The importance of underwater robots is evident in ocean exploration, resource development, and environmental monitoring. However, the harsh underwater environment requires higher efficiency, stability, and intelligence from their propulsion systems. The challenges faced by operational underwater robots today include low propulsion efficiency, poor adaptability to extreme environments, and a lack
... [Show full abstract] of sufficient autonomous control capabilities. To address these issues, this paper reviews the definition, requirements, core technologies, and key performance indicators of underwater robot propulsion systems by analyzing relevant literature from 2016 to 2024. It emphasizes optimization strategies aimed at enhancing propulsion efficiency, fault diagnosis and identification, reliability, durability, and adaptive control. Besides, it summarizes the current technical challenges and provides a reference for subsequent research. The results show that optimizing the propulsion system of operational underwater robots relies primarily on bionic design, new materials, adaptive control, deep learning, and fault diagnosis technologies to enhance propulsion efficiency, stability, durability, and environmental adaptability. However, optimizing the propulsion system involves challenges such as energy control, cost, and multi-objective optimization. Future research should prioritize efficient, low-energy propulsion, multi-modal perception, and intelligent adaptive control to advance underwater robot technology.