Available via license: CC BY 4.0
Content may be subject to copyright.
Energies2021,14,2307.https://doi.org/10.3390/en14082307www.mdpi.com/journal/energies
Article
EnvironmentalLife‐CycleAssessmentofanInnovative
MultifunctionalToilet
CarlaRodrigues
1,
*,JoãoAlmeida
2,3
,MariaInêsSantos
2
,AndreiaCosta
4
,SandraAlém
5
,EmanuelRufo
5
,
AntónioTadeu
2,6
andFaustoFreire
1
1
ADAI‐LAETA,DepartmentofMechanicalEngineering,FacultyofSciencesandTechnology,Universityof
Coimbra,RuaLuísReisSantos,PóloII,3030‐788Coimbra,Portugal;fausto.freire@dem.uc.pt
2
Itecons—InstituteforResearchandTechnologicalDevelopmentinConstruction,Energy,Environmentand
Sustainability,RuaPedroHispano,3030‐289Coimbra,Portugal;joao.almeida@itecons.uc.pt(J.A.);
mariaines.santos@itecons.uc.pt(M.I.S.);tadeu@dec.uc.pt(A.T.)
3
ChemistryCentre,DepartmentofChemistry,FacultyofSciencesandTechnology,UniversityofCoimbra,
RuaLarga,PóloI,3004‐535Coimbra,Portugal
4
OLI—SistemasSanitários,S.A.,TravessadoMilão,Esgueira3800‐314Aveiro,Portugal;
andreiac@oli‐world.com
5
Sanindusa—IndústriadeSanitáriosS.A.,ZonaIndustrialAveiroSul,RuaAugustoMarquesBranco,84,
3810‐783Aveiro,Portugal;sandraalem@sanindusa.pt(S.A.);emanuelrufo@sanindusa.pt(E.R.)
6
ADAI,DepartmentofCivilEngineering,FacultyofSciencesandTechnology,UniversityofCoimbra,
RuaLuísReisSantos,PóloII,3030‐788Coimbra,Portugal
*Correspondence:carla.rodrigues@dem.uc.pt;Tel.:+351‐239‐790708
Abstract:Innovativetoiletscansaveresources,buthavehigherembodiedimpactsassociatedwith
materialsandelectroniccomponents.Thisarticlepresentsanenvironmentallife‐cycleassessment
(LCA)ofaninnovativemultifunctionaltoilet(WashOne)fortwoalternativeconfigurations(withor
withoutwashlet),comparingitsperformancewiththoseofconventionalsystems(toiletandbidet).
Additionally,twoscenarioanalyseswereconducted:(i)userbehavior(alternativewashletuse
patterns)and(ii)userlocation(Portugal,Germany,theNetherlands,SwedenandSaudiArabia).
TheresultsshowthattheWashOnewithwashlethasabetterglobalenvironmentalperformance
thantheconventionalsystem,evenforlowuse.Italsorevealsthattheusephasehasthehighest
contributiontoimpactsduetoelectricityconsumption.Userlocationanalysisfurthershowsthat
Swedenhasthelowestenvironmentalimpact,whileGermanyandtheNetherlandshavethehighest
potentialforimpactreductionwhenchangingfromaconventionalsystemtotheWashOne.Based
ontheoverallresults,somerecommendationsareprovidedtoenhancetheenvironmental
performanceofinnovativetoiletsystems,namelytheoptimizationofthewashletusepatterns.This
articlehighlightstheimportanceofperformingaLCAatanearlystageofthedevelopmentof
innovativetoiletsbyidentifyingthecriticalissuesandhotspotstoimprovetheirdesignand
performance.
Keywords:bidet;eco‐design;energysavings;life‐cycleassessment;toilet;userbehavior;washlet;
watersavings
1.Introduction
Buildingsarerecognizedasoneofthehighestusersoffreshwater,consuming
enormousamountsofenergyandwaterresourcesand,ultimately,generatinghigh
environmentalimpacts.Thewatercycleofbuildingsrequiresagreatamountofenergy
duetorawwatertreatmentanddistribution,useinbuildings(domestichotwater),and
wastewatertreatment[1].Waterheatingrepresents13%ofenergyconsumptionin
residentialbuildings[2],withconventionaltoiletsystemshavingasignificantshare[3].
Citation:Rodrigues,C.;Almeida,J.;
Santos,M.I.;Costa,A.;Além,S.;Rufo,
E.;Tadeu,A.;Freire,F.Environmental
Life‐CycleAssessmentofanInnovative
MultifunctionalToilet.
Energies2021,14,2307.
https://doi.org/10.3390/en14082307
AcademicEditor:IoanSarbu
Received:2March2021
Accepted:15April2021
Published:19April2021
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(http://creativecommons.org/licenses
/by/4.0/).
Energies2021,14,23072of16
Innovativetoiletsystemscansavewaterandenergy,buthavehigherembodied
impactsassociatedwithmaterialsandelectroniccomponents.Environmentallife‐cycle
assessment(LCA)canbeappliedtoevaluateandcomparealternativetoiletsystems
(conventionalandinnovative),providingaholisticassessmentfromcradletograveand
avoidingburdenshifting.Inparticular,itisimportanttoanalyzetrade‐offsbetween
increasedembodiedimpactsandoperationalsavingsofinnovativetoiletsystems.
Additionally,LCAperformedinearlydesignstagesofthedevelopmentofproductscan
supportdesigndecisionsbeforeinnovativeproducts’oremergingtechnologies’entryinto
themarket,revealingthebenefitsofconsideringenvironmentalperformanceasadesign
constraint[4,5].EmployingLCAsininnovativeproductsenablesimprovedproducteco‐
designthroughearlyhotspotdetectionallowingoptimizationofmaterialchoicesanduse‐
phaseefficiency.LCAshavebeenusedtoassesstheenvironmentalperformanceofseveral
innovativesystems/products,particularlyinthebuildingsector[6–9].
LCAmethodologyallowstheidentificationofhotspotsbyquantifyingthebenefits
ofaproductorsystemandimprovementopportunitiesfortheirenvironmental
performance.SomeLCAstudiesoftoiletsystemsavailableintheliteraturefocusedonthe
productionphaseofceramicsanitaryware(cradle‐to‐site)[10,11].ThereareseveralLCA
studiesfocusedonwastewatertreatment(WWT)forconventionaltoiletsandsource‐
separationsystems[12–15],whileothersexaminealternativewatersourcesfortheflush
system(rainwater,seawater,greywaterreuse)[16–23].Lametal.,2017assessedthe
energyefficiencyofnon‐potablewatersystems(includingtoilets)fordomesticuse[24].
