Article

Personalisierte Medizin in der Pharmakotherapie: Wie weit sind wir in der Veterinärmedizin?

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Greyhounds recover more slowly from certain injectable anesthetics than other dog breeds. Previous studies implicate cytochrome P450 (CYP) 2B11 as an important clearance mechanism for these drugs and suggest Greyhounds are deficient in CYP2B11. However, no CYP2B11 gene mutations have been identified that explain this deficiency in Greyhounds. The objectives of this study were to provide additional evidence for CYP2B11 deficiency in Greyhounds, determine the mechanisms underlying this deficiency, and identify CYP2B11 mutations that contribute to this phenotype in Greyhounds. Greyhound livers metabolized CYP2B11 substrates slower, possessed lower CYP2B11 protein abundance, but had similar or higher mRNA expression than other breeds. Gene resequencing identified three CYP2B11 haplotypes, H1 (reference), H2, and H3 that were differentiated by mutations in the gene 3′-untranslated region (3′-UTR). Compared with 63 other dog breeds, Greyhounds had the highest CYP2B11-H3 allele frequency, while CYP2B11-H2 was widely distributed across most breeds. Using 3′-UTR luciferase reporter constructs, CYP2B11-H3 showed markedly lower gene expression (over 70%) compared to CYP2B11-H1 while CYP2B11-H2 expression was intermediate. Truncated mRNA transcripts were observed in CYP2B11-H2 and CYP2B11-H3 but not CYP2B11-H1 transfected cells. Our results implicate CYP2B11 3′-UTR mutations as a cause of decreased CYP2B11 enzyme expression in Greyhounds through reduced translational efficiency.
Article
Full-text available
Dogs are commonly used in human and veterinary pharmaceutical development. Physiologically based pharmacokinetic modeling using recombinant cytochrome P450 (CYP) enzymes requires accurate estimates of CYP abundance, particularly in liver. However, such estimates are currently available for only seven CYPs, which were determined in a limited number of livers from one dog breed (beagle). In this study, we used a label-free shotgun proteomics method to quantitate 11 CYPs (including four CYPs not previously measured), cytochrome P450 oxidoreductase, and cytochrome b5 in liver microsomes from 59 dogs representing four different breeds and mixed-breed dogs. Validation included showing correlation with CYP marker activities, immunoquantified protein, as well as CYP1A2 and CYP2C41 null allele genotypes. Abundance values largely agreed with those previously published. Average CYP abundance was highest (>120 pmol/mg protein) for CYP2D15 and CYP3A12; intermediate (40-89 pmol/mg) for CYP1A2, CYP2B11, CYP2E1, and CYP2C21; and lowest (<12 pmol/mg) for CYP2A13, CYP2A25, CYP2C41, CYP3A26, and CYP1A1. The CYP2C41 gene was detected in 12 of 58 (21%) livers. CYP2C41 protein abundance averaged 8.2 pmol/mg in those livers, and was highest (19 pmol/mg) in the only liver with two CYP2C41 gene copies. CYP1A2 protein was not detected in the only liver homozygous for the CYP1A2 stop codon mutation. Large breed-associated differences were observed for CYP2B11 (P < 0.0001; ANOVA) but not for other CYPs. Research hounds and Beagles had the highest CYP2B11 abundance; mixed-breed dogs and Chihuahua were intermediate; whereas greyhounds had the lowest abundance. These results provide the most comprehensive estimates to date of CYP abundance and variability in canine liver. SIGNIFICANCE STATEMENT: This work provides the most comprehensive quantitative analysis to date of the drug-metabolizing cytochrome P450 proteome in dogs that will serve as a valuable reference for physiologically based scaling and modeling used in drug development and research. This study also revealed high interindividual variation and dog breed-associated differences in drug-metabolizing cytochrome P450 expression that may be important for predicting drug disposition variability among a genetically diverse canine population.
