Content uploaded by Joana Patrícia Barreira Rodrigues
Author content
All content in this area was uploaded by Joana Patrícia Barreira Rodrigues on Nov 30, 2022
Content may be subject to copyright.
Available via license: CC BY
Content may be subject to copyright.
Molecules2021,26,1882.https://doi.org/10.3390/molecules26071882www.mdpi.com/journal/molecules
Article
PhenolicCompoundsandBioactivePropertiesofRuscus
aculeatusL.(Asparagaceae):ThePharmacologicalPotentialof
anUnderexploitedSubshrub
JoanaP.B.Rodrigues,ÂngelaFernandes*,MariaInêsDias,CarlaPereira,TâniaC.S.P.Pires,
RicardoC.Calhelha,AnaMariaCarvalho,IsabelC.F.R.FerreiraandLillianBarros*
CentrodeInvestigaçãodeMontanha(CIMO),InstitutoPolitécnicodeBragança,CampusdeSantaApolónia,
5300‐253Bragança,Portugal;joanapbrodrigues@ipb.pt(J.P.B.R.);maria.ines@ipb.pt(M.I.D.);
carlap@ipb.pt(C.P.);tania.pires@ipb.pt(T.C.S.P.P.);calhela@ipb.pt(R.C.C.);anacarv@ipb.pt(A.M.C.);
iferreira@ipb.pt(I.C.F.R.F.)
*Correspondence:afeitor@ipb.pt(Â.F.);lillian@ipb.pt(L.B.);Tel.:+351‐273330904(A.F.);+351‐273330901(L.B.)
Abstract:RuscusaculeatusL.isasubshrubusedintraditionalmedicineindifferentpartsofthe
world,namelyinEuropeandtheIberianPeninsula.Accordingtoreportedfolkknowledge,the
aerialpartsaremainlyusedasdiureticsandtheundergroundorgansareusedforthetreatmentof
disordersoftheurinarysystemandasalaxative.Inthiswork,theaerialpartandtherootsand
rhizomesofR.aculeatuswerechemicallycharacterizedwithregardtothecontentofphenolic
compoundsandbioactiveproperties.Aqueous(infusionsanddecoctions)preparationsand
hydroethanolicextractsfromthetwomentionedpartsoftheplantwereprepared.Ninephenolic
compoundsweredetectedinalltheextracts.Apigenin‐C‐hexoside‐C‐pentosideisomerIIwasthe
majorcompoundinaqueousextractsand,inthehydroethanolicextractwasquercetin‐O‐
deoxyhexoside‐hexosidefollowedbyapigenin‐C‐hexoside‐C‐pentosideisomerII.Allextracts
revealedantioxidantactivityandpotentialtoinhibitsomeoftheassayedbacteria;aqueousextracts
oftheaerialpartandinfusionsofrootsandrhizomesdidnotshowcytotoxiceffectsonanon‐tumor
primarycellculture.Thispreliminarystudyprovidessuggestionsofthebiologicalpotential
associatedwiththeempiricalusesandknowledgeofthisspecies,inparticularitsbioactivities.
Keywords:RuscusaculeatusL.;aerialpart;rootsandrhizomes;phenoliccompounds;bioactivities
1.Introduction
Inadditiontoprovidingoxygen,plantsareasourceofnaturalcompoundsthatare
alsousedbyhumanssincetheyhavearomatic,medicinal,andfoodcapabilities[1].The
useofplantsformedicinalpurposesisbasedonancientknowledge,passeddownfrom
generationtogeneration,andforcenturiestheyhavebeentheonlyresourceintermsof
medical,curative,orpreventivecareformanypopulations[2].Medicinalplantshave
beenandarestillusedinthedevelopmentofnewdrugsforthetreatmentofseveral
diseases.Theirpopularuseismostlybasedonempiricalknowledgeandbeliefs;therefore,
someoftheirtherapeuticapplicationslackscientificfoundation[3].
However,suchspeciesarecalledmedicinalplantsbecausetheyhavetherapeutic
benefits,whichmustbelinkedtoparticularsubstances,namelyactiveingredientsthat
mighthavearecognizedpharmacologicalaction.Thus,itisimportanttoknowwhich
partsoftheplantsaretraditionallyusedformedicinalpurposes,howaretheyprocessed
andapplied,andwhichchemicalcompoundsareresponsiblefortheirtherapeutic
properties.Theincreasedinterestinnewherbalmedicineshasledtothediscoveryofnew
compoundsoftherapeuticinterest,suchassteroids,alkaloids,saponins,terpenoids,and
glycosides[4].
Citation:JoanaP.B.Rodrigues;Fer‐
nandes,Â.;Dias,M.I.;Pereira,C.;
TâniaC.S.P.Pires;Calhelha,R.C.;
Carvalho,A.M.;IsabelC.F.R.
Ferreira;Barros,L.Phenolic
CompoundsandBioactive
PropertiesofRuscusaculeatusL.
(Asparagaceae):The
PharmacologicalPotentialofan
UnderexploitedSubshrub.Molecules
2021,26,1882.https://doi.org/
10.3390/molecules26071882
AcademicEditors:RaffaeleCapasso
andLorenzoDiCesareMannelli
Received:4March2021
Accepted:23March2021
Published:26March2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti‐
tutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(http://cre‐
ativecommons.org/licenses/by/4.0/).
Molecules2021,26,18822of14
Thenatureofaplant‐basedmedicineisdeterminedbythecontentofdifferentactive
components,andthepotentialthateachplanthasinthesecomponentscancontributeto
anexcellenttherapeuticcomplementtoconventionalmedicine[2].Thus,accordingtothe
WorldHealthOrganization(WHO),wildorcultivatedspeciesareusedasmedicinal,both
intraditional/folkmedicineandincomplementarymedicine[5].