Gnoattoetal.,2019evaluatedthelife‐cycleimpactsofdifferentsolutionsfortoiletflush
systems,particularlycomparingsingleanddoubleflush[25].Theproductionphaseofa
toiletsystemisoftenneglectedinLCAstudiesoftoiletsystemsbecauseitscontribution
tothetotallife‐cycleimpactsisusuallylow(takingintoaccounttheextendedlife‐timeof
thesesystems),butalsobecauseincomparativestudiesofalternativeWWTsystemsitis
usuallyassumedthatthetoiletisthesame,sotheimpactofthesanitarywareisthesame
inallscenarios.Regardingthe“washlet”system,therearenocomprehensiveLCAstudies
onthesetypesofsystems.
Severalgapswereidentifiedregardingtheenvironmentalassessmentofinnovative
toiletsthathaveneverbeenaddressedintheliterature.Firstly,therearenostudies
performingacradle‐to‐gravelife‐cycleassessmentoftoilets,particularlytheinnovative
ones.Additionally,thereisaneedtoaddressthetrade‐offsbetweenthepotentialenergy
efficiencyofinnovativetoiletsandtheincreaseintheenvironmentalimpactsdueto
energyconsumption,particularlyinthenewwashingfunctions,aswellastheuseof
criticalmaterialsinelectroniccomponents.Finally,thesetoiletshaveaworldwidemarket,
differentfromconventionalmodels,whichcanhighlyinfluencetheirenvironmental
performanceduetotransportationimpacts,aswellasaffectingthecountry‐specific
electricitymixthatcanvarydependingonthefinaluserlocation.Tosumup,innovative
toiletshaveneverbeenstudiedinalife‐cycleperspectivetoassesstheirenvironmental
performanceandpotentialenergyefficiencybenefitsduetotheirmultifunctionality.
WashOneisaninnovativemultifunctionaltoiletthatincorporatesaself‐cleaning
system(calledawashletsystem,toreplacetheconventionalbidet),andanintegrated
waterstorageandflushsystem[26].ArenderingoftheWashOnetoiletsystemis
presentedinFigure1.ThismultifunctionaltoiletisbeingdevelopedbyaPortuguese
consortiumcomprisingtwocompaniesfromthesanitarywareindustry(OLIand
Sanindusa),acompanyprovidingelectronicengineeringsolutions(Evoleo)andseveral
highereducationinstitutions(UniversityofAveiroandUniversityofCoimbra)and
appliedresearchinstitutions(Itecons,PortugueseAssociationforQualityinBuildings’
WaterInstallations‐ANQIP).
Energies2021,14,23073of16
Figure1.Renderingoftheinnovativemultifunctionaltoilet(WashOne).Source:Developedbya
subsetofauthors.
The“washlet”systemincorporatesconventionalbidetfeaturesintothetoilet,
respondingtoarecentmarkettrendforhighstandardsofcomfortandhygiene.Thewater
storageandflushsystemintegratedintothetoiletmeetsthecompactnessneedsrequired
bycurrentdesignsolutions(reducingthevolumeoccupied)andallowstheoptimization
oftheflushingsystemandconsequentlytheuseofwater.
Thegoalofthisarticleistopresentanenvironmentallife‐cycleassessmentofan
innovativemultifunctionaltoiletsystem(WashOne),fromcradletograve,considering
twoalternativeWashOneconfigurations(withorwithoutwashlet)comparedwith
equivalentconventionalsystems(toiletandbidet,orjusttoilet,respectively).
Additionally,twoscenarioanalyseswereconductedtoinvestigatetheperformanceofthe
innovativetoiletwithwashletwhenvariationsareintroducedintermsof:(i)user
behaviorand(ii)userlocation.
2.MaterialsandMethods
TheLCAmethodologyappliedtoassesstheenvironmentalperformanceofthetoilet
systemsfollowstheISO14040:2006andISO14044:2006standardstoguidethemethods,
modeldevelopmentandinventorycalculationsinthisresearch.LCAisdevelopedinfour
interrelatedphases:goalandscopedefinition;life‐cycleinventory(LCI);life‐cycleimpact
assessment(LCIA);andinterpretation.Section2.1presentsthegoalandscopedefinition,
includingthelife‐cyclemodel,andSection2.2presentsthelife‐cycleinventoryanalysis.
2.1.GoalandScopeDefinition
Acradle‐to‐gravelife‐cycle(LC)modelwasdevelopedfortheWashOnetoilet.The
systemboundariesarepresentedinFigure2andencompassalllife‐cyclephasesincluding
wastewatertreatmentduringusephaseandtransportationbetweenandwithineach
phase.ThemainLCphasesofatoiletsystemare:(i)productionofthetoilet,auxiliary
systemsandsystem’sinfrastructure(piping,etc.);(ii)distributiontothefinaluser(in
Portugal,asreferencescenario);(iii)useinaresidentialbuilding;and(iv)end‐of‐lifeof
thecomponentsafter15yearsofservicelife(accordingtotheproducers).
Energies2021,14,23074of16
Figure2.Life‐cyclemodel(“cradletograve”)ofWashOne.Source:Developedbyasubsetof
authors.
TheWashOnetoiletincorporatesmultiplefunctions,particularlythe“washlet”,a
self‐cleaningsystem(toreplacetheconventionalbidet),andanintegratedwaterstorage
andflushsystem.Regardingthe“washlet”system,itaimstoreplacethebidetfunctions
withinthetoiletinordertoaddresshighcomfortandhygieneconditions.Itis
incorporatedinthelidandincludesthefollowingfunctions:lidlifterfunction,remote
control,WCseatwithseatheating,dryerarmwithdryernozzle,sprayarmwithspray
nozzleandladyshowernozzle,sprayshield,andodorremoval.