Article
Full-text available
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Article
Full-text available
We previously showed that (+)‐tramadol is metabolized in dog liver to (+)‐M1 exclusively by CYP2D15 and to (+)‐M2 by multiple CYPs, but primarily CYP2B11. However, (+)‐M1 and (+)‐M2 are further metabolized in dogs to (+)‐M5, which is the major metabolite found in dog plasma and urine. In this study, we identified canine CYPs involved in metabolizing (+)‐M1 and (+)‐M2 using recombinant enzymes, untreated dog liver microsomes (DLMs), inhibitor‐treated DLMs, and DLMs from CYP inducer‐treated dogs. A canine P‐glycoprotein expressing cell line was also used to evaluate whether (+)‐tramadol, (+)‐M1, (+)‐M2, or (+)‐M5 are substrates of canine P‐glycoprotein, thereby limiting their distribution into the central nervous system. (+)‐M5 was largely formed from (+)‐M1 by recombinant CYP2C21 with minor contributions from CYP2C41 and CYP2B11. (+)‐M5 formation in DLMs from (+)‐M1 was potently inhibited by sulfaphenazole (CYP2C inhibitor) and chloramphenicol (CYP2B11 inhibitor) and was greatly increased in DLMs from phenobarbital‐treated dogs. (+)‐M5 was formed from (+)‐M2 predominantly by CYP2D15. (+)‐M5 formation from (+)‐M1 in DLMs was potently inhibited by quinidine (CYP2D inhibitor) but had only a minor impact from all CYP inducers tested. Intrinsic clearance estimates showed over 50 times higher values for (+)‐M5 formation from (+)‐M2 compared with (+)‐M1 in DLMs. This was largely attributed to the higher enzyme affinity (lower Km) for (+)‐M2 compared with (+)‐M1 as substrate. (+)‐tramadol, (+)‐M1, (+)‐M2, or (+)‐M5 were not p‐glycoprotein substrates. This study provides a clearer picture of the role of individual CYPs in the complex metabolism of tramadol in dogs.
Article
Full-text available
There are various inter-species differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of UGT activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity towards 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Article
Full-text available
Abstract The cytochrome P450 (CYP) superfamily constitutes a collection of enzymes responsible for the metabolism of a wide array of endo- and xenobiotic compounds. Much of the knowledge on substrate specificity and genetic identification of the various CYP isoforms is derived from research in rodents and humans and only limited information has been captured in the dog. Currently, there exist many gaps in our knowledge of canine CYP diversity as a result of the paucity of studies focusing on canine CYPs, canine CYP polymorphisms, and the therapeutic consequences of these genetic variants. Challenges engendered by this lack of information is further amplified by inter- and intraspecies differences in the specificity and affinity of substrates and inhibitors, prohibiting a simple extrapolation of probe substances used in human CYP research. This creates a need to develop and validate canine-specific CYP probes. Failure to understand this potential metabolic and pharmacogenomic diversity can also influence the interpretation of data generated in dogs to support human drug development. It is with these objectives in mind that we provide an overview of what is currently known about canine CYPs with the hope that it will encourage further exploration into this important area of research.
Article
Full-text available
P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs.
Article
Full-text available
The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.