RuscusaculeatusL.isaEurasianspeciesoftheMonocotyledongroup,currentlypart
oftheAsparagaceaebotanicalfamilyreportedasamedicinalspeciesinEuropeanfolk
medicine[6–9].Theplantisasmallsubshrub,alwaysgreen,withthickunderground
rhizomes[10].Theempiricalmedicinalusesarerelatedwithaerialpartsareused
empiricallyasdiureticsand,theundergroundparts(rootsandrhizomes)toalleviatethe
symptomsofseveraldisordersofvenousinsufficiency,edema,urinarysystem,
premenstrualsyndrome,andhemorrhoids[8,11].
Fewresearchgroupshavealreadystudiedthisspecies[11–13];thesameauthors
reportthatthemainactiveingredientsfoundinR.aculeatusaresteroidalsaponins
(rucogeninandneoruscogenin),whichareresponsibleforitspharmacologicaleffects;
otherconstituentshavebeenisolated,includingsterols,triterpenes,flavonoids,
coumarins,sparteine,tyramine,andglycolicacid.Moreover,someofthetraditional
applicationsofthespeciesseemrelatedtoparticularcompounds,sincethehighest
concentrationofruscogeninsislocatedintherhizome[11].
ThisworkrepresentsthedetailedcharacterizationofR.aculeatusregardingthe
phenoliccompoundsoftheaerial(laminarstemsandlateralbranches)andthe
underground(rhizomeswithroots)parts.Inaddition,thebioactivepotentialofthe
hydroethanolicandaqueousextractswasalsoassessedintermsoftheirantioxidant,anti‐
tumor,anti‐inflammatory,hepatotoxicity,andantimicrobialproperties.Therefore,this
workintendstocontributetotheknowledgeofthechemicalcompositionofthisspecies
andtorelateittoitsdocumentedempiricaluses.
2.ResultsandDiscussion
Theidentificationofindividualphenoliccompoundswascarriedoutconsidering
theirretentiontimes,wheneverpossibleincomparisonwithcommerciallyavailable
standards,andbothUVandMSspectra.DataobtainedbyHPLC‐DADESI/MSanalysis
(retentiontime,λmax,pseudomolecularion([M−H]−),andmainfragmentionsinMS2),
phenoliccompounds’tentativeidentifications,andrespectivequantificationarepresent
inTable1.
Thestudyrevealedthepresenceofninephenoliccompounds,onecaffeicacid
derivative,andeightflavonoids,namelysixC‐glycosylatedderivativesofapigeninand
twoO‐glycosylatedderivativesofquercetinandkaempferol.
Peak1showedapseudomolecularion[M−H]−atm/z341andMS2fragmentsatm/z
179and135consistentwiththelossofacaffeicacid,therefore,beingtentativelyidentified
ascaffeicacidhexoside.Peaks2/5/7([M−H]−atm/z563)werealltentativelyidentifiedas
apigenin‐C‐hexoside‐C‐pentosideisomersI,II,andIII,respectively.Ontheotherhand,
peaks3/4/6,alsoshowingapseudomolecularionat[M−H]−atm/z563weretentatively
identifiedasapigenin‐C‐pentoside‐C‐hexosideisomersI,II,andIII,respectively.The
differentiationbetweenisomersandsugarpositiontookintoaccountwhatwas
previouslydescribedbysomeauthorsTahiretal.[14]andFerreresetal.[15].Finally,
peaks8([M−H]−atm/z609)and9([M−H]−atm/z593)presentedasingleMS2fragment
atm/z301and285,aglyconesofquercetinandkaempferol,respectively,correspondingto
thelossofa308u(146u+162u,deoxyhexoside+hexosidemoieties,respectively),and
therefore,beingtentativelyidentifiedasquercetin‐O‐deoxyhexoside‐hexosideand
kaempferol‐O‐deoxyhexoside‐hexoside,respectively.
Thehydroethanolicextractsoftheaerialpartpresentedthehighestlevelsofphenolic
compounds(107±3mg/gextract,Figure1),followedbytheaqueousextracts,the
decoction(18±1mg/gextract),andtheinfusion(14.6±0.3mg/gextract).Allextracts
Molecules2021,26,18823of14
performedwithaerialpartsshowedthesamephenolicprofile;however,thesamewasnot
verifiedfortheroots,wherenophenoliccompoundswereidentified.
Luísetal.[16]reporttheexistenceoftwophenoliccompounds,p‐coumaricacidand
quercetininthemethanolicextractsoftheaerialpartofR.aculeatus;thisstudyreportsthe
existenceofotherphenolicacids,namely,gallicacid,vanillicacid,caffeicacid,chlorogenic
acid,syringicacid,ferulicacid,andellagicacid,intheaerialpartsofR.aculeatus.Another
study,Gonçalvesetal.[17]evaluatedtotalphenoliccontent,measuredthroughtheFolin
Ciocalteucolorimetricmethod,andreports121.73μmolGAEg/dw,butaccordingtothe
appliedmethodology,itisnotpossibletomakecomparisonswithourstudy.
Figure1.Phenolicprofileofhydroethanolicextractoftheaerialpart,recordedat280nm(A)and370nm(B).Peak
numberingisindicatedasdefinedinTable1.
Molecules2021,26,18824of14
Table1.Retentiontime(Rt),wavelengthsofmaximumabsorptioninthevisibleregion(λmax),massspectraldata,tentativeidentificationandquantificationofthephenoliccompounds
(mg/gofextract)foundinhydroethanolicextracts,andinfusionanddecoctionpreparationsofR.aculeatus(mean±SD,n=9).
