An enormous volume of data, known as Big Data, of varied properties, is continuously being generating from several sources. For efficient and consequential use of this huge amount of data, automated and correct categorization is very important. The precise categorization can find the correlations, hidden patterns, and other valuable insights. The process of categorization of mixed heterogeneous
... [Show full abstract] data is known as data classification and is done based on some predefined features. Various algorithms and techniques are proposed for Big Data classification. This chapter attempts to discuss various technicalities of Big Data classification, comprehensively. To start with, the basics of Big Data classifications such as need, types, patterns, phases, approaches, etc. are explained aptly. Different classification techniques, including traditional, evolutionary, and advanced machine learning technique, are discussed with suitable examples, along with citing their advantages and disadvantages. Finally, a survey of various open-source and commercial libraries, platforms, and tools for Big Data classification is presented.