6-OH group of methyl-, allyl-, and (p-nitrophenyl)-β-D-galactopyranosides using tert-butyldiphenylsilyl chloride, yielding silyl ethers 4-6. After protection of the remaining hydroxyl groups with acetyl, benzoyl, or p-phenylbenzoyl functions, the glycosidic methyl group can be easily split by 1,1-dichloromethyl methyl ether (DCMME) to give galactosyl chlorides 17-19, retaining the temporary protection at C-6. When benzoates or p-phenylbenzoates are used as permanent protection, the tert-butyldiphenylsilyl group (such as in compounds 8-11) can be selectively removed to give 6-OH galactosides 13-16. Some of these were coupled with tetraacetyl- or tetrabenzoylgalactosyl bromide to yield disaccharides 20-23. Compounds 21 and 22 could be reacted with DCMME to give digalactosyl chlorides 24 and 25. These are useful glycosyl donors for further chain expansion. The coupling of chloride 18 or 19 with nucleophile 14 or 15 under silver triflate/sym-collidine mediated conditions afforded disaccharides 26 and 27 bearing silyl protecting groups at C-6. The latter can be selectively removed, resulting in nucleophiles 28 and 29, which can be coupled with tetraacetylgalactosyl bromide (to give trisaccharide 30) or with chloride 18 to yield trisaccharide 31. The latter one has again a tert-butyldiphenylsilyl function at C′-6, allowing further expansion of the chain from the nonreducing end. The structures of mono-, di-, and trisaccharides were confirmed by 1H and 13C NMR spectra.
Article
Benzyl ether and benzylidene acetal carbohydrate protecting groups can be selectively cleaved by reaction with sodium bromate/sodium dithionite in ethyl acetate/water. Under the mild (room temperature, short reaction time) conditions needed, a variety of other protecting functionalities such as acetyl, chloroacetyl, benzoyl, pivaloyl, tosyl, t-butyldimethylsilyl, trityl, and isopropylidene groups remain unaffected.
Article
Despite the fundamental roles of sialyl- and fucosyltransferases in mammalian physiology, there are few pharmacological tools to manipulate their function in a cellular setting. Although fluorinated analogs of the donor substrates are well-established transition state inhibitors of these enzymes, they are not membrane permeable. By exploiting promiscuous monosaccharide salvage pathways, we show that fluorinated analogs of sialic acid and fucose can be taken up and metabolized to the desired donor substrate-based inhibitors inside the cell. Because of the existence of metabolic feedback loops, they also act to prevent the de novo synthesis of the natural substrates, resulting in a global, family-wide shutdown of sialyl- and/or fucosyltransferases and remodeling of cell-surface glycans. As an example of the functional consequences, the inhibitors substantially reduce expression of the sialylated and fucosylated ligand sialyl Lewis X on myeloid cells, resulting in loss of selectin binding and impaired leukocyte rolling.
Article
Inhibited: N-acetylglucosamine (GlcNAc) derivatives with a fluorine atom at the C4 position (2-4) were synthesized, and their ability to inhibit cancer-cell growth was investigated. The administration of these 4F-GlcNAc derivatives to cells led to the unnatural sugar nucleotide 1. Furthermore, N-glycan profiles of cells were determined by using a glycoblotting-based enrichment analysis, which is suitable for high-throughput screenings for drug discovery.