Article
Full-text available
Veterinary medicine faces the unique challenge of having to treat many types of domestic animal species, including mammals, birds, and fishes. Moreover, these species have evolved into genetically unique breeds having certain distinguishable characteristics developed by artificial selection. The main challenge for veterinarians is not to select a drug but to determine, for the selected agent, a rational dosing regimen because the dosage regimen for a drug in a given species may depend on its anatomy, biochemistry, physiology, and behaviour as well as on the nature and causes of the condition requiring treatment. Both between- and within-species differences in drug response can be explained either by variations in drug pharmacokinetics (PK) or drug pharmacodynamics (PD), the magnitude of which varies from drug to drug. This chapter highlights selected aspects of species differences in PK and PD and considers underlying physiological and patho-physiological mechanisms in the main domestic species. Particular attention was paid to aspects of animal behaviour (food behaviour, social behavior, etc.) as a determinant of interspecies differences in PK or/and PD. Modalities of drug administration are many and result not only from anatomical, physiological and/or behavioural differences across species but also from management options. The latter is the case for collective/group treatment of food-producing animals, frequently dosed by the oral route at a herd or flock level. After drug administration, the main causes of observed inter-species differences arise from species differences in the handling of drugs (absorption, distribution, metabolism, and elimination). Such differences are most common and of greatest magnitude when functions which are phylogenetically divergent between species, such as digestive functions (ruminant vs. non-ruminant, carnivore vs. herbivore, etc.), are involved in drug absorption. Interspecies differences also exist in drug action but these are generally more limited, except when a particular targeted function has evolved, as is the case for reproductive physiology (mammals vs. birds vs. fishes; annual vs. seasonal reproductive cycle in mammals; etc.). In contrast, for antimicrobial and antiparasitic drugs, interspecies differences are more limited and rather reflect those of the pathogens than of the host. Interspecies difference in drug metabolism is a major factor accounting for species differences in PK and also in PD (production or not of active metabolites). Recent and future advances in molecular biology and pharmacogenetics will enable a more comprehensive view of interspecies differences and also between breeds with existing polymorphism. Finally, the main message of this review is that differences between species are not only numerous but also often unpredictable so that no generalisations are possible, even though for several drugs allometric approaches do allow some valuable interspecies extrapolations. Instead, each drug must be investigated on a species-by-species basis to guarantee its effective and safe use, thus ensuring the well-being of animals and safeguarding of the environment and human consumption of animal products.
Article
Full-text available
There is limited information describing species related pharmacogenetic differences in animals. Despite the lack of genetic information in veterinary medicine, breed specific responses to endogenous and exogenous substances have been reported across many species. This finding underscores the importance of obtaining insight into the genotypic and phenotypic variation present across breeds. This article provides a summary of the literature pertaining to canine breed differences in physiology, drug response, drug pharmacokinetics, and metabolic idiosyncrasies. The existing knowledge of pedigrees and the known phenotypes and genotypes of dogs provides important information for determining mode of inheritance, penetration, and other major characteristics of heritable traits. Understanding these breed differences will improve canine population predictions (for canine drug products) and may be of value when extrapolating toxicology data from dogs to humans.
Article
Pharmacogenetics and pharmacogenomics strive to explain the interindividual variability in response to drugs due to genetic variation. For certain drugs, genetic tests can reduce adverse drug reactions and improve treatment efficacy. In this review, we will briefly consider some successful tests introduced into clinical practice and potential future developments.
Article
IntroductionIndividual Variability in Drug TherapyWe Are All Human VariantsOrigins of Individual Variability in Drug TherapyGenetic Polymorphism of Drug TargetsGenetic Polymorphism of Cytochrome P450sGenetic Polymorphism of Other Drug Metabolizing EnzymesGenetic Polymorphism of TransportersPharmacogenomics and Drug SafetyWarfarin Pharmacogenomics: A Model for Individualized MedicineCan Individualized Drug Therapy Be Achieved?Conclusions DisclaimerContact InformationReferences
Article
Distribution of fluoroquinolones to the retina is normally restricted by ABCG2 at the blood-retinal barrier. As the cat develops a species-specific adverse reaction to photoreactive fluoroquinolones, our goal was to investigate ABCG2 as a candidate gene for fluoroquinolone-induced retinal degeneration and blindness in cats. Feline ABCG2 was sequenced and the consensus amino acid sequence was compared with that of 10 other mammalian species. Expression of ABCG2 in feline retina was assessed by immunoblot. cDNA constructs for feline and human ABCG2 were constructed in a pcDNA3 expression vector and expressed in HEK-293 cells, and ABCG2 expression was analyzed by western blot and immunofluorescence. Mitoxantrone and BODIPY-prazosin efflux measured by flow cytometry and a phototoxicity assay were used to assess feline and human ABCG2 function. Four feline-specific (compared with 10 other mammalian species) amino acid changes in conserved regions of ABCG2 were identified. Expression of ABCG2 on plasma membranes was confirmed in feline retina and in cells transfected with human and feline ABCG2, although some intracellular expression of feline ABCG2 was detected by immunofluorescence. Function of feline ABCG2, compared with human ABCG2, was found to be deficient as determined by flow cytometric measurement of mitoxantrone and BODIPY-prazosin efflux and enrofloxacin-induced phototoxicity assays. Feline-specific amino acid changes in ABCG2 cause a functional defect of the transport protein in cats. This functional defect may be owing, in part, to defective cellular localization of feline ABCG2. Regardless, dysfunction of ABCG2 at the blood-retinal barrier likely results in accumulation of photoreactive fluoroquinolones in feline retina. Exposure of the retina to light would then generate reactive oxygen species that would cause the characteristic retinal degeneration and blindness documented in some cats receiving high doses of some fluoroquinolones. Pharmacological inhibition of ABCG2 in other species might result in retinal damage if fluoroquinolones are concurrently administered.