Peaks
Rt
(min)
λmax
(nm)
[M − H]−
(m/z) MS2 (m/z) Tentative Identification Quantification
Hydroethanolic Infusion Decoction
1 5.96 320 341 179 (100), 135 (20) Caffeic acid hexoside 1.42 ± 0.03 a 0.013 ± 0.001c 0.091 ± 0.005 b
2 10.49 334 563 545 (21), 473 (100), 443 (91), 413 (*), 383 (36), 353 (41), 297 (*) Apigenin-C-hexoside-C-pentoside isomer I 2.8 ± 0.1 a 0.446 ± 0.007 c 0.87 ± 0.01 b
3 12.05 334 563 545 (34), 473 (100), 443 (63), 413 (*), 383 (29), 353 (24), 297 (*) Api
g
enin-C-pentoside-C-hexoside isomer I 1.36 ± 0.01 a 0.162 ± 0.005 c 0.45 ± 0.02 b
4 12.82 335 563 545 (29), 473 (100), 443 (79), 413 (*), 383 (32), 353 (29), 297 (*) Apigenin-C-pentoside-C-hexoside isomer II 13.1 ± 0.3 a 3.19 ± 0.08 b 2.96 ± 0.01 c
5 13.15 335 563 545 (17), 473 (69), 443 (100), 413 (*), 383 (19), 353 (23), 297 (*) Apigenin-C-hexoside-C-pentoside isomer II 32 ± 1 a 5.63 ± 0.04 c 7.4 ± 0.3 b
6 14.54 338 563 545 (18), 473 (100), 443 (81), 413 (5), 383 (26), 353 (34), 297 (*) Apigenin-C-pentoside-C-hexoside isomer III 3.7 ± 0.1 a 0.528 ± 0.001 b 0.52 ± 0.01 b
7 14.72 340 563 545 (15), 473 (71), 443 (100), 413 (*), 383 (15), 353 (23), 297 (*) Apigenin-C-hexoside-C-pentoside isomer III 7.1 ± 0.4 a 0.79 ± 0.02 c 1.68 ± 0.02 b
8 16.88 353 609 301 (100) Quercetin-O-deoxyhexoside-hexoside 39 ± 2 a 3.6 ± 0.2 b 4.0 ± 0.2 b
9 20.05 340 593 285 (100) Kaempherol-O-deoxyhexoside-hexoside 6.23 ± 0.05 a 0.175 ± 0.009 c 0.42 ± 0.02 b
Total Phenolic Compounds 107 ± 3 a 14.6 ± 0.3 c 18 ± 1 b
*relativepercentagelessthan5%;calibrationcurvesusedinthequantification:standardcalibrationcurves:caffeicacid(y=388345x+406369,R2=0.99;detectionlimit(LOD)=0.78
μg/mL;quantificationlimit(LOQ)=1.97μg/mL,peak1),apigenin‐6‐C‐glucoside(y=107025x+61531,R2=0.998;LOD=0.19μg/mL;LOQ=0.63μg/mLpeaks2,3,4,5,6,7);quercetin‐
3‐O‐rutinoside(y=13343x+76751,R2=0.999;LOD=0.21μg/mL;LOQ=0.71μg/mL,peaks8and9).Differentlettersinthesamelinemeansignificantdifferences(p<0.05).
Molecules2021,26,18825of14
Theantioxidantactivityofthehydromethanolicandaqueousextractspreparedfrom
theaerialandtheundergroundpartsofR.aculeatusweretestedbytwodifferentinvitro
assays,whichensuredanoverviewoftheantioxidantactivityindifferingsurroundings.
TheresultsoftheTBARSformationinhibitionandOxHLIAassaysarepresentedinTable
2.Asitcanbeseen,significantdifferencesbetweentheevaluatedextractswereobserved.
ThehydroethanolicextractshowedthebestactivityintheTBARSassay,fortheaerialpart
andfortherootsandrhizome,withanEC50of0.28and0.78mg/mL,respectively.Inturn,
thedecoctionextract,bothfromtheaerialpartandrootsandrhizome,showedthelowest
activity,withEC50valuesof0.88and1.55mg/mL,respectively.
Ithasbeendescribedthattheextractionscarriedoutwithahigherpercentageof
waterhavethecapacitytoextractmorepolarcompounds,whereasmethanolor
ethanol:watermixturespresenthigherextractionyields[18].
Theantihemolyticpropertiesoftheextractswereassessedinanexvivoerythrocyte
systembytheOxHLIAassay.Theinfusionoftheaerialpartandthehydroethanolic
extractoftherootsandrhizomepresentedanIC50valueof236and230μg/mL,
respectively,valuesrequiredtoprotecthalfoftheerythrocytepopulationfromthe
hemolyticactioncausedbytheoxidativeagentfor60min.Atthesametime,thedecoction
oftheaerialpartandrootsandrhizomepresentedIC50valuesof427and661μg/mL,
respectively.Theaqueousextractoftheaerialpartonlyrevealedthecapacitytoprevent
thehemolysisfor60min,whilethehydroethanolicextractdidnotrevealantihemolytic
activity.Plantextractsarecomplexmixturesofdifferentantioxidantandnon‐antioxidant
compoundsthatcanactatseverallevelsofcelloxidativedegradationandthisassay,by
usingerythrocytes,offerstestconditionsthatareveryclosetotheinvivosituation[19].
Todate,therearefewstudiesevaluatingtheantioxidantactivityoftheaerialpart
and,tothebestoftheauthors’knowledge,thepresentstudyprovidesafirstreportofthe
antioxidantactivityofrootsandrhizomes.Luísetal.[16]describedthatthemethanolic
extractoftheaerialpartshowedlittleantioxidantactivityintheDPPHassay,withanIC50
valueof171.9mg/L.Otherstudies,usingalsotheaerialpart,reportedthatethylacetate
andbutanolextractsweretheonesthatrevealedthebestactivityfortheDPPHassay,and
obtainedEC50valuesof158and173μg/mL,respectively[20]and,Jakovljevićetal.[12]
obtainedEC50valuesof183μg/mLofethylacetateextracts.
Theloweractivityverifiedinthischemicalassaymayberelatedtothevariationof
compoundsduetodifferentstatesofthegrowingcycle,thegatheringseason,diverse
climate,andlandscapeconditions,aswellastheuseofdifferentsolventsforthe
preparationoftheextracts,sincethesolventhasaninfluenceontheextraction
methodology[21].