ThescopeofthestudyincludestwoWashOneconfigurations:WashOnewithand
withoutwashlet(WO1andWO2,respectively),bothofthemwithanintegratedwater
storageandflushsystem.TheWO1iscomparedwithaconventionaltoiletandbidet
(high‐end),whiletheWO2iscomparedonlywithjusttheconventionaltoilet,assuming
thatthereisnoadditionalcleaningsystemasabidet.Additionally,twoscenarioanalyses
wereconductedforWO1andtheconventionalsystem:(i)userbehaviorscenarioanalysis
and(ii)userlocationscenarioanalysis.Fortheuserbehavior,twoalternativewashlet
usagepatternswereassessed:onewherethewashletisusedinalltoiletvisits(W100);and
anotherwherethewashletisonlyusedinmajorvisits,i.e.,onevisitperdayperperson,
representing25%ofthedailyvisits(W25).Fortheuserlocationscenarios,fouralternative
locationswereassessed(Germany,theNetherlands,SwedenandSaudiArabia)and
comparedwithPortugal(referencescenario).Thefunctionalunitselectedistheuseofa
toiletsystem(conventionaltoiletandbidetorWashOne)bya4‐personfamily(twoadults
andtwochildren)livinginasingle‐familyhouseforoneyear(family×year)fortwotypes
ofuse:(a)withcleaningsystem(WO1)and(b)withoutcleaningsystem(WO2),assuming
aconventionaldailyusagepattern(definedinSection2.2.2).
2.2.Life‐CycleInventoryAnalysis
TheLCinventorywasdevelopedusingprimarydatafromthecompaniesinvolved
inthedevelopmentoftheWashOnetoilet(materialcharacteristicsandquantitiesof
mechanical,plasticandelectroniccomponents),complementedwithsecondarydatafrom
theliteratureandtechnicalreports,aswellaslife‐cycledatabases(Ecoinvent)[27–30].The
energyandwaterusedatawereprovidedbythemanufacturerandcollectedbasedon
experimentaltests.Section2.2.1detailstheinventorydataforproductionanddistribution
Energies2021,14,23075of16
fromproductionsitetothebuildingsite(users’location).Section2.2.2presentsusephase
andend‐of‐lifeinventoryanalysis.
2.2.1.ProductionandDistribution
Theproductionphaseofthetoiletsystems(WashOneandconventional)includes
productionofcomponentsandfinalproductassemblage.TheWashOnesystemhasa
ceramicstructureinvitreouschina,flushmechanismsandtwoplasticstoragetanks
(severalmechanicalcomponents(motors,pumps,etc.),andelectronics.Thecorestructure
ismadeofceramic(vitreouschina)withaseatmadeofduroplast.Theconventionaltoilet
includesaceramicstructure,alsoinvitreouschina,aseat(madeofduroplast),aceramic
storagetankandaflushmechanism(madeofpolystyrene(PS)).Table1presentsthemain
inventorydataofmaterialsandcomponentsoftheWashOneandconventionaltoiletand
bidet.Thisdataisaggregatebymaterialorcomponent(whenthematerialscomposition
ofeachcomponentisnotavailable),inthiscaseproxydatawasused.Primarydata
(materialcharacteristicsandquantities)wereprovidedbythecompanies.Detailed
informationofeachcomponentwasnotpresentedduetoconfidentialityissues.
Secondarydataforcomponents,materials(thermoplasticpolymers)andplastic
transformationprocesses(injectionforacrylonitrilebutadienestyrene(ABS),and
polypropylene(PP),polycarbonate(PC)andduroplast,andthermoformingforPS)were
obtainedfromEcoinventv3.1database[27–30].Theproductionoftheceramicstructure
(vitreouschina)wasmodelledusingEcoinventv3.1database[27]andEnvironmental
ProductDeclaration(EPD)databases.TheplasticcomponentsoftheWashOneare
producedonsite,intheplantwherethefinalassemblingisperformed,locatedinAveiro,
Portugal.Theelectronicandmechanicalcomponentsandceramicstructureareproduced
off‐sitebyseveralsuppliers.Thisinnovativetoiletisstillcurrentlyinaprototypephase;
however,accordingtotheassemblageschemedevelopedbythecompanyforafuture
productionline,thecomponentswillbeassembledmainlymanually,sotheenergy
neededforthisprocesswillberesidual(~0.01kWhperfinalproduct)andcanbe
neglected.
Table1.BillofmaterialsofWashOne(WO1andWO2)andconventionalcounterparts(toiletand
bidet).Source:DevelopedbytheauthorsusingdatacollectedbytheauthorsaffiliatedwithOLI
andSanindusacompaniesandfromtheliterature.
Materials/ComponentsWO1WO2ToiletBidet
(kg)
AcrylonitrileButadieneStyrene(ABS)4.142.76‐ ‐
Aluminum0.050.00‐ ‐
Battery0.100.00‐ ‐
Cardboard8.508.5055
Ceramic(vitreouschina)17.017.050.427.6
Controlunit0.300.00‐ ‐
Copper0.040.00‐ ‐
Duroplast3.603.882‐
Fans0.070.05‐ ‐
Motors12V0.570.37‐ ‐
Polypropylene(PP)0.101.98‐ ‐
Polystyrene(PS)0.500.501‐
Polycarbonate(PC)0.010.01‐ ‐
Pumps40W3.003.42‐ ‐
Rubber0.060.06‐ ‐
Electronics(sensors)0.020.02‐ ‐
Steel0.910.66‐ ‐
Waterheater0.140.00‐ ‐
Totalweight41395833
TheWashOnetoiletsaredistributedbyroadusinglorriesand/orship(sea
containers)fromtheproductionsite(Aveiro,Portugal)tilltheend‐userdestination(200
Energies2021,14,23076of16
km).Alternativeuserlocationshavebeenmodeledinascenarioanalysisforfivepotential
marketsidentifiedbythemanufacturerconsortium:inEurope(Portugal,Germany,the
NetherlandsandSweden);andintheMiddleEast(SaudiArabia,relevantconsumersof
advancedtechnologytoiletsystems).Foreachlocation,transportationdistances,
distributionmodesoftransportation,andcountry‐specificelectricitymixesfortheuse
phasewereassessed.Transportationdistanceswerecalculatedbasedonthedistance
betweentheproductionsiteandapotentialfinaluserlocatedinthecapitalofeach
country.ForlocationsinEurope,themodeoftransportationwasa16‐tonlorry,but
distributionbyshipwasalsoconsideredforSwedenandtheNetherlandsduetoport
areas’proximity.FortheMiddleEast,distributionwasassumedtobebyboatandalorry
forinlanddistance.Transportbyplane,trainandshipweremodelledusingprocesses
fromtheEcoinventv.3.1database[31].Transportationdataforthealternativelocations
arepresentedinTable2.
Table2.Transportcharacterizationfordistribution,consideringalternativelocationscenariosfortheWashOnetoiletwith
washlet(WO1)andrespectiveconventionalsystem(toilet+bidet).Source:Developedbytheauthorsusingdatacollected
bytheauthorsaffiliatedwithOLIandSanindusacompaniesandfromtheliterature.