Article
Anesthetic-induced malignant hyperthermia (MH) has been documented in Quarter Horses with a single point mutation in the ryanodine receptor 1 gene (RyR1) at nucleotide C7360G, generating a R2454G amino acid substitution. However, there have been no reports of nonanesthetic manifestations of MH in horses with the C7360G mutation. To describe clinical manifestations of Quarter Horses with the C7360G mutation. Eleven Quarter Horses with the RyR1 C7360G mutation. This prospective study included horses with suspected MH, undetermined etiology of sudden death, death within hours of onset of rhabdomyolysis, muscle rigidity, stiffness, intermittent sweating, and persistent increases in serum muscle enzyme activities. Whole blood in EDTA and skeletal muscle were processed for genetic and histochemical analysis. Medical records and pedigrees were collected when available. Both anesthetic- and non-anesthetic-associated myopathic manifestations of MH occurred in halter Quarter Horses with mutation of RyR1. The disease is inherited as an autosomal dominant trait. Clinical and laboratory abnormalities were similar in both forms. Rhabdomyolysis was a common finding in both groups of horses. Skeletal muscle histochemical findings were nonspecific and compatible with a noninflammatory myopathic process. MH is a potentially fatal disease of Quarter Horses that could be triggered by halogenated anesthetics and other nonanesthetic factors that may include exercise, stress, breeding, illnesses, and concurrent myopathies.
Article
The purpose of this study was to determine the molecular basis in the dog for an unusual and absolute deficiency in the activity of cytosolic N-acetyltransferase (NAT), an enzyme important for the metabolism of arylamine and hydrazine compounds. NAT activity towards two NAT substrates, p-aminobenzoic acid and sulfamethazine, was undetectable in dog liver cytosol, despite substrate concentrations ranging from 10 microM to 4 mM and a wide range of incubation times. Similarly, no protein immunoreactive to NAT antibody was evident on western blot analysis of canine liver cytosol. Southern blot analysis of genomic DNA from a total of twenty-five purebred and mixed bred dogs, and eight wild canids, probed with a full-length human NAT2 cDNA, suggested an absence of NAT sequences in all canids. Polymerase chain reaction amplification of genomic DNA using degenerate primers designed to mammalian NAT1 and NAT2 consensus sequences generated products of the expected size in human, mouse, rabbit, and cat DNA, but no NAT products in any dog or wild canids. These results support the conclusion that cytosolic NAT deficiency in the domestic dog is due to a complete absence of NAT genes, and that this defect is shared by other canids.
