Preprint

Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Observations of the Galactic Center supermassive black hole Sagittarius A* (Sgr A*) with very long baseline interferometry (VLBI) are affected by interstellar scattering along our line of sight. At long radio observing wavelengths ($\gtrsim1\,$cm), the scattering heavily dominates image morphology. At 3.5 mm (86 GHz), the intrinsic source structure is no longer sub-dominant to scattering, and thus the intrinsic emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). Long-baseline detections to the phased Atacama Large Millimeter/submillimeter Array (ALMA) in 2017 provided new constraints on the intrinsic and scattering properties of Sgr A*, but the stochastic nature of the scattering requires multiple observing epochs to reliably estimate its statistical properties. We present new observations with the GMVA+ALMA, taken in 2018, which confirm non-Gaussian structure in the scattered image seen in 2017. In particular, the ALMA-GBT baseline shows more flux density than expected for an anistropic Gaussian model, providing a tight constraint on the source size and an upper limit on the dissipation scale of interstellar turbulence. We find an intrinsic source extent along the minor axis of $\sim100\,\mu$as both via extrapolation of longer wavelength scattering constraints and direct modeling of the 3.5 mm observations. Simultaneously fitting for the scattering parameters, we find an at-most modestly asymmetrical (major-to-minor axis ratio of $1.5\pm 0.2$) intrinsic source morphology for Sgr A*.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Book
Full-text available
An overview of the basics of radio astronomy is presented as well as a short history of the development of radio interferometry. The underlying relationships of interferometry are discussed with consideration given to the coordinate systems and parameters that are required to describe synthesis mapping and the configurations of antennas for multielement synthesis arrays. Other topics include the response of the receiving system, digital signal processing, VLBI, calibration and Fourier transformation of visibility data, interferometer techniques for astrometry and geodesy, propagation effects, and radio interference.
Article
SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering. See http://www.scipy.org/ .
Article
Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems. The latest release of matplotlib runs on all major operating systems, with binaries for Macintosh's OS X, Microsoft Windows, and the major Linux distributions. Matplotlib has a Matlab emulation environment called PyLab, which is a simple wrapper of the matplotlib API. Matplotlib provides access to basic GUI events such as button_press_event, mouse_motion_event and can also be registered with those events to receive callbacks. Event handling code written in matplotlib works across many different GUIs. It supports toolkits for domain specific plotting functionality that is either too big or too narrow in purpose for the main distribution. Matplotlib has three basic API classes, including, FigureCanvasBase, RendererBase and Artist.
  • A Alberdi
  • L Lara
  • J M Marcaide
Alberdi, A., Lara, L., Marcaide, J. M., et al. 1993, A&A, 277, L1
  • B Balick
  • R L Brown
Balick, B., & Brown, R. L. 1974, ApJ, 194, 265
  • L Blackburn
  • D W Pesce
  • M D Johnson
Blackburn, L., Pesce, D. W., Johnson, M. D., et al. 2020, ApJ, 894, 31
  • L Blackburn
  • C.-K Chan
  • G B Crew
Blackburn, L., Chan, C.-k., Crew, G. B., et al. 2019, ApJ, 882, 23
  • R Blandford
  • R Narayan
Blandford, R., & Narayan, R. 1985, MNRAS, 213, 591
  • G C Bower
  • D C Backer
Bower, G. C., & Backer, D. C. 1998, ApJL, 507, L117
  • G C Bower
  • D C Backer
  • M Wright
Bower, G. C., Backer, D. C., Wright, M., et al. 1997, ApJ, 484, 118
  • G C Bower
  • H Falcke
  • R M Herrnstein
Bower, G. C., Falcke, H., Herrnstein, R. M., et al. 2004, Science, 304, 704
  • G C Bower
  • W M Goss
  • H Falcke
  • D C Backer
  • Y Lithwick
Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C., & Lithwick, Y. 2006, ApJL, 648, L127
  • G C Bower
  • S Markoff
  • A Brunthaler