UserLocationModeofTransportationDistanceWO1
(41kg)
Conventional
ToiletandBidet
(91kg)
(km)(tkm1)
Portugal(PT)Lorry16ton—EURO5200818
Germany(DE)Lorry16ton—EURO52700111246
TheNetherlands(NL)Lorry16ton—EURO5210086191
Boat(+lorry16ton—EURO5)1800(+130)74(+5)164(+12)
Sweden(SE)Lorry16ton—EURO53500144319
Barco(+lorry16ton—EURO5)3500(+150)144(+6)319(+14)
MiddleEast
(SaudiArabia—SA)Boat(+lorry16ton—EURO5)10000(+230)410(+10)910(+21)
1Tonne×kilometer.
2.2.2.UsePhaseandEnd‐of‐Life
TheWashOneandconventionalsystemsusephaseweremodeledforaconventional
usagepatterndefinedassumingadailyuseofa4‐personfamily,twoadultsandtwo
children(inequallynumberofbothgenders,necessarytocharacterizethetypeofvisits),
inasingle‐familyhouse.Detailedassumptionsfollowadailyuseoffivevisits,including
fourminor(urine)andonemajor(feces)foreachperson.Thewholefamilyusesonlyone
toilet.Thetoiletisused351daysperyear(assumingthat14daysarespentawayfrom
homeonvacation).BoththeWashOneandconventionaltoiletshaveadualflushsystem,
withfull(6L)andhalfflush(4.5L)formajorandminorvisits,respectively.The
consumptionoftoiletpaperiseightsheetsforminorvisitsand15sheetsformajorvisits.
Theuseofbidetintheconventionalsystemisonlyformajorvisits(onevisitperdayper
person).Dataregardingtimeofuse,waterconsumptionandenergyconsumptionwas
basedonexperimentaltestsaswellasdatafromtheliteratureandEPDdatabases
assumingastandardusepattern.Tables3and4presenttheWashOne’selectricityand
wateruseperfunctionandvisit(majorandminor).Thebidetsystem’scharacteristicsand
energyandwaterconsumptionaredescribedinTable5.
Energies2021,14,23077of16
Table3.WashOneelectricityuseperfunctionpervisit(majororminor).Source:Developedbytheauthorsusingdata
collectedbytheauthoraffiliatedwithOLIandfromtheliterature.
FunctionComponentsPower(W)TimeofUse(s)ConsumptionPerUse
(kWh)
AutomaticlidlifterMotor3636.0×10−5
SeatheatingElectricalresistance603005.0×10−3
WashletnozzlecleaningPump1241×10−5
User’scleaning
Pump12**
**
Motor284.4×10−6
Waterheater1444**
**
WashletnozzleoscillationMotor2603.3×10−5
DryingFan5304.2×10−5
Electricalresistance122301.02×10−3
OdorremovalFan53004.2×10−4
Fullflush(majorvisits)Pump10851.5×10−4
Halfflush(minorvisits)Pump1082.928.8×10−5
*Dependsonthetypeofvisit(seeTable4).
Table4.WashOnewaterandenergyuse(washletandtoilet)pertypeofvisit(majororminor).
Source:DevelopedbytheauthorsusingdatacollectedbytheauthoraffiliatedwithOLIandfrom
theliterature.
WashletandToiletUseParametersTypeofVisit
MajorMinor
Washlet(rearposition)(feminine/frontposition)
Waterusageduration1(s)4520
Waterflowrate(L/min)0.65
Usedwatervolume(L)0.490.22
Waterheaterefficiency10.95
WatertemperaturedifferenceΔT1(K)30(40–10°C)
Waterheatingenergy2(Wh) 18.068.03
Airdryerusageduration1(s)30
Airflowrate(L/s)3.33
Airheaterefficiency10.98
AirtemperaturedifferenceΔT1(K)30(45–15°C)
Airheatingenergy3(Wh)1.02
Totalenergyconsumption(Wh)19.089.05
Toilet
Flushwaterusage(L)6.0(fullflush)4.5(halfflush)4
Flushflowrate(L
/
s) 1.20
Flushduration(s)5.002.92
Pumpmotorpower(W)108.0
Energyconsumption(Wh)0.1500.088
1Estimatedrealisticassumption.2Pumpmotorandwaterheater.3Airblowermotorincluded.4
EuropeanNormEN14055.
Auserbehaviorscenarioanalysiswasperformedtoassessalternativewashletusage
patterns.Thewashletuseischaracterizedintermsofuseintensity(numberofusesper
day).FortheWO1(WashOnewithwashlet)configuration,thefollowingtwoscenarios
wereanalysed:W100—washletusedin100%oftoiletvisits;W25—washletusedonlyin
Energies2021,14,23078of16
majorvisits(25%ofdailyvisits).W25scenarioassumesthatinminorvisitsthefemale
userwillusetoiletpaper.WO2configurationconsiderstheuseoftoiletpaperinallvisits.
TheelectricitymixwasmodeledusingspecificliteraturedataforPortugalbasedon
[32,33].Fortheothercountries,specificcountrymixeswereusedbasedonliteraturefrom
theEcoinventv.3.1database[34,35].
Table5.Toiletandbidetenergyandwateruseinventory.Source:Developedbytheauthorsusing
datacollectedbytheauthoraffiliatedwithOLIandfromtheliterature.
BidetSystem’sInfrastructure
Waterheater’sefficiency0.8
Pipinglength1(m)8
Waterflow(L/min)6.4
Watertemperaturedifference2—
∆
T(K)30
Hotwaterquantity(L) 4
BidetUsePerVisit
Energyuse(kWh)0.2
Wateruse(L)8
ToiletWaterUsePerVisit
Flushwateruse(L)
Halfflush(minorvisits)4.5
Fullflush(majorvisits)6
1Fromtheheatingsourcetillthebidet.2Differencebetweenroomtemperatureandthewarm
temperaturedefined.
TheWashOneandconventionalsystemsusephasesweremodeledassuminga
conventionalWWTsystemwithoutthetertiarytreatment(notincludedinmostWWT
plants)andassumingacountry‐specificenergymixdependingontheuser’slocation.For
thesecondarytreatment,ananaerobicprocess(sludgetreatmentwithoutoxygen)was
considered.Itwasassumedthatallthesanitaryresiduesfromthetoiletandbidet,
dependingonthesystem(urine,feces,toiletpaperandgreywater),areroutedfromthe
sewertoamunicipalWWTplantineachlocationassessed.Wastewatertreatmentswere
modelledusingtheEcoinventv.3.1database[36].