Kobus‐Cisowskaetal.[22],inastudyusingAsparagusofficinalisL.,whichbelongsto
thesamefamilyasR.aculeatus,alsoreportedtheantioxidantpotentialofgreen,purple,
andwhitevarieties,withthefirstonerevealingthegreaterantioxidantcapacity,inthe
DPPHassay.AccordingtoJakovljević etal.[12],theantioxidantactivityofplantsis
mainlyassociatedwiththeirbioactivecompounds,especiallyphenolics,flavonols,and
flavonoidsandtheirhighercontent.
Comparedtochemicalmethods(suchasDPPHandreducingpower,amongothers),
thehereinemployedTBARSandOxHLIAmethodsusebiologicaltissues(porcinebrain
andsheeperythrocytes),therefore,beingmethodsthatreproduceandresembleinvivo
conditionswhichmakesthemmorepredictiveassays.
Theresultsobtainedforthefourhumantumorcelllinesandtheprimarycultureof
non‐tumorcellsarepresentinTable2,andareexpressedinvaluesoftheconcentrationof
extractresponsiblefor50%inhibitionofcellgrowth—GI50,inμg/mL.
Itisobservedthat,withtheexceptionoftheinfusionoftheaerialpart(forthelines
MCF7andHepG2)anddecoctionextracts(lineMCF7),alltheremainingextracts
presentedeffectiveresultsintheinhibitionofthetestedcelllines;thehydroethanolic
extractoftheaerialpartrevealedalowerGI50,whichmayberelatedtothehighlevelsof
phenoliccompoundsfoundinthisextract.
Molecules2021,26,18826of14
Theinfusionanddecoctionoftheaerialpart,andtheinfusionoftherootsand
rhizomesdidnotshowcytotoxiceffectsonanon‐tumorprimarycellculture.Inturn,the
hydroethanolicextractsoftheaerialpartandrootsandrhizomes,aswellasthedecoction
ofrootsandrhizomes,presentedtoxicitytowardstheliverprimarycellculture(PLP2).
TheseresultsareinagreementwiththosedescribedbyBassiletal.[23],inwhichthey
exploredtheeffectofethanolicextractonleukemiaacutelymphocytecancerproliferation,
andconcludedthattheR.aculeatusextractisnotagoodcandidateforthedevelopmentof
anti‐tumordrugs,asitdemonstratedacytotoxiceffect,althoughfurtherstudiesare
neededtoconfirmthisstatement.
Chenetal.[24]evaluatedthecytotoxicactivityofOrnithogalumsaundersiae
(Asparagaceae)andfoundthatthecompoundOsaundersiosideCinhibitedspecific
cytotoxicityinrelationtotheMCF‐7celllinewithIC50valuesof0.20μM,similartothe
positivecontrolpaclitaxel.
FewstudiesevaluatethecytotoxicandhepatotoxiceffectsindifferentextractsofR.
aculeatus,makingitdifficulttocomparetheresultswiththeliterature.Additionalstudies
wouldbeessential,possiblyinvolvingthefractionationandidentificationoftheactive
compounds,inordertobetterunderstandtheactionandpotentialofthesetypesof
extractsandcompounds.
Regardingtheanti‐inflammatoryproperties,fortherangeoftestedconcentrations
(upto400μg/mL),intheextractsofinfusionanddecoctionoftheaerialpart,aswellas
theinfusionoftherootsandrhizome,theresultsindicatedtheabsenceofactivityinLPS‐
activatedmurinemacrophagessincenodecreaseofnitricoxidelevelswasobserved
(Table2).
Thehydroethanolicextractoftheaerialpartwastheonethatpresentedaneffective
result,60μg/mLbeingnecessarytopromotethe50%inhibitionofnitricoxideproduction,
whichmayalsoberelatedtothehighpresenceofphenoliccompoundsinthisextract.
Comparingtheaqueousextractsoftheaerialpartwiththoseoftherootsandrhizome,
onlythedecoctionoftherootsandrhizomepresentanti‐inflammatoryactivity(129
μg/mL).Theseresultsareinagreementwiththosedescribedbydifferentauthors,who
demonstratethatplantsoftheAsparagaceaefamilyhaveanti‐inflammatoryproperties
mainlyduetotheexistenceofsteroidalsaponins,primarilyruscogenin[25,26].
Molecules2021,26,18827of14
Table2.Antioxidant,cytotoxicity,hepatotoxicandanti‐inflammatoryactivityofthehydroethanolicextracts,infusionanddecoctionpreparationsofR.aculeatus(mean±SD,n=9).
AerialPartRootsandRhizomesPositiveControl
HydroethanolicInfusionDecoctionHydroethanolicInfusionDecoctionTrolox(μg/mL)
Antioxidantactivity
TBARS(EC50,mg/mL)a0.28±0.01f0.49±0.03e0.88±0.01c0.78±0.04d1.00±0.01b1.55±0.03a5.8±0.6
OxHLIA(IC50
,
μg/mL)b
Δt=60minn.a.236±16c 427±36b230±11c646±33a661±25a21.8±0.2
Δt=120minn.a.n.a.n.a.383±13c1389±48a1198±28b43.5±0.3
Cytotoxicity(GI50,μg/mL)cEllipticine
HeLa 31±4d373±27a270±20b98±6c302±25b111±6c0.9±0.1
NCIH460 70±4d273±15b302±7a51±3e201±17c69±2d.e1.03±0.09
MCF7 70±3c>400>40089±4b350±16a94±2b1.21±0.02
HepG2 72±3d>400260±22b71±2d300±12a168±9c1.10±0.09
Hepatotoxicity(GI50
,
μg/mL)c
PLP2152±8c>400>400179±7b>400265±9a2.3±0.2
Anti‐inflammatoryactivity(EC50μg/mL)dDexamethasone
Productionofnitricoxide(NO)in
RAW264.760±5c>400>400111±4b>400129±5a16±1
n.a.:noactivity.aEC50values:extractconcentrationcorrespondingto50%ofantioxidantactivity.bIC50values:extractconcentrationnecessarytokeep50%oftheerythrocytepopulation
intactfor60and120min.cGI50valuescorrespondtothesampleconcentrationresponsiblefor50%inhibitionofgrowthintumorcellsorinaprimarycultureoflivercells‐PLP2.dEC50
valuescorrespondtotheextractconcentrationachieving50%oftheinhibitionofNO‐production.Differentlettersinthesamelinemeansignificantdifferences(p<0.05).