Article
Two members of the canine cytochrome P4502C subfamily [CYP2C21 and CYP2C41 (sequence has been submitted to Genbank with accession number AF016248)] were cloned from three beagle liver cDNA libraries. The two canine CYP2C cDNAs exhibited 70% nucleotide and amino acid identity as well as 74-83% nucleotide and 67-76% amino acid identity with the human CYP2Cs. Canine CYP2C41 is more homologous to the human CYP2Cs than CYP2C21. The two canine CYP2C cDNAs exhibited a slightly lower nucleotide and amino acid identity (66-77%) with the rat P450CYPs, 2C11 and 2C12. Reverse transcription-polymerase chain reaction-based restriction enzyme tests for CYP2C21 and 2C41 mRNAs as well as polymerase chain reaction-based tests for genomic DNA were developed. CYP2C21 cDNA was present in the livers of all dogs tested (N = 9), but CYP2C41 was present in only 1 of the 9 (11%). Genomic tests found that the gene coding for CYP2C21 was also present in all dogs tested (N = 25), of which 15 were beagles and 10 mixed breeds. In contrast, the gene coding for CYP2C41 was present in only 16% (4 out of 25) of the dogs. An even distribution of the CYP2C41 gene was found between the sexes and between beagles and mixed breeds. This unique polymorphism in the canine CYP2C subfamily may be a source of variability in the metabolic clearance in dogs of xenobiotics that are metabolized by the cytochrome P450 2C subfamily of enzymes.
Article
CYP2D15 is the canine ortholog of human CYP2D6, the human CYP2D isoform involved in the metabolism of drugs such as antiarhythmics, adrenoceptor antagonists, and tricyclic antidepressants. Similar to human, canine CYP2D15 is expressed in the liver, with detectable levels in several other tissues. Three different CYP2D15 cDNA clones were obtained by RT-PCR from dog liver RNA. Two clones corresponded to variant full-length CYP2D15 cDNAs (termed CYP2D15 WT2 and CYP2D15 V1); the third was identified as a splicing variant missing exon 3 (termed CYP2D15 V2). Recombinant baculoviruses were constructed containing full-length cDNAs and used to express CYP2D15 WT2 and CYP2D15 V1 in Spodoptera frugiperda (Sf9) cells with expression levels of up to 0.14 nmol/mg cell protein. As with human CYP2D6, the recombinant CYP2D15 enzymes exhibited bufuralol 1'-hydroxylaseand dextromethorphan O-demethylase activities whencoexpressed with rabbit NADPH:P450 oxidoreductase. For bufuralol 1'-hydroxylase, apparent Km values were 4.9, 3.7, and 2.5 microM and the Vmax values were 0.14, 0.034, and 0.60 nmol/min/mg protein for dog liver microsomes, CYP2D15 WT2, and the variant CYP2D15 V1, respectively. For dextromethorphan O-demethylase, apparent Km values were 0.6, 0.6, and 2.0 microM and the Vmax values were 0.18, 0.034, and 0.057 nmol/min/mg protein for dog liver microsomes, CYP2D15 WT2, and the variant CYP2D15 V1, respectively. The human CYP2D6-specific inhibitor quinidine and the rat CYP2D1-specific inhibitor quinine were both shown to be inhibitors of bufuralol 1'-hydroxylase activity for dog liver microsomes, CYP2D15 WT2, and the CYP2D15 V1 variant with nearly equal potency. Thus, the dog expresses a CYP2D ortholog possessing enzymatic activities similar to human CYP2D6, but is affected by the inhibitors quinine and quinidine in a manner closer to that of rat CYP2D1.