Bower, G. C., Markoff, S., Brunthaler, A., et al. 2014, ApJ, 790, 1
  • G C Bower
  • A Deller
  • P Demorest
Bower, G. C., Deller, A., Demorest, P., et al. 2015, ApJ, 798, 120
  • G C Bower
  • J Dexter
  • K Asada
Bower, G. C., Dexter, J., Asada, K., et al. 2019, ApJL, 881, L2
  • C D Brinkerink
  • C Müller
  • H Falcke
Brinkerink, C. D., Müller, C., Falcke, H., et al. 2016, MNRAS, 462, 1382, (B16)
  • C D Brinkerink
  • C Müller
  • H D Falcke
Brinkerink, C. D., Müller, C., Falcke, H. D., et al. 2019, A&A, 621, A119, (B19)
  • A E Broderick
  • R Gold
  • M Karami
Broderick, A. E., Gold, R., Karami, M., et al. 2020, ApJ, 897, 139
  • A Chael
  • M Rowan
  • R Narayan
  • M Johnson
  • L Sironi
Chael, A., Rowan, M., Narayan, R., Johnson, M., & Sironi, L. 2018a, MNRAS, 478, 5209
  • A A Chael
  • M D Johnson
  • K L Bouman
Chael, A. A., Johnson, M. D., Bouman, K. L., et al. 2018b, ApJ, 857, 23
  • A A Chael
  • M D Johnson
  • R Narayan
Chael, A. A., Johnson, M. D., Narayan, R., et al. 2016, ApJ, 829, 11
  • Y J Chen
  • Z.-Q Shen
  • S.-W Feng
Chen, Y. J., Shen, Z.-Q., & Feng, S.-W. 2010, MNRAS, 408, 841
  • T J Cornwell
Cornwell, T. J. 1989, Science, 245, 263. https://science.sciencemag.org/content/245/4915/263
  • J Davelaar
  • M Mościbrodzka
  • T Bronzwaer
  • H Falcke
Davelaar, J., Mościbrodzka, M., Bronzwaer, T., & Falcke, H. 2018, A&A, 612, A34
  • R D Davies
  • D Walsh
  • R S Booth
Davies, R. D., Walsh, D., & Booth, R. S. 1976, MNRAS, 177, 319
  • A T Deller
  • W F Brisken
  • C J Phillips
Deller, A. T., Brisken, W. F., Phillips, C. J., et al. 2011, PASP, 123, 275
  • S S Doeleman
  • Z.-Q Shen
  • A E E Rogers
Doeleman, S. S., Shen, Z.-Q., Rogers, A. E. E., et al. 2001, AJ, 121, 2610
  • S S Doeleman
  • J Weintroub
  • A E E Rogers
Doeleman, S. S., Weintroub, J., Rogers, A. E. E., et al. 2008, Nature, 455, 78
  • K Akiyama
  • A Alberdi
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019, ApJL, 875, L1
  • H Falcke
  • W M Goss
  • H Matsuo
Falcke, H., Goss, W. M., Matsuo, H., et al. 1998, ApJ, 499, 731
  • H Falcke
  • S Markoff
Falcke, H., & Markoff, S. 2000, A&A, 362, 113
  • S.-W Feng
  • Z.-Q Shen
  • H.-B Cai
Feng, S.-W., Shen, Z.-Q., Cai, H.-B., et al. 2006, A&A, 456, 97
  • V L Fish
  • S S Doeleman
  • C Beaudoin
Fish, V. L., Doeleman, S. S., Beaudoin, C., et al. 2011, ApJL, 727, L36
  • V L Fish
  • M D Johnson
  • S S Doeleman
Fish, V. L., Johnson, M. D., Doeleman, S. S., et al. 2016, ApJ, 820, 90
  • D A Frail
  • P J Diamond
  • J M Cordes
  • H J Van Langevelde
Frail, D. A., Diamond, P. J., Cordes, J. M., & van Langevelde, H. J. 1994, ApJ, 427, L43
  • A M Ghez
  • S Salim
  • N N Weinberg
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044
  • S Gillessen
  • F Eisenhauer
  • T K Fritz
Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009, ApJL, 707, L114
  • C Goddi
  • H Falcke
  • M Kramer
Goddi, C., Falcke, H., Kramer, M., et al. 2017, International Journal of Modern Physics D, 26, 1730001
  • C Goddi
  • I Martí-Vidal
  • H Messias
Goddi, C., Martí-Vidal, I., Messias, H., et al. 2019, PASP, 131, 075003
  • P Goldreich
  • S Sridhar
Goldreich, P., & Sridhar, S. 2006, ApJL, 640, L159, (GS06)
  • J Goodman
  • R Narayan
Goodman, J., & Narayan, R. 1989, MNRAS, 238, 995
  • R Abuter
  • A Amorim
Gravity Collaboration, Abuter, R., Amorim, A., et al. 2018a, A&A, 615, L15
  • E W Greisen
Greisen, E. W. 2003, in Astrophysics and Space Science Library, Vol. 285, Information Handling in Astronomy -Historical Vistas, ed. A. Heck (Kluwer Academic Publishers), 109
  • C R Gwinn
  • Y Y Kovalev
  • M D Johnson
  • V A Soglasnov
Gwinn, C. R., Kovalev, Y. Y., Johnson, M. D., & Soglasnov, V. A. 2014, ApJL, 794, L14
  • G G Howes
Howes, G. G. 2010, MNRAS, 409, L104
  • S Issaoun
  • M D Johnson
  • L Blackburn
Issaoun, S., Johnson, M. D., Blackburn, L., et al. 2019a, A&A, 629, A32
  • M D Johnson
Johnson, M. D. 2016, ApJ, 833, 74
  • M D Johnson
  • C R Gwinn
Johnson, M. D., & Gwinn, C. R. 2015, ApJ, 805, 180
  • M D Johnson
  • R Narayan
Johnson, M. D., & Narayan, R. 2016, ApJ, 826, 170
  • M D Johnson
  • V L Fish
  • S S Doeleman
Johnson, M. D., Fish, V. L., Doeleman, S. S., et al. 2015, Science, 350, 1242