Molecules2021,26,18828of14
Table3showstheresultsoftheantimicrobialactivityofthehydroethanolicand
aqueousextractsofR.aculeatusagainstthreeGram‐positiveandfiveGram‐negative
multi‐resistantpathogenicstrains,isolatedfromhospitalizedpatients.Ingeneral,all
extractspresentpotentialeffectsagainstthebacterialstrainstestedinthisstudy;Gram‐
positivebacteriapresentlowerMICvaluesand,therefore,superiorsensitivitywhen
comparedwithGram‐negativebacteria.Theinfusionandhydroethanolicextractsofthe
aerialpart,wereeffectiveagainstGram‐positivebacteriawithanMICof10mg/mL.
RegardingtheinhibitionofGram‐negativebacteria,onlytheinfusionand
hydroethanolicextractsoftheaerialpartpresentedanMICof10mg/mL.Thedecoction
oftheaerialpartwaseffectiveagainsttheMRSAstrain—methicillin‐resistantS.aureus,
withanMICof5mg/mL.Infusionoftherootandrhizomepresentthesmallest
antibacterialpotential,withMICandMBCvalueshigherthan20mg/mLforthetested
bacteria.
Accordingtotheauthorsof[20],theethylacetateextractofR.aculeatusdemonstrated
bacteriostaticactivityagainstS.aureusandbactericidalactivityagainstE.coliandP.
aeruginosa.Onestudydemonstratedthattheinfusionandethanolicextractsoftheroots
werelesseffectiveagainstthefungusC.albicans(ATCC1023)[27].Astudyinwhichthe
antimicrobialactivityofthemethanolicextractofleavesofAgavesisalana(Asparagaceae)
wasmeasuredfoundthattheydidnotrevealantimicrobialactivityagainstthe
microorganismsused(S.aureusandK.pneumoniae)[28].
Ingeneral,theextractsevaluatedinthisworkwereeffectiveagainstGram‐positive
bacteria,whichcanbeexplainedbythefactthatthisgroupofmicroorganismshasaless
complexcellwallcomparedtoGram‐negativebacteria.Itshouldbenotedthatinthis
work,themicroorganismswereobtainedfromclinicalisolates,whichoftenhavegreater
resistancetoantibioticscomparedtocommercialstrains.
Molecules2021,26,18829of14
Table3.Antibacterialactivity(MICandMBC,mg/mL)ofthehydroethanolicextracts,infusionanddecoctionpreparationsofR.aculeatus.
AerialPartRootsandRhizomeNegativeControls
HydroethanolicInfusionDecoctionHydroethanolicInfusionDecoctionAmpicillin
(20mg/mL)
Imipenem
(1mg/mL)
Vancomycin
(1mg/mL)
MICMBCMICMBCMICMBCMICMBCMICMBCMICMBCMICMBCMICMBCMICMBC
Gram‐negativebacteria
Escherichiacoli10>20>20>2020>2020>20>20>2020>20<0.15<0.15<0.0078<0.0078n.t.n.t.
Klebsiellapneumoniae20>2020>2020>20>20>20>20>20>20>201020<0.0078<0.0078n.t.n.t.
Morganellamorganii10>2010>2020>20>20>20>20>20>20>2020>20<0.0078<0.0078n.t.n.t.
Proteusmirabilis20>20>20>20>20>20>20>20>20>20>20>20<015<0.15<0.0078<0.0078n.t.n.t.
Pseudomonasaeruginosa>20>20>20>20>20>20>20>20>20>20>20>20>20>200.51n.t.n.t.
Gram‐positivebacteria
Enterococcusfaecalis10>2010>2020>2020>2020>20>20>20<0.15<0.15n.t.n.t.<0.0078<0.0078
Listeriamonocytogenes10>2010>2010>20>20>20>20>20>20>20<0.15<0.15<0.0078<0.0078n.t.n.t.
MRSA10>2010>205>20>20>2020>2010>20<0.15<0.15n.t.n.t.0.250.5
MRSA—Methicillin‐resistantStaphylococcusaureus;MIC—minimalinhibitoryconcentration;MBC—minimalbactericidalconcentration;n.t.—nottested.
Molecules2021,26,188210of14
3.MaterialsandMethods
3.1.PlantMaterial
SamplesofR.aculeatuswereharvestedinApril2019insidewoodlandsand
hedgerows,inValpaços,VilaReal,Portugal.Twodistinctpartsoftheplantweregathered,
namelytheaerialpart(cladodesorlaminarstemsandlateralbranches)andthe
undergroundorgans(rhizomeswithroots).Theseplantmaterialswerecleanedofsoil
remains,lyophilized(FreeZone4.5,Labconco,KansasCity,MO,USA),andreducedtoa
finepowderthatwasstoredinsealedplasticbags.
Consideringtheabundanceofthisspeciesatthegrowingsiteanditsstrategyof
reproductionandnaturalregeneration(theseedsarerelativelyabundantanddistributed
bybirds,andtheplantalsopropagatesthroughitsvegetativeparts,rhizomes),the
harvestingofthiswildmaterialwasdoneinasustainablewayanddidnotputwild
populationsatrisk.