Fortheend‐of‐lifeofthecomponents,itwasconsideredthattheceramicmaterialis
disposedofinlandfillforinertmatter,steelcomponentsarerecycled,andtheelectronic
componentsareincineratedorrecycleddependingontheircomposition.Plasticmaterial
isrecycledorincinerated(withenergyrecovery)dependingonitsstructure.The
cardboardofthepackageisassumedtoberecycled.Theremainingmaterialsand
componentsareincinerated.WastetreatmentsweremodelledusingtheEcoinventv.3.1
database[29,36].
3.Results
3.1.ComparativeAssessmentandUserBehaviorAnalysis
EnvironmentalimpactswereassessedusingtwocomplimentaryLCIAmethods:
CED(CumulativeEnergyDemand)wasusedtocalculatethenon‐renewableprimary
energy(NRPE),toaddressfossilenergyresourcedepletion;andtheCML‐IAwasusedto
evaluatefivemid‐pointcategories:GlobalWarming(GW),followingIPCC2013foratime
horizonof100years,Acidification(A),Eutrophication(E),OzoneDepletion(OD)and
PhotochemicalOxidation(POC).Thesecategorieswereconsideredtobethemostrelevant
bytheEU[37,38],aswellasrecommendedbyseveralproductcategoryrules(PCR),
namelyPCRofsanitarywareandbuildingproducts[39,40].Figure3showstheresultsfor
thetwoWashOneconfigurations(WO1andWO2,withandwithoutwashlet,
respectively),includingthetwowashletusescenarios(W100andW25),comparedtothe
Energies2021,14,23079of16
conventionalsystems.Theconventionalsystem(toiletandbidet)presentshigherimpacts
thanWO1(inbothwashletusescenarios)forallimpactcategories.However,whenthe
WashOnedoesnotincludethewashletsystem(WO2),ithashighertotalLCimpacts(1–
8%)thantheconventionaltoiletinthreeoutofsiximpactcategories(acidification,
eutrophicationandphotochemicaloxidation).Whencomparingtheusescenarios,the
W100hashigherimpactsthanW25inallimpactcategoriesassessed.Theenvironmental
impactsareshowntobedrivenbytheusephase(71–95%oftotalLCimpactsforthe
WashOneand92–98%fortheconventionaltoilet)inalltoiletsystemoptionsforallimpact
categoriesassessed,followedbymaterialsproductionandcomponentsmanufacturing(5–
29%fortheWashOneand2–7%fortheconventionaltoilet).
Usephaseresults,presentedinFigure3b,showthatforWO1‐W100,thehigh
contributionoftheusephaseisduetoelectricityuseofthewashlet(climatechange,ozone
depletionandphotochemicaloxidation),wastewatertreatment(acidificationand
eutrophication)andflushwater(non‐renewableprimaryenergy).ForWO1–W25,the
processeswiththehighestimpactaretoiletpaper(climatechange,ozonedepletion,
photochemicaloxidationandnon‐renewableprimaryenergy)andwastewatertreatment
(acidificationandeutrophication).Themaincontributortotheconventionalsystem(toilet
andbidet)usephaseimpactsaretheelectricityuseofthebidet(climatechange,ozone
depletionandphotochemicaloxidation),toiletpaper(acidificationandnon‐renewable
primaryenergy),andwastewatertreatment(eutrophication).ForWO2andtoilet,theuse
oftoiletpaperhasthehighestcontributionforfiveoutofsixcategories,withtheexception
ofeutrophication,wherewastewatertreatmentprocessisthehighestcontributor.Energy
consumptioncontributesforabout30%ofthetotalLCimpactsofWashOneand30–65%
oftheconventionaltoiletinmostofthecategoriesassessed.Waterconsumption
contributesforabout15–30%oftotalLCimpactsofWashOneandabout10%ofthe
conventionaltoiletinfouroutofsixcategories.
Energies2021,14,230710of16
Figure3.LCIAresultsofthealternativetoiletsystems(WashOneandconventionaltoiletsystem)perfamily×year:(a)LC
impactsand(b)usephaseimpactsbreakdown.
Contributionanalysisoftheproductionphase(includingmaterialsproductionand
componentsmanufacturing)havehighlightedthekeydriversofenvironmentalimpacts
foralternativetoiletsystems.Figure4showsthatthekeycontributorsarethewashlet(26–
36%)followedbytheintegratedflushsystem(15–28%)fortheWO1.Themain
contributorstotheproductionphaseoftheconventionalsystemandWO2aretheceramic
structure(45–69%)andtheintegratedflushsystem(14–18%),makingupover60%ofthe
totalproductionimpacts.Regardingmaterialscontribution,plasticscontributeabout30–
45%totheproductionimpactsoftheWashOnesystem,whileelectroniccomponents
contributeabout30–65%infouroutofsixcategories(GW,NRPE,AandE).Plastics
contributeabout90%oftheend‐of‐lifeimpactsofmaterialsusedfortheproductionofthe
WashOne.Theseresultshighlightthatthereispotentialforimprovementinthe
productionoftheWashOnecomponents,particularlyplasticmadecomponents,for
instance,byincorporatingrecycledrawmaterialandreducingproductionlosses.
Energies2021,14,230711of16
Figure4.LCIAresultsfortheproductionphaseofthetoiletsystems(cradletogate)perfamily×year.
3.2.UserLocationScenarioAnalysis
Theuserlocationanalysiswasperformedforfivealternativelocations.Foreach
location,threeparameterswereassessed:thecountry‐specificelectricitymixthat
influencestheenergyuseduringtheusephase;andthetransportationdistanceandmode
forthedistributionfromtheproductionsite(Portugal)toeachspecificlocation.Results
presentedinFigure5showthattheusephaseisthemaincontributortothetotalLC
impactsinalllocations,duetotheenergyuseineachcountry(andconsequentlythe
country‐specificelectricitymix).Swedenpresentsthehighestdistributionimpactsdueto
Energies2021,14,230712of16
thelargedistancestraveledbylorry(3500km),butstillwithverylittleinfluenceinthe
totalLCimpacts(lessthan5%).