Article
Metabolic oligosaccharide engineering (MOE) is a maturing technology capable of modifying cell surface sugars in living cells and animals through the biosynthetic installation of non-natural monosaccharides into the glycocalyx. A particularly robust area of investigation involves the incorporation of azide functional groups onto the cell surface, which can then be further derivatized using "click chemistry." While considerable effort has gone into optimizing the reagents used for the azide ligation reactions, less optimization of the monosaccharide analogs used in the preceding metabolic incorporation steps has been done. This study fills this void by reporting novel butanoylated ManNAc analogs that are used by cells with greater efficiency and less cytotoxicity than the current "gold standard," which are peracetylated compounds such as Ac₄ ManNAz. In particular, tributanoylated, N-acetyl, N-azido, and N-levulinoyl ManNAc analogs with the high flux 1,3,4-O-hydroxyl pattern of butanoylation were compared with their counterparts having the pro-apoptotic 3,4,6-O-butanoylation pattern. The results reveal that the ketone-bearing N-levulinoyl analog 3,4,6-O-Bu₃ ManNLev is highly apoptotic, and thus is a promising anti-cancer drug candidate. By contrast, the azide-bearing analog 1,3,4-O-Bu₃ ManNAz effectively labeled cellular sialoglycans at concentrations ∼3- to 5-fold lower (e.g., at 12.5-25 µM) than Ac₄ ManNAz (50-150 µM) and exhibited no indications of apoptosis even at concentrations up to 400 µM. In summary, this work extends emerging structure activity relationships that predict the effects of short chain fatty acid modified monosaccharides on mammalian cells and also provides a tangible advance in efforts to make MOE a practical technology for the medical and biotechnology communities.
Article
We have prepared a full series of 1,6-anhydro-2,3,4-trideoxy-4-fluoro-2,3-epimino-beta-d-hexopyranoses. The key step was the reaction of azido sulfonates possessing a free C-4 hydroxyl with DAST and subsequent LiAlH(4) reduction. Nucleophilic displacement of the hydroxyl activated by DAST proceeded without rearrangement and with moderate to good yields. A convenient synthesis of d-mannoepimine from a readily available 3-benzylamino derivative was also developed.
Article
Human embryonic kidney (HEK293) cells are widely used for the heterologous expression of voltage- and ligand-gated ion channels. Patch clamp analysis of HEK293 cells in the whole-cell configuration identified voltage-gated, rapidly inactivating inward currents. Peak current amplitudes ranged from less than 100 pA to more than 800 pA, with the majority (84 of 130 cells) in the 100-400 pA range. Transient inward currents were separated into three components on the basis of sensitivity to cadmium and tetrodotoxin (TTX). Application of cadmium (300 microM) reduced current amplitude to 65% of control, consistent with the existence of current carried by a cadmium-sensitive nonspecific cation channel previously identified in HEK293 cells. Application of TTX (500 nM) reduced current amplitude by 47%, consistent with the existence of current carried by a TTX-sensitive voltage-gated sodium channel. Joint application of cadmium and TTX was additive, reducing current amplitude to 28% of control. The residual cadmium- and TTX-resistant currents represent a third pharmacologically distinct component of the rapidly inactivating inward current that was not characterized further. The pyrethroid insecticide tefluthrin (10 microM) prolonged the inactivation of transient currents and induced slowly decaying tail currents, effects that are characteristic of sodium channel modification by pyrethroids. The use of sodium channel isoform-specific primers in polymerase chain reaction amplifications on HEK293 cell first-strand cDNA detected the consistent expression of the human Na(v)1.7 sodium channel isoform in cells that expressed the TTX-sensitive component of current. These results provide evidence for an endogenous TTX-sensitive sodium current in HEK293 cells that is associated primarily with the expression of the Na(v)1.7 sodium channel isoform.
Article
Metabolic glycoengineering, a technique pioneered almost two decades ago wherein monosaccharide analogs are utilized to install non-natural sugars into the glycocalyx of mammalian cells, has undergone a recent flurry of advances spurred by efforts to make the methodology more efficient. This article describes the versatility of metabolic glycoengineering, which is a prime example of 'chemical glycobiology,' and gives an overview of its capability to endow complex carbohydrates in living cells and animals with interesting (and useful!) functionalities. Then an overview is provided describing how acylated monosaccharides, a class of molecules originally intended to be efficiently-used, membrane-permeable metabolic intermediates, have led to the discovery that a subset of these compounds (e.g. tributanoylated hexosamines) display unanticipated 'scaffold-dependent' activities; this finding establishes these molecules as a versatile platform for drug discovery.