3.2.HydroethanolicExtractsandAqueousPreparations
Theplantmaterialwasusedtopreparehydroethanolicextracts,infusions,and
decoctionspreparations.Thepreparation/extractionmethodswereselectedaccordingto
thetraditional/empiricalusesofthedifferentpartsoftheplant[13,20].Hydroethanolic
extractionswereperformedbystirringtheplantmaterial(~3g)with45mLof
ethanol/watersolution(80:20,v/v)underconstantmagneticstirring,atroomtemperature,
for1h.ThepreparationwasfilteredthroughaWhatmanfilterpaperNo.4andtheresidue
wasre‐extractedandthecombinedfiltrateswerethenevaporatedunderpressureat40°C
(rotaryevaporatorBuchiR‐2010,Flawil,Switzerland)andsubsequentlylyophilized.
Approximately3gofplantmaterialwasinfusedwith100mLoffreshlyboiled
distilledwater(heatingplate,VELPscientific),leftasidefor5min,andsubsequently
filteredthroughWhatmanfilterpaperNo4.Theresultingextractswerefrozenand
lyophilized.
Theplantmaterialwasdecoctedbyadding100mLofdistilledwater(~3g),and
boiledfor5min.Subsequently,themixtureswerelefttostandfor5minandthenfiltered
throughWhatmanNo.4paper.Theobtaineddecoctionswerefrozenandlyophilized.
3.3.AnalysisofPhenolicCompounds
Phenoliccompoundswereanalyzedinthehydroethanolicextractsandaqueous
preparations,whichwerere‐dissolvedinethanol/water(80:20,v/v)andwater,
respectively,toafinalconcentrationof10mg/mLandfilteredthought0.22‐μmdisposable
filterdisks.TheanalysiswasperformedinanHPLCsystem(DionexUltimate3000UPLC,
ThermoScientific,SanJose,CA,USA)coupledwithadiode‐arraydetector(DAD,using
280and370nmaspreferredwavelengths)andaLinearIonTrap(LTQXL)mass
spectrometer(MS,ThermoFinnigan,SanJose,CA,USA)equippedwithanelectrospray
ionization(ESI)source.SeparationwasmadeinaWatersSpherisorbS3ODS‐2C18
column(3μm,4.6×150mm;Waters,Milford,MA,USA).Theequipmentandoperating
conditionswerepreviouslydescribedbytheauthors[29]aswellastheidentificationand
quantificationprocedures.Thephenolicstandards(caffeic acid, apigenin-6-C-glucoside,
and quercetin-3-O-rutinoside)wereacquiredfromExtrasynthèse,Genay,France.The
resultswereexpressedasmgpergofextract.
3.4.EvaluationofBioactivePropertiesofExtracts
Theevaluationofthebioactivepotentialoflyophilizedhydroethanolicextractsand
aqueouspreparationswasperformedinvitro.
Molecules2021,26,188211of14
3.4.1.ThiobarbituricAcidReactiveSubstances(TBARS)FormationInhibitionCapacity
Theextractspreparedabovewerere‐dissolvedinwaterandsubjectedtodilutions
from5to0.0390mg/mL.Porcine(Susscrofa)brainswereobtainedfromanimals
slaughteredatofficiallylicensedpremises,dissected,andhomogenizedwithTris‐HCl
buffer(20mmol/L,pH7.4)toproduceabraintissuehomogenate,whichwascentrifuged
at3000gfor10min.Analiquot(100μL)ofthesupernatantwasincubatedwiththe
differentconcentrationsoftheextractsolutions(200μL)inthepresenceofFeSO4(10
mmol/L;100μL)andascorbicacid(0.1mmol/L;100μL)at37°Cfor1h.
Thereactionwasstoppedbytheadditionoftrichloroaceticacid(28g/100μL,500
μL),followedbythiobarbituricacid(TBA,2g/100mL,380μL),andthemixturewasthen
heatedat80°Cfor20min.Aftercentrifugationat3000gfor10mintoremovethe
precipitatedprotein,thecolorintensityofthemalondialdehyde(MDA)‐TBAcomplexin
thesupernatantwasmeasuredat532nm;theinhibitionratio(%)wascalculatedusingthe
followingformula:[(A−B)/A]×100%,whereAandBcorrespondtotheabsorbanceofthe
controlandextractsample,respectively[30].TheresultswereexpressedinEC50values
(mg/mL,sampleconcentrationproviding50%ofantioxidantactivity).Trolox(Sigma‐
Aldrich,St.Louis,MO,USA)wasusedasthepositivecontrol.
3.4.2.OxidativeHemolysisInhibition(OxHLIA)Capacity
Theantihemolyticactivityoftheextractswasevaluatedbytheoxidativehemolysis
inhibitionassay(OxHLIA),usingerythrocytesisolatedfromhealthysheepbloodand
centrifugedat1000gfor5minat10°C.Afterdiscardingtheplasmaandbuffycoats,the
erythrocyteswerefirstwashedwithNaCl(150mM)andthenthreetimeswithphosphate‐
bufferedsaline(PBS,pH7.4).TheerythrocytepelletwasthenresuspendedinPBSto
obtainaconcentrationof2.8%(v/v).Usingaflat‐bottom48‐wellmicroplate,200μLofthe
erythrocytesolutionweremixedwith400μLofPBSsolution(control),antioxidant
extractsdissolvedinPBS,orwater(forcompletehemolysis).Afterpre‐incubationat37°C
for10minwithshaking,2,2′‐azobis(2‐methylpropionamidine)dihydrochloride(AAPH,
160mMinPBS,200μL)wasaddedtoeachwellandtheopticaldensitywasmeasuredat
690nm.Theresultswereexpressedasthedelayedtimeofhemolysis(Δt),whichwas
calculatedaccordingtotheequation:Δt(min)=Ht50(sample)−Ht50(control),whereHt50
isthetime(min)correspondingto50%hemolysis,graphicallyobtainedfromthe
hemolysiscurveofeachantioxidantsampleconcentration.TheΔtvalueswerethen
correlatedwiththeextractconcentrations,andfromthecorrelationobtained,theextract
concentrationabletopromoteaΔthemolysisdelaywascalculated.Troloxwasusedasa
positivecontrol.TheresultsweregivenasIC50values(μg/mL)atΔt60and120min,i.e.,
extractconcentrationrequiredtoprotect50%oftheerythrocytepopulationfromthe
hemolyticactionfor60and120min[19].