Energies2021,14,230713of16
Figure5.UserlocationanalysisLCIAresults,consideringfivealternativelocations(Portugal(PT),Germany(DE),the
Netherlands(NL),Sweden(SE)andSaudiArabia(SA))andtwotransportationmodes(lorryandship).
WO1–W100andconventionaltoiletsystemshavethelowestenvironmentalimpacts
inSweden(SE)owingtothehighpercentageofrenewableenergy(morethan80%)inthe
Swedishelectricitymix,formostcategories(GW,NRPE,AandPOC).WO1‐W25hasthe
lowestimpactsinSaudiArabia(SA)formostcategories(NRPE,A,EandPOC).The
conventionaltoiletsystemhasveryhighimpactsinSAforallimpactcategoriesexcept
eutrophication,duetohighpercentageofoil(about60%)combinedwithnaturalgas
(about40%)usedfortheproductionofelectricity.GermanyandtheNetherlandshavethe
Globalwarming(GW)Non‐renewableprimaryenergy(NRPE)
Acidification(A)Eutrophication(E)
Ozonedepletion(OD)Photochemicaloxidation(POC)
Materialsproductionandcomponentsmanufacturing Distribution Use End‐of‐life
0
50
100
150
200
250
300
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
WO1‐W100 WO1‐W25 ConventionalToilet
+
Bidet
kgCO
2
eq
‐500
0
500
1000
1500
2000
2500
3000
3500
4000
4500
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
WO1‐W100 WO1‐W25 ConventionalToilet
+Bidet
MJ
‐0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
WO1‐W100 WO1‐W25 ConventionalToilet
+Bidet
kgSO
2
eq
‐0.5
0.0
0.5
1.0
1.5
2.0
2.5
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
WO1‐W100 WO1‐W25 ConventionalToilet
+Bidet
kgPO4‐‐‐ eq
0
5
10
15
20
25
30
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
WO1‐W100 WO1‐W25 ConventionalToilet
+Bidet
mgCFC‐11eq
‐10
0
10
20
30
40
50
60
70
80
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
PT
DE
NL‐lorry
NL‐ship
SE‐lorry
SE‐ship
SA
WO1‐W100 WO1‐W25 ConventionalToilet
+Bidet
gC
2
H
4
eq
Energies2021,14,230714of16
highestimpactreductionpotentialwhenchangingfromaconventionaltoilettoWashOne
(reductionof52–71%intotalLCimpacts).
4.ConclusionsandRecommendations
Anenvironmentallife‐cycleassessment(cradletograve)ofaninnovative
multifunctionaltoiletsystem(WashOne)wasperformed,consideringalternative
configurations(withorwithoutwashlet),comparedwithconventionalsystems.
Additionally,twoscenarioanalyseswereconductedtoinspecttheimpactofdifferentuser
behaviorsanduserlocationsontheenvironmentalperformanceofthesesystems.Forthe
userbehaviorscenarios,twoalternativewashletusagepatternswereassessed,onewhere
thewashletisusedinalltoiletvisits(W100)andanotherwherethewashletisonlyused
inmajorvisits(W25).Fortheuserlocationscenarios,fouralternativelocationswere
assessed(Germany,theNetherlands,Sweden,SaudiArabia)andcomparedwithPortugal
(referencescenario).
ItcanbeconcludedthattheWashOnesystemwithwashlet(WO1)hasabetter
environmentalperformancethantheconventionalsystem(toilet+bidet),whilewithout
washlet(WO2)presentssimilarperformancetotheconventionaltoilet.Theusephasehas
thehighestcontributiontothelife‐cycleimpactsinbothWashOneconfigurationsand
scenariosassessed.ThehighestcontributiontotheusephaseimpactsforWO1is
electricityuse(washletandintegratedflushsystem),whileforWO2itistoiletpaper.In
theconventionalsystem,electricityuseforthewaterheatersystemofthebidethasthe
highestcontributionfortheusephase.Itisworthnotingthatevenwhenthewashlet
systemhaslowuseintensity(W25),theWashOnesystemhasstillabetterperformance
thantheconventionalone.
UsephaseisthemaincontributortoLCimpactsinalllocations,duetotheenergy
useineachcountryand,consequently,thecountry‐specificelectricitymix.Itisworth
notingthatthemarketwiththehighestpotentialfortheWashOnetobecompetitivein
termsofenvironmentalperformanceistheNorthofEurope,inthisstudyrepresentedby
Sweden,asitpresentedthelowestLCimpactsinmostcategories,independentofthe
modeoftransportationusedfordistribution.AlthoughSwedenpresentsthehighest
distributionimpactsduetothelargedistancestraveledbylorry(3500km),theyhavevery
littleinfluenceintheLCimpacts(lessthan5%).Additionally,Germanyandthe
Netherlandshavethehighestpotentialforimpactreductionwhenchangingfroma
conventionaltoilettoWashOne(reductionof52–71%LCimpacts).
Drawingontheresultsandonlimitationsofthisarticle,recommendationsto
enhancetheperformanceofinnovativetoiletsystemsareprovidedasfollows.Variability
anduncertaintyanalysisshouldbeincorporatedintheLCA,andtheusephase(highest
potentialforimprovement)shouldbecomprehensivelyassessed,astheresultswere
basedonastandardusepattern(fromexperimentaltestsatlabscale).Futureworkshould
alsoassessstrategiestoimproveenergyuseefficiencyandtominimizewateruseineach
visit(e.g.,incorporateaflowreducer,adjusthotwatertemperature).Toiletproduction
canalsobeimproved,inparticularplasticscomponents,byincorporatingrecycled
materialandreducingproductionlosses.Bio‐basedmaterialscanalsobeusedasan
alternativetofossil‐basedpolymers.
ThisarticlehighlightstheimportanceofperformingLCAatanearlystageof
developmentofinnovativeproductsbyidentifyingthecriticalissuesandhotspots(the
maincontributorsforenvironmentalimpacts)toimprovetheirdesignandperformance.
Italsoshowsthesignificanceoftheusephaseintoiletsystems,givingdirectiontofurther
developmentsoftheWashOnesystem.Itisimportanttomentiontherelevanceof
addressingtheusephaseinPCRs(and,consequently,inEPDs)oftoiletsystems.