Article
The pharmacokinetics of celecoxib, a cyclooxygenase-2 inhibitor, was characterized in beagle dogs. Celecoxib is extensively metabolized by dogs to a hydroxymethyl metabolite with subsequent oxidization to the carboxylic acid analog. There are at least two populations of dogs, distinguished by their capacity to eliminate celecoxib from plasma at either a fast or a slow rate after i.v. administration. Within a population of 242 animals, 45.0% were of the EM phenotype, 53.5% were of the PM phenotype, and 1.65% could not be adequately characterized. The mean (+/-S.D.) plasma elimination half-life and clearance of celecoxib were 1.72 +/- 0.79 h and 18.2 +/- 6.4 ml/min/kg for EM dogs and 5.18 +/- 1.29 h and 7.15 +/- 1.41 ml/min/kg for PM dogs. Hepatic microsomes from EM dogs metabolized celecoxib at a higher rate than microsomes from PM dogs. The cDNA for canine cytochrome P-450 (CYP) enzymes, CYP2B11, CYP2C21, CYP2D15, and CYP3A12 were cloned and expressed in sf 9 insect cells. Three new variants of CYP2D15 as well as a novel variant of CYP3A12 were identified. Canine rCYP2D15 and its variants, but not CYP2B11, CYP2C21, and CYP3A12, readily metabolized celecoxib. Quinidine (a specific CYP2D inhibitor) prevented celecoxib metabolism in dog hepatic microsomes, providing evidence of a predominant role for the CYP2D subfamily in canine celecoxib metabolism. However, the lack of a correlation between celecoxib and bufuralol metabolism in hepatic EM or PM microsomes indicates that other CYP subfamilies besides CYP2D may contribute to the polymorphism in canine celecoxib metabolism.
Article
The domestic cat has a significantly lower capacity to glucuronidate planar phenolic xenobiotics compared with most other mammalian species. The aim of this study was to determine the mechanistic basis for this anomaly. Current knowledge of the substrate specificity of UDP-glucuronosyltransferase (UGT) isoforms indicates that the cat may either lack or poorly express UGT1A6. Initially, a novel cloning technique was used to identify UGT1A genes expressed in cat liver. Only two unique UGT1A isoforms could be discriminated. The first (28%, of clones) was most homologous to UGT1A1 (the bilirubin-UGT), while the second (72% of clones) showed homology to several isoforms, but could not be unambiguously identified, and was designated cat UGT1A02. Southern blot analysis confirmed the presence of a single UGT1A6-homologous region in the cat genome. Subsequent cloning and sequencing of the entire UGT1A6 exon 1 coding region revealed five deleterious genetic mutations. Identical mutations were found by sequencing of UGT1A6 exon 1 from five other unrelated cats. Four of these five genetic lesions were also identified in the UGT1A6 exon 1 region of a margay (Leopardus wiedii). Finally, RT-PCR of liver mRNA from four different cats confirmed the presence of UGT1A1 and UGT1A02, but not UGT1A6. In conclusion, UGT1A6 is a pseudogene in the domestic cat and in at least one other phylogenetically related species. Furthermore, cats appear to have a less diverse pattern of UGT1A isoform expression compared with other species. Such differences most likely reflect the highly carnivorous diet of Feliform species and resultant minimal exposure to phytoalexins.
Article
1. The study aimed to ascertain the enzyme kinetic basis for breed differences in the biotransformation of propofol in dog and to identify the responsible canine cytochrome P450 (CYP) isoenzymes. 2. The NADPH-dependent formation of 4-hydroxypropofol (the rate-limiting biotransformation in dog) was assayed using hepatic microsomes from the male greyhound and beagle, and from both sexes in mixed-breed dogs (five of each). 3. Enzyme kinetic analysis revealed that whereas there were no significant differences in Km, Vmax averaged > 3-fold lower in greyhound compared with beagle (p = 0.032). Although average Vmax was > 3-fold higher in the male compared with female mixed-breed dogs, this difference did not achieve statistical significance (p = 0.095), probably because of the high variability of data from mixed-breed dogs. 4. Chloramphenicol (a specific CYP2B11 inhibitor) and diethyldithiocarbamate (a non-specific CYP2 inhibitor) inhibited propofol hydroxylation in all microsomes. Quinine (a CYP2D15 inhibitor) was also inhibitory, but only in one-half of the microsomes examined. Immuno-inhibition by anti-CYP2B1 sera resulted in > 50% reduction in metabolite formation in all dogs except mixed-breed females, which showed a 30% reduction. Differences in propofol hydroxylase activity between microsomal preparations were primarily attributed to a component that was sensitive to inhibition by chloramphenicol and anti-CYP2B1 sera. 5. The results indicate that propofol hydroxylation in dog is primarily mediated by CYP2B11 and that breed (and possibly gender) differences in propofol metabolism may result from differences in the liver content of this CYP.