3.4.3.CytotoxicityActivity
Thecytotoxicitycapacityoftheextractswasevaluatedusingfourhumantumorcell
lines:MCF‐7(breastadenocarcinoma),NCI‐H460(non‐smallcelllungcancer),HeLa
(cervicalcarcinoma),andHepG2(hepatocellularcarcinoma)fromDSMZ(Leibniz‐Institut
DSMZ‐DeutscheSammlungvonMikroorganismenundZellkulturenGmbH).The
sulforhodamineB(SRB,Sigma‐Aldrich,StLouis,MO,USA)assaywasperformed
accordingtoaprocedurepreviouslydescribedindetailbytheauthors[31].
Thecellgrowthinhibitionwascalculatedaccordingtotheequation:((Abssampleextract
andcells−0.05)/(Abscontrol−0.05)×100).Ellipticine(Sigma‐Aldrich,St.Louis,MO,USA)
wasusedasthepositivecontrol,andtheresultswereexpressedinGI50values(μg/mL),
correspondingtotheextractconcentrationthatprovides50%ofcellgrowthinhibition.
Molecules2021,26,188212of14
3.4.4.HepatotoxicActivity
Hepatotoxicityoftheextractswasevaluatedusingaprimarycellcultureprepared
fromporcineliver(PLP2),whichwaspreparedaccordingtotheprocedureoptimizedand
describedbytheauthors[32].Thetestedconcentrationofbothhydroethanolicand
aqueousextractsrangedfrom400to6.5μg/mL.TheresultsweremeasuredusingtheSRB
methodandwereexpressedasGI50values(concentrationthatinhibits50%ofcellgrowth,
μg/mL).Ellipticinewasusedasthepositivecontrol.
3.4.5.Anti‐InflammatoryActivity
Theanti‐inflammatoryactivityoftheextractswasdeterminedbasedonthenitric
oxide(NO)productionbyamurinemacrophage(RAW264.7)cellline,inducedbythe
additionoflipopolysaccharide(LPS).Thetestedconcentrationofbothhydroethanolicand
aqueousextractsrangedfrom400to6.5μg/mL.NOproductionwasquantifiedbasedon
nitriteconcentrationusingtheGriessReagentSystemkitcontainingsulfanilamide,N‐1‐
naphthylethylenediaminedihydrochloride,andnitritesolutionsfollowingaprocedure
previouslydescribedbytheauthors[33].Dexamethasonewasusedasapositivecontrol
whilenoLPSwasaddedinnegativecontrols.
TheeffectofthetestedextractsinNObasallevelswasalsoassessedbyperforming
theassayintheabsenceofLPS.TheresultswereexpressedasIC50values(μg/mL),
correspondingtotheextractconcentrationproviding50%inhibitionofNOproduction.
3.4.6.AntimicrobialActivity
Theantimicrobialactivityoftheextractswasdeterminedagainstclinicalisolates
obtainedfrompatientshospitalizedintheLocalHealthUnitofBragançaandHospital
CenterofTrás‐os‐MontesandAlto‐DouroVilaReal,followingthemicrodilutionmethod
coupledtotherapidp‐iodonitrotetrazoliumchloride(INT)colorimetricassaydescribed
bytheauthors[34].Thetestedconcentrationofbothhydroethanolicandaqueousextracts
rangedfrom20to0.156mg/mL.
ThetestedmicroorganismsincludedGram‐positive(Enterococcusfaecalis,Listeria
monocytogenes,andmethicillin‐resistantStaphylococcusaureus)andGram‐negativebacteria
(Escherichiacoli,Klebsiellapneumoniae,Morganelamorganii,Proteusmirabilis,and
Pseudomonasaeruginosa).Theminimuminhibitoryconcentration(MIC)andtheminimum
bactericidalconcentration(MBC)wereevaluated,anddifferentantibioticswereusedas
negativecontrol(ampicillinandimipenemforGram‐negativebacteria,andvancomycin
andampicillinforGram‐positivebacteria).Culturebroth(MullerHintonBrothadded
with5%dimethylsulfoxide)inoculatedwitheachbacteriumwasusedasthepositive
control[34].
3.5.StatisticalAnalysis
Allexperimentswerecarriedoutintriplicateandtheresultswereexpressedasmean
±standarddeviation(SD).ThestatisticalanalysiswasperformedusingSPSSv.23.0
softwareforWindows(IBMCorp.,Armonk,NY,USA)andusingtheone‐wayanalysisof
variance(ANOVA),whilethecomparisonofmeanswascarriedoutwiththeTukey’sHSD
test(p<0.05)whensignificantstatisticaldifferencesweredetected.
4.Conclusions
Thisworkaimedtoexplorethebiochemicalcharacterizationofawildplantforwhich
fewstudieshavebeenperformed.Wildplantscanbeconsideredsourcesofbioactivities,
sincetheyhaveseveralcompoundsand,consequently,differentpotentialtherapeutic
action.Thepresentworkallowedtodeterminethephenoliccompoundsinthethree
extractsobtainedfromtheaerialpartandfromtherhizomesandrootsofR.aculeatususing
differentextractionandsolventtechniques,butalsotoevaluatetheirbioactiveproperties.
Molecules2021,26,188213of14
Ingeneral,thisstudyprovidedinnovativeresultsinrelationtothechemical
characterizationandbioactivepropertiesofthislittle‐studiedandexploredwildplant.