Energies2021,14,230715of16
AuthorContributions:A.C.providedthedataforthelife‐cyclemodelandinventory;S.A.and
E.R.providedthedataforthelife‐cyclemodelandinventory,aswellastherenderingpresentedin
Figure1;J.A.,M.I.S.andA.T.alsoprovideddata,contributedtothedataanalysisandreviewed
thepaper;C.R.andF.F.performedtheanalysis,interpretedtheresultsandwrotethepaper.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchhasbeensupportedbyFEDER(EuropeanRegionalDevelopmentFund)
throughCompete2020(OperationalProgramCompetitivenessandInternationalization)underthe
WashOneprojectgrant(POCI‐01‐0247‐FEDER‐017461).Thisworkhasalsobeensupportedby
FundaçãoparaaCiênciaeTecnologia—FCTthroughprojectsCENTRO‐01‐0145‐FEDER‐030570
(SET‐LCA)andM‐ERA‐NET2/0017/2016(CTBBasics).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Thedatapresentedinthisstudyarepartlyavailableonrequestfrom
thecorrespondingauthor.Thedataarenotpubliclyavailableduetoprivacyissues.Detaileddata
regardingcomponentsandfunctionalitiesoftheinnovativetoiletisnotavailableduetopatent
confidentiallyissues.
Acknowledgments:TheauthorsarealsogratefultoallpartnersoftheWashOneprojectfortheir
contribution,andparticularlytoPedroMarquesforhisvaluablefeedbackinconductingthis
research.Theopenaccesspublicationcostswerealsocoveredbytheprojects.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Mannan,M.;Al‐Ghamdi,S.G.Environmentalimpactofwater‐useinbuildings:Latestdevelopmentsfromalife‐cycle
assessmentperspective.J.Environ.Manag.2020,261,110198,doi:10.1016/j.jenvman.2020.110198.
2. EuropeanCommissionEnergyUseinBuildings.Availableonline:https://ec.europa.eu/energy/eu‐buildings‐factsheets‐topics‐
tree/energy‐use‐buildings_en(accessedon1February2021).
3. BIOIntelligenceService.WaterPerformanceofBuildings,FinalReportforEuropeanCommision;BIOIntelligenceService:Paris,
France,2012.
4. Weyand,S.;Wittich,C.;Schebek,L.Environmentalperformanceofemergingphotovoltaictechnologies:Assessmentofthe
statusquoandfutureprospectsbasedonameta‐analysisoflife‐cycleassessmentstudies.Energies2019,12,4228,
doi:10.3390/en12224228.
5. Battisti,A.;Persiani,S.G.L.;Crespi,M.Reviewandmappingofparametersfortheearlystagedesignofadaptivebuilding
technologiesthroughlifecycleassessmenttools.Energies2019,12,1729,doi:10.3390/en12091729.
6. Gasia,J.;Fabiani,C.;Chàfer,M.;Pisello,A.L.;Manni,A.;Ascani,M.;Cabeza,L.F.Lifecycleassessmentandlifecyclecostingof
aninnovativecomponentforrefrigerationunits.J.Clean.Prod.2021,295,126442,doi:10.1016/j.jclepro.2021.126442.
7. Cornaro,C.;Zanella,V.;Robazza,P.;Belloni,E.;Buratti,C.Aninnovativestrawbalewallpackageforsustainablebuildings:
Experimentalcharacterization,energyandenvironmentalperformanceassessment.EnergyBuild.2020,208,109636,
doi:10.1016/j.enbuild.2019.109636.
8. Casas‐Ledón,Y.;DazaSalgado,K.;Cea,J.;Arteaga‐Pérez,L.E.;Fuentealba,C.Lifecycleassessmentofinnovativeinsulation
panelsbasedoneucalyptusbarkfibers.J.Clean.Prod.2020,249,119356,doi:10.1016/j.jclepro.2019.119356.
9. Göswein,V.;Rodrigues,C.;Silvestre,J.D.;Freire,F.;Habert,G.;König,J.Usinganticipatorylifecycleassessmenttoenable
futuresustainableconstruction.J.Ind.Ecol.2020,24,178–192,doi:10.1111/jiec.12916.
10. Lv,J.;Gu,F.;Zhang,W.;Guo,J.Lifecycleassessmentandlifecyclecostingofsanitarywaremanufacturing:Acasestudyin
China.J.Clean.Prod.2019,238,117938,doi:10.1016/j.jclepro.2019.117938.
11. Silvestri,L.;Forcina,A.;Silvestri,C.;Ioppolo,G.Lifecycleassessmentofsanitarywareproduction:AcasestudyinItaly.J.Clean.
Prod.2020,251,119708,doi:10.1016/j.jclepro.2019.119708.
12. Lam,L.;Kurisu,K.;Hanaki,K.Comparativeenvironmentalimpactsofsource‐separationsystemsfordomesticwastewater
managementinruralChina.J.Clean.Prod.2015,104,185–198,doi:10.1016/j.jclepro.2015.04.126.
13. Ishii,S.K.L.;Boyer,T.H.Lifecyclecomparisonofcentralizedwastewatertreatmentandurinesourceseparationwithstruvite
precipitation:Focusonurinenutrientmanagement.WaterRes.2015,79,88–103,doi:10.1016/j.watres.2015.04.010.
14. Benetto,E.;Nguyen,D.;Lohmann,T.;Schmitt,B.;Schosseler,P.Lifecycleassessmentofecologicalsanitationsystemforsmall‐
scalewastewatertreatment.Sci.TotalEnviron.2009,407,1506–1516,doi:10.1016/j.scitotenv.2008.11.016.
15. Remy,C.;Ruhland,A.;Jekel,M.EcologicalAssessmentofAlternativeSanitationConceptswithLifeCycleAssessment‐FinalReportfor
Subtask5oftheDemonstrationProject“SanitationConceptsforSeparateTreatmentofUrine,FaecesandGreywater”(SCST);Technische
UniversitätBerlin,Berlin,Germany,2006.
Energies2021,14,230716of16
16. Devkota,J.;Schlachter,H.;Anand,C.;Phillips,R.;Apul,D.DevelopmentandapplicationofEEAST:Alifecyclebasedmodel
foruseofharvestedrainwaterandcompostingtoiletsinbuildings.J.Environ.Manag.2013,130,397–404,
doi:10.1016/j.jenvman.2013.09.015.
17. Anand,C.;Apul,D.S.Economicandenvironmentalanalysisofstandard,highefficiency,rainwaterflushed,andcomposting
toilets.J.Environ.Manag.2011,92,419–428,doi:10.1016/j.jenvman.2010.08.005.
18. Shi,Y.;Zhou,L.;Xu,Y.;Zhou,H.;Shi,L.Lifecyclecostandenvironmentalassessmentforresource‐orientedtoiletsystems.J.
Clean.Prod.2018,196,1188–1197,doi:10.1016/j.jclepro.2018.06.129.