Article
1. Interpretation of novel drug exposure and toxicology data from the dog is tempered by our limited molecular and functional knowledge of dog cytochromes P450 (CYPs). The aim was to study the mRNA and protein expression of hepatic dog CYPs in relation to the metabolism of substrates of human CYP, particularly those of the CYP2C subfamily. 2. The rate of 7-hydroxylation of S-warfarin (CYP2C9 in humans) by dog liver microsomes (mean +/- SD from 12 (six male and six female) dogs = 10.8 +/- 1.9 fmol mg(-1) protein min(-1)) was 1.5-2 orders of magnitude lower than that in humans. 3. The rate of 4'-hydroxylation of S-mephenytoin, catalysed in humans by CYP2C19, was also low in dog liver (4.6 +/-1.5 pmol mg(-1) protein min(-1)) compared with human liver. In contrast, the rate of 4'-hydroxylation of the R-enantiomer of mephenytoin by dog liver was much higher. The kinetics of this reaction (range of K(m) or K(0.5) 15-22 micro M, V(max) 35-59 pmol mg(-1) protein min(-1), n = 4 livers) were consistent with the involvement of a single enzyme. 4. In contrast to our findings for S-mephenytoin, dog liver microsomes 5'-hydroxylated omeprazole (also catalysed by CYP2C19 in humans) at considerably higher rates (range of K(m) 42-64 micro M, V(max) 22-46 pmol mg(-1) protein min(-1), n = 4 livers). 5. For all the substrates except omeprazole, a sex difference in their metabolism was observed in the dog (dextromethorphan N-demethylation: female range = 0.7-0.9, male = 0.4-0.8 nmol mg(-1) protein min(-1) (p < 0.02); S-warfarin 7-hydroxylation: female = 9-15.5, male = 8-12 fmol mg(-1) protein min(-1) (p < 0.02); R-mephenytoin 4'-hydroxylation: female = 16-35, male = 11.5-19 pmol mg(-1) protein min(-1) (p < 0.01); omeprazole 5'-hydroxylation: female = 15-20, male 13-22 pmol mg(-1) protein min(-1) (p < 0.2)). 6. All dog livers expressed mRNA and CYP3A12, CYP2B11, CYP2C21 proteins, with no sex differences being found. Expression of CYP2C41 mRNA was undetectable in the livers of six of 11 dogs. 7. Correlation analysis suggested that CYP2B11 catalyses the N-demethylation of dextromethorphan (mediated in humans by CYP3A) and the 4'-hydroxylation of mephenytoin (mediated in humans by CYP2C19) in the dog, and that this enzyme and CYP3A12 contribute to S-warfarin 7-hydroxylation (mediated in humans by CYP2C9). 8. In conclusion, we have identified a distinct pattern of hepatic expression of the CYP2C41 gene in the Alderley Park beagle dog. Furthermore, marked differences in the metabolism of human CYP2C substrates were observed in this dog strain compared with humans with respect to rate of reaction, stereoselectivity and CYP enzyme selectivity.
Article
Recently, we reported that AC-3933, a novel cognitive enhancer, is polymorphically hydroxylated in beagle dogs and that dogs could be phenotyped as extensive metabolizers (EM) or poor metabolizers (PM). AC-3933 polymorphic hydroxylation is caused by polymorphic expression of CYP1A2 protein in dog liver. In order to clarify the mechanism of polymorphic expression of CYP1A2 protein in beagle dogs, we investigated, in this study, the sequence of CYP1A2 cDNA in EM and PM dogs. In PM dogs CYP1A2 gene, we discovered a nonsense mutation (C1117T) that induces a premature termination, and is associated with PM phenotype for AC-3933 hydroxylation. All PM dogs studied were homozygote of the mutant allele (m/m) and seemed to be CYP1A2-null phenotype as they lacked the heme-binding region in CYP1A2. These results indicate that the polymorphic expression of CYP1A2 protein observed in our previous study is caused by a single nucleotide polymorphism on CYP1A2 coding region. Furthermore, we developed a genotyping method for the mutant allele using a mismatch PCR-restriction fragment length polymorphism, and carried out frequency analysis in 149 beagle dogs. Our results indicate that more than 10% of the dogs studied were CYP1A2-null. Because CYP1A2-null phenotype in dogs affects the results of pharmacokinetic, toxicological and pharmacological studies of drug candidates, these findings are important in the pharmaceutical and the veterinary fields.
