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INTRODUCTION

Personalized health care and public health are essential to one’s well-being and societal welfare.
The former focuses on symptoms and disease progression at the individual level, whereas the latter
looks at health issues at the population level (from a group of patients to everyone on the planet).
Recent years have seen a digital revolution in personalized health care and public health (1–4). As
such, theWorld Health Organization regards mobile health (mHealth) as a vital resource for health
services delivery and public health (5) and urges its Member States to prioritize the development
and use of digital technologies in health to promote Universal Health Coverage and advance the
Sustainable Development Goals (6).

Here, we discuss how digital health contributes to personalized health care and public health
and how it may evolve. Specifically, we present its roles, challenges, and potential future.

THE ROLES OF DIGITAL HEALTH IN PERSONALIZED HEALTH
CARE AND PUBLIC HEALTH

Self-Monitoring Health and Disease
Traditional health assessments require in-clinic visits, with bio-signals measured by professionals
using specialized devices. To practice these frequently in a broad population is, however,
inconvenient and expensive.

Digital devices are mobile (or wearable), with fast data transmission done wirelessly. This
enables remote and non-invasive health assessments and encourages users to self-care for their
health (Figure 1A) (7, 8). Frequent assessments facilitate early disease discovery and longitudinal
monitoring (7). Self-monitoring benefits those whose diseases may progress between hospital visits;
the relatively affordable price (compared to hospital costs) makes health service accessible to many
without in-hospital accesses (9). Self-monitoring does not confront in-clinic assessments. The
former is as-of-yet not as accurate or comprehensive, but it provides complementary services and
is more ecological to capture fluctuating symptoms.

Semi-Automated Assessment and Diagnosis
Semi-automated health service alleviates a shortage in medical data, personnel, and equipment in
several ways. First, it automates large-scale data collection. Next, automated data de-identification,
encryption, and transfer (10) allow comparing personal data with population counterparts (11).
Third, automation supports early disease detection, intervention, and treatment (12–15). For
example, algorithms generate alerts suggesting medical consultation or delivering reports, with
consent, to clinicians to assign interventions (16, 17) (see Figure 1B and telemedicine below).
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FIGURE 1 | Building a Digitalized Ecosystem. (A) Digitalization cycle—bridging digital health, data, and digitally enabled decision-making. From 1 to 2: Phenotypic

information is recorded by, and made available on, digital devices. From 2 to 4 via 3: Advanced modeling and analyses are applied on digital data to guide health-care

(Continued)
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FIGURE 1 | decisions by physicians, such as recommending potential treatments (see bottom of item 4) and suggesting conducting further diagnostic tests or

analyses (from 4 to 1). (B) Semi-automated disease diagnosis and monitoring. Individual data are de-identified, encrypted, and transferred remotely via the cloud to

secured data centers—where population-level disease analyses are performed. The individual data are then analyzed and compared with the population features to

generate an automated preliminary diagnosis report. Should red flags be raised, the report is passed on to a medical professional. The medical professional looks at

both the report and the individual-specific data to offer medical recommendations or to arrange for an on-site visit or remote consultation (e.g., telemedicine),

depending on which further tests are anticipated. This process continues between an individual’s periodic health checks to ensure earliest possible detection of

symptoms and to compensate for long consultation intervals when regular assessment is too expensive or inconvenient. (C) Automated deep-geno/phenotyping. The

digital health applications facilitate ensemble-learning, where multivariate genotypic and phenotypic (e.g., digital biomarker, imaging, and molecular diagnostics) data

are combined to provide rich subject-specific and group-level information, which are used to position individuals within a relevant population or to predict outcomes

for individuals, based on population norms. (D) The marriage between personalized health care and public health. There is a powerful interdependent and synergistic

relationship between personalized health care and public health in the digital age. Top: When shared, personal digital health data bring rich heterogeneous information

into the population data pool. In return, features identified in large-scale public health data will provide a reference for individuals, positioning them relative to

comparable cohorts in the population, based on age, sex, ethnicity, etc. Bottom: Integrating individual and population data. Data collected longitudinally over months

and years enable risk estimation and disease forecasts, such as estimating the likelihood of disease progression or quantifying response to different treatments.

Naturally, one would ask, will digitalization and automation
of health service result in job losses, for example, rendering
health-care personnel, nurses, and physicians redundant? Likely
not. First, such posts are in shortage (18). Although much of
monitoring and assessment can be done digitally, the majority
of high-value medical interventions cannot be automated at
present or in the near future. The expansion of overall coverage,
therefore, results in an increasing need for service to deal with the
tasks that cannot be automated. Second, digital transformation
and revolution (see section Long-Term Outlooks) grow the
labor market by creating new jobs, such as data labeling,
medical testing and analysis, and remote medical service (e.g.,
telemedicine). It also creates and expands domain-specific
positions, such as programming, posts requiring interdisciplinary
knowledge, and educational jobs training the next-generation
digital-health workforce (19).