19. Liu,X.;Dai,J.;Ng,T.L.;Chen,G.Evaluationofpotentialenvironmentalbenefitsfromseawatertoiletflushing.WaterRes.2019,
162,505–515,doi:10.1016/j.watres.2019.07.016.
20. IPCC.IPCC,2013:ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFifthAssessmentReportof
theIntergovernmentalPanelonClimateChange;CambridgeUniversityPress:Cambridge,UK;NewYork,NY,USA,2013.
21. Yoonus,H.;Al‐Ghamdi,S.G.EnvironmentalperformanceofbuildingintegratedgreywaterreusesystemsbasedonLife‐Cycle
Assessment:Asystematicandbibliographicanalysis.Sci.TotalEnviron.2020,712,136535,doi:10.1016/j.scitotenv.2020.136535.
22. Leong,J.Y.C.;Balan,P.;Chong,M.N.;Poh,P.E.Life‐cycleassessmentandlife‐cyclecostanalysisofdecentralisedrainwater
harvesting,greywaterrecyclingandhybridrainwater‐greywatersystems.J.Clean.Prod.2019,229,1211–1224,
doi:10.1016/j.jclepro.2019.05.046.
23. Remy,C.;Jekel,M.Energyanalysisofconventionalandsource‐separationsystemsforurbanwastewatermanagementusing
LifeCycleAssessment.WaterSci.Technol.2012,65,22–29,doi:10.2166/wst.2011.766.
24. Lam,C.M.;Leng,L.;Chen,P.C.;Lee,P.H.;Hsu,S.C.Eco‐efficiencyanalysisofnon‐potablewatersystemsindomesticbuildings.
Appl.Energy2017,202,293–307,doi:10.1016/j.apenergy.2017.05.095.
25. Gnoatto,E.L.;Kalbusch,A.;Henning,E.Evaluationoftheenvironmentalandeconomicimpactsonthelifecycleofdifferent
solutionsfortoiletflushsystems.Sustainability2019,11,4742,doi:10.3390/su11174742.
26. Cruz,P.;Costa,A.;Costa,V.;Pereira,M.;Rodrigues,L.;Pimentel‐Rodrigues,C.;Lopes,A.;Rodrigues,C.;Freire,F.;Almeida,
J.;etal.Innovativetoiletintegratingwaterstorageandflushingsystem,electronicbidetandurineseparation.(inPT:Sanita
inovadoraintegrandosistemasdearmazenamentoedescargadeágua,bidéeletrónicoeseparaçãodeurinas.).Indústriae
Ambient.2018,108,29–31.
27. Kellenberger,D.;Althaus,H.;Künniger,T.;Lehmann,M.;Jungbluth,N.LifeCycleInventoriesofBuildingProducts.Ecoinvent
Report;SwissCentreforLifeCycleInventories;Dübendorf,Switzerland;2007.
28. Hischier,R.LifeCycleInventoriesofPackagingandGraphicalPapers(PartI).EcoinventReportNo11;SwissCenterforLifeCycle
Inventories;Dübendorf,Switzerland,2007.
29. Hischier,R.LifeCycleInventoriesofPackagingandGraphicalPapers(PartII:Plastics).EcoinventReportNo11;SwissCenterforLife
CycleInventories;Dübendorf,Switzerland,2007.
30. Hischier,R.;Classen,M.;Lehmann,M.;Scharnhorst,W.EcoinventReportNo18:LifeCycleInventoriesofElectricandElectronic
Equipment:Production,UseandDisposal(PartI);SwissCenterforLifeCycleInventories;Dübendorf,Switzerland,2007.
31. Spielmann,M.;Bauer,C.;Dones,R.;Tuchschmin,M.LifeCycleInventoriesofTransportServices.EcoinventRep.No14,v2.0;2007.
32. Garcia,R.;Marques,P.;Freire,F.Life‐cycleassessmentofelectricityinPortugal.Appl.Energy2014,134,563–572,
doi:10.1016/j.apenergy.2014.08.067.
33. Kabayo,J.;Marques,P.;Garcia,R.;Freire,F.Life‐cyclesustainabilityassessmentofkeyelectricitygenerationsystemsin
Portugal.Energy2019,176,131–142,doi:10.1016/j.energy.2019.03.166.
34. Dones,R.;Bauer,C.;Bolliger,R.;Burger,B.;Heck,T.;Röder,A.;Institut,P.S.;Emmenegger,M.F.;Frischknecht,R.;Jungbluth,
N.;etal.LifeCycleInventoriesofEnergySystems:ResultsforCurrentSystemsinSwitzerlandandOtherUCTECountries.Ecoinvent
Rep.No5;SwissCentreforLifeCycleInventories;Dübendorf,Switzerland,2007.
35. Ruiz,M.Documentationofchangesimplementedinecoinvent.EcoinventReport.SwissCentreforLifeCycleInventories;
Dübendorf,Switzerland;2013.
36. Doka,G.LifeCycleInventoriesofWasteTreatmentServices.EcoinventRep.No.13;SwissCentreforLifeCycleInventories;
Dübendorf,Switzerland,2003;p.111.
37. JRC‐IES.ILCDHandbook.InternationalReferenceLifeCycleDataSystem.GeneralGuideforLifeCycleAssessment;JointResearch
Center;Ispra,Italy,2010.
38. Fazio,S.;Biganzioli,F.;DeLaurentiis,V.;Zampori,L.;Sala,S.;Diaconu,E.SupportingInformationtotheCharacterisationFactors
ofRecommendedEFLifeCycleImpactAssessmentMethods,Version2,fromILCDtoEF3.0,EUR29600EN;EuropeanCommission:
Ispra,Italy,2018,doi:10.2760/002447,ISBN978‐92‐79‐98584‐3.
39. Rocha,C.;Almeida,M.;Duarte,P.RegrasdeCategoriadeProduto–LouçaSanitária;DAPHabitat;Aveiro,Portugal;2015.
40. Dias,A.C.;Dias,A.B.;Rocha,C.;Freire,F.;Gervásio,H.;Silvestre,J.;Arroja,L.;Almeida,M.;Duarte,P.;Mateus,R.;etal.Regras
paraaCategoriadeProduto(RCP)–ModeloBase–ProdutoseServiçosdeConstrução.Versão2.0;DAPHabitat;Aveiro,Portugal;2015.