Article
Drug transporters are increasingly recognized as a key determinant of drug disposition and response. It is now widely appreciated that expression of the ATP-dependent efflux transporter, MDR1 (ABCB1, P-glycoprotein), in organs such as the gastrointestinal tract, liver and kidney significantly alters the extent of drug absorption and excretion. Moreover, expression of MDR1 at the level of the blood–brain barrier limits the entry of many drugs into the central nervous system. Given such an important role of MDR1 in the drug disposition process, it is not surprising to see increasing focus on the role of single nucleotide polymorphisms (SNPs) in this transporter as a potential determinant of interindividual variability in drug disposition and pharmacological response. However, drug transport is often the result of the concerted action of efflux and uptake pumps located both in the basolateral and apical membranes of epithelial cells. A growing list of membrane-spanning proteins involved in the in- or outward transport of a large variety of drugs has been recognized and characterized over the past few years in almost all tissues, including organic anion and cation transporters (OAT, OCT, solute carrier family SLC22A), organic anion transport proteins (OATP, solute carrier family SLCO, formerly SLC21A), and MRPs (ABCCs), other members of the ATP-binding cassette family. We are just beginning to appreciate their role for drug delivery and disposition and the contribution of genetic polymorphisms in these transport proteins to interindividual variability in the efficacy and safety for pharmacotherapy.
Article
Pharmacogenetics, the study of genetic determinants of response to drug therapy, is likely the ultimate way to establish the right drug and dose for each patient, thereby optimizing efficacy and minimizing toxicity. Despite the fact that this branch of pharmacology is still in its infancy as a science, a number of important discoveries have already contributed to improved pharmacotherapy in human and veterinary patients.
Article
Cytochrome P450 enzymes (CYP450) represent a superfamily of monooxigenases that play a pivotal role in drug metabolism. In contrast to the extensive database available for human and rodent CYP450 enzyme activities, the data related to animal species that are regular patients in veterinary medicine, are far from being complete. The major obstacles are the significant inter-species and intra-species differences. With the aim to provide an overview of the current knowledge, key data for important species, such as dogs and cats, horses, pigs and ruminants, are presented, and compared with findings from humans. Analysis of these data shows, that currently no links can be established between certain physiological traits, such as herbivorous and carnivorous species, monogastric animal and ruminants, nor within a given species, as for example cattle. This implies that for all new pharmaceutical entities individual assays are needed for every animal species or even every individual breed. It can be anticipated, however, that investigations into the upstream transcriptional regulation of CYP450 enzymes will provide more insight into the observed expression levels, thus allowing to modulate kinetic parameters of old and new drugs, as the same transcription factors control also the expression of prominent drug transporters.
Phenacetin pharmacokinetics in CYP1A2-deficient beagle dogs
  • V J Witherock
  • K L Mealey
Mealey KL. Pharmacogenetics. Vet Clin North Am Small Anim Pract 2006; 36: 961-973
Phenacetin pharmacokinetics in CYP1A2-deficient beagle dogs
  • V J Witherock
  • D G Morgan
  • K A Lentz
Witherock VJ, Morgan DG, Lentz KA et al. Phenacetin pharmacokinetics in CYP1A2-deficient beagle dogs. Drug Metab Dispos 2012; 40: 228-231