The diagnosis made by physicians are not always correct
(20, 21). Automated health services also make mistakes. Some
machine-based predictions, however, have begun to outperform
specialists in mammographic screening (22), certain cancer
diagnosis (4) [e.g., urothelial carcinoma (23)], and retinal
analyses (24). They also contribute to predicting cardiovascular
disease (17), Lyme disease (11), neurodegenerative diseases
(15), and treatment response (25). Yet, algorithmic caution
and human safeguard, such as introducing a two-layer (digital
plus human) verification system, are high-priority (Figure 1B).
Although one can fine-tune parameters to balance false positives
and negatives, better methods and higher-quality and larger data
aggregation are needed to improve model performance.

Connecting and Facilitating Personalized
Health Care and Public Health
Digital health connects and facilitates personalized health care
and public health (Figure 1D). First, accumulating individual
data expands the population data repertoire. The convenience
of digital data collection enables the inclusion of representative
samples with balanced group sizes. This is helpful for
distinguishing diseases with subcategories. Suppose a dataset has
dominating Type 1 diabetes patients. The extracted knowledge
would reflect Type 1 diabetes-specific features and the Type 2
diabetes-specific features may be overlooked or treated as noise.
Currently, the majority of phenotypic health data are generated

in the clinic from patients with relatively advanced diseases,
where symptoms are clearly present and diagnostic procedures
are being or have been performed. There is a lack of comparable
data at scale from the healthy population and those in the very
early stages of disease development. With representative samples
and balanced group sizes, digital data support building more
robust predictive models.

Second, information learned from population data improves
personalized treatment. Digital devices are sensitive, objective,
and collect data semi-continuously; they facilitate deep
phenotyping (26, 27), finer disease categorization, and timely
treatment (Figure 1C). If a patient displays features similar to
those of a population, one can assign treatments shown safety
and efficacy in the population. Comparing subject-specific
treatment responses, side-effects, and symptoms with population
counterparts, one can refine personalized treatments (28–30).

Integrating population and individual data yields better
longitudinal inference. The longitudinal analysis helps painting
health trajectories and forecasting future events. Frequently
comparing individual information with personal and population
history helps making better inference (Figure 1D).

THE FUTURE OF DIGITAL HEALTH

The digital age is still at its dawn. Here, we first examine,
exemplarily, digital health’s short-term focus in managing
pandemics. We then discuss the mid-term challenges, for
which one can actively prepare and make constructive
improvements. Finally, we speculate, in an informed way,
its long-term perspectives.

Short-Term Focus: Digital Health During
the Coronavirus Pandemic
Testing is chief during pandemics. It identifies and isolates
infected individuals (especially the asymptomatic ones),
facilitates timely treatment, and provides governments with
feedback on “social distancing” measures. Unfortunately, by
January 2020, manufacturers could only produce 100,000
COVID-19 testing kits per day when three million were in
quarantine around Wuhan (31). From February to April 2020,
the United States performed about 4.5 million tests (32),
compared to suggested daily tests of 5–20 million (33).
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Digital devices support testing, track-and-trace, and marking
high-risk populations and areas (but see privacy concerns in
section Mid-Term Challenges and Potential Solutions). Tencent
and Alibaba provided users in China with a “health code”: one
with a green, yellow, or red code, respectively, can travel, should
stay home, or is a confirmed case and quarantined (34). Several
European countries introduced smartphone apps to identify and
inform individuals at risk (35). Real-time in-hospital monitoring
enables staff to assist more people or focus on critical patients
(36) (Figure 1C).

Mid-Term Challenges and Potential
Solutions
Digital health enables frequent, remote, and semi-automated
health services. Yet, it is not without challenges.

Immediate concerns are data privacy (37) and quality (38).
To secure data collection, transfer, storage, and analyses, we
need improved government policies (39), company regulations
(40), and computational and storage technology (1). To warrant
the quality, we need quality controls, enhanced algorithms, and
rigorous training and test.

Most digital solutions are domain-specific: for each disease,
a new model needs to be developed (2, 4, 11, 15, 17). Yet, for
those wishing to detect disease early without knowing which
disease(s) may develop, a battery of bio-signals needs to be
analyzed on a single device (Figure 1C). The fragmentation
of health care and a lack of global data standards, however,
make combining datasets and algorithms difficult (29, 41–43).
Beginnings, however, are made, for example, by introducing a
digital ward (36), the findability, accessibility, interoperability,
and reusability (FAIR) data principles, and ensemble learning
(41), to provide transparent, reproducible, and reusable services
(44) and to better connect devices, algorithms, and datasets.

Although the elderly benefit from digital health (7, 45),
they may not accept it (46, 47). It is partially because it is
a recent concept, and partially because devices are difficult to
use. Better introduction and developing easy-to-use devices may
make digital health more accessible to them.

Finally, the talent challenge—the rarity of professionals
with interdisciplinary knowledge. At present, a doctor may
need to consult with data scientists to interpret the output
of automated algorithms. A deep-learning engineer may need
domain experts to explain the clinical concepts and medical
situation. Disciplinary experts together with multi-disciplinary
teams are essential in research and development today and will
continue to be an integral, indispensable part in the future. A new
generation of professionals with interdisciplinary training in life
science, medicine, public health, and the computational domains,
however, will be in high demand in the coming years. Positioned
at the nexus of disciplines, they will be the integrators in complex
teams, bridgingmultiplex interactions, multi-domain operations,
and disciplinary experts.

Long-Term Outlooks
Digital health will continue to support personalized health care
and public health. Yet, it is difficult to fully predict its long-term

outlooks. We can only speculate, in an informed way, through
what we see today.

The Advent of Digital Health Ecosystems?
We may see an expedited digital health revolution, thanks
to the fourth industrial revolution (Industry 4.0) supported
by 5G and the Internet of Things (48). Leveraging real-time
analytics, machine learning, commodity sensors, and embedded
systems (49), Industry 4.0 connects patients, machines, and
medical personnel (50). Such connectivity allows multivariate big
data collection from heterogeneous populations. The frequent,
longitudinal analyses on big data improve patient identification,
severity estimation, and progression monitoring (Figure 1C).

Future may witness digital therapy. The augmented and
virtual-reality exergaming, brain-machine interface (51) may
treat substance-use disorder (52) and children with attention
deficit hyperactivity disorder (53), among others (51, 54–
57). For broad adoption and reimbursement, however, these
interventions need to demonstrate safety and health-economic
benefits (58).

Eventually, digital health ecosystems and digital clouds may
emerge (Figure 1B). With more data and improved algorithms,
the ecosystems become ever-smarter (59) (Figure 1D). They
automate labor-intensive tasks and reshape the roles humans play
(e.g., humans will focus on developing and maintaining digital
devices and systems or deploying interventions when results are
modest and sensitive decisions are needed).

Timing is important: the ecosystems are multi-dimensional
(e.g., scientific, technical, social, political, and economic); a
stagnation in one dimension may delay the whole. Equally
important is making applications that are powerful and easy-
to-use (“killer applications”). Unfortunately, timing and “killer
applications” are oftentimes obvious retrospectively. New ideas
and enthusiasm, despite failures, will bring us progressively closer
to success.

DISCUSSION

Central to digital health is ethics (60, 61). To ensure
digital recommendations do not disadvantage particular
groups, we need representative samples and reproducible
models. Representative samples span characteristics (e.g.,
gender, ethnicity, age, and devices) of the target population.
Reproducible models are generalizable to out-of-sample
individuals (Figure 1C). Additional quality control can
ascertain the quality and ethical standards of different artificial
intelligence algorithms (62). Future devices need to demonstrate
robust services in a live, potentially noisy environment
(63, 64). They also need to incorporate user feedback, such as
emotions and verbal inputs, to improve personalized medical
judgements (65–70).

Brain studies inspired early deep-learning models (71, 72).
The layers in the convolutional neural networks in vision studies
are reminiscent of the hierarchy in the visual cortex (73). Future
may see more models resembling biological systems. Some may
produce human-like characteristics. But we need to evaluate
whether the similarities are generalizable to other models, higher
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functions, and organs, and to ensure the machine follows ethics
and autonomy (74, 75).

We have covered the responsibility and functionality aspects
of the digital health above. Digital health ecosystems, however,
need to also consider explainability and interpretability (76,
77). Many state-of-the-art (deep learning) models at present,
however, are potentially explainable [one may not understand the
model after it is fit but can use another model (or test) to make
sense of it (76, 78)] but not interpretable [one cannot understand
how the model produces outcomes causally (76)]. Additionally,
between interpretability and performance, there is typically an
inverse relationship (77). For security or privacy, companies or
governments may even obfuscate models.

Digital health benefits all of us, current or future patients
desiring early diagnosis and timely treatment. But there are

sizeable challenges we must overcome. Combining efforts from
academia, industry, hospitals, non-profit, and government,
we are hopeful to make digital health services effective
and affordable.
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