However,theseinnovativeresultsarenotenoughtorelatetheempiricaluseswiththe
chemicalcharacteristicsandbioactivepropertiesdemonstratedbytheextractsobtained
fromboththeaerialandtheundergroundparts.Therefore,itwillbeessentialtocontinue
exploringthecompoundsandthementionedactivities,sothatitispossibletocorroborate
andsubstantiatetheuseofthisspeciesintraditionalmedicine.
AuthorContributions:J.P.B.R.:Formalanalysis;Methodology,Investigation,Datacuration,
Writing—originaldraft;Â.F.,M.I.D.,andC.P.:Methodology,Software,Validation,Investigation,
Datacuration,Writing—review&editing;T.C.S.P.P.:MethodologyandR.C.C.:Methodology;
A.M.C.:Conceptualization,Writing—review&editing,Visualization,Supervision;I.C.F.R.F.:
Supervision,Projectadministration;L.B.:Conceptualization,Validation,Investigation,Writing—
review&editing,Visualization,Supervision,Projectadministration,Fundingacquisition.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:TheauthorsaregratefultotheFoundationforScienceandTechnology(FCT,Portugal)
forfinancialsupportthroughthenationalfundsFCT/MCTEStoCIMO(UIDB/00690/2020)and
nationalfundingbyFCT,P.I.,throughtheinstitutionalscientificemploymentprogramcontractfor
L.Barros,A.Fernandes,M.I.Dias,C.Pereira,andR.C.Calhelha.Theauthorsarealsogratefulto
FEDER‐InterregEspaña‐PortugalprogramforfinancialsupportthroughtheprojectTRANSCoLAB
0612_TRANS_CO_LAB_2_PandtoEuropeanRegionalDevelopmentFund(ERDF)throughthe
RegionalOperationalProgramNorth2020,withinthescopeofProjectNorte‐01‐0145‐FEDER‐
000042:GreenHealth.
ConflictsofInterest:Theauthorsstatenoconflictofinterest.
SampleAvailability:Samplesoftheplantspeciesareavailablefromtheauthors.
References
1. Figueiredo,A.C.;Barroso,J.G.;Pedro,L.G.PlantasAromáticaseMedicinais.FatoresqueAfetamaProdução;CentrodeBiotecnologia
Vegetal—FaculdadedeCiênciasdaUniversidadedeLisboa:Lisboa,Portugal,2007;pp.1–18.
2. Esteves,A.PlantasEndémicasPortuguesascomUtilizaçãoMedicinal.Master’sThesis,UniversidadeFernandoPessoa,Porto,
Portugal,2015.
3. Zardeto‐Sabec,G.;AlmeidadeJesus,R.;Quemel,F.S.;Zenaide,F.S.MedicinalPlantsasanAlternativeintheTreatmentof
Cancer.Braz.J.Surg.Clin.Res.2019,9,75–80.
4. Hao,D.C.;Gu,X.J.Taxusmedicinalresources:Acomprehensivestudy.Med.Plants2015,1,97–136.
5. WHO.BiodiversityandHealth,2015.Availableonline:https://www.who.int/globalchange/ecosystems/biodiversity/en/
(accessedon28December2020).
6. DiSanzo,P.;DeMartino,L.;Mancini,E.;DeFeo,V.MedicinalnadusefulplantsinthetraditionofRotonda,PollinoNational
Park,SouthernItaly.J.Ethnobiol.Ethnomedicine2013,9,19.
7. EMA.AssessmentReportonRuscusaculeatusL.rhizome;EMA/HMPC/188805/2017.CommitteeonHerbalMedicinalProducts
(HMPC),EuropeanMedicesAgency:Amsterdam,TheNetherlands,2018.
8. Gras,A.;Serrasolses,G.;Vallès,J.;Garnache,T.Traditionalknowledgeinsemi‐ruralclosetoindustrialareas:Ethnobotanical
studiesinwesternGironès(Catalonia,IberianPeninsula).J.Ethnobiol.Ethnomedicine2019,15,19.
9. Petelka,J.;Plagg,B.;Säumel,I.;Zerbe,S.TraditionalmedicinalplantsinSouthTyrol(northernItaly,southernAlps):
Biodiversityanduse.J.Ethnobiol.Ethnomedicine2020,16,74.
10. ThePlantList.AworkingListofAllPlantSpecies.Availableonline:http://www.theplantlist.org/(accessedon29December
2020).
11. Ozer,G.;Guzelmeric,E.;Sezgin,G.;Ozyurek,E.;Arslan,A.;Sezik,E.;Yesilada,E.Comparativedeterminationofruscogenins
contentinButcher’sBroomrhizomesamplesgatheredfromthepopulationsgrownindifferentsoilconditionsintheMarmara
Regionandattemptsforpilotfieldcultivationofrhizomes.J.Chem.Metrol.2018,12,79–88.
12. Jakovljević,V.D.;Milićević,J.M.;Ðelić,G.T.;Vrvić,M.M.AntioxidantactivityofRuscusspeciesfromSerbia;potentialnew
sourcesofnaturalantioxidants.Hem.Ind.2016,70,99–106.
13. Masullo,M.;Pizza,C.;Piacente,S.RuscusGenus:ARichSourceofBioactiveSteroidalSaponins.PlantaMed.2016,82,1513–
1524.
14. Tahir,N.I.;Shaari,K.;Abas,F.;Parveez,G.K.A.;Ishak,Z.;Ramli,U.S.Characterizationofapigeninandluteolinderivatives
fromoilpalm(ElaeisguineensisJacq.)LeafusingLC‐ESI‐MS/MS.J.Agric.FoodChem.2012,60,11201–11210.
Molecules2021,26,188214of14
15. Ferreres,F.;Gomes,N.G.M.;Valentão,P.;Pereira,D.M.;Gil‐Izquierdo,A.;Araújo,L.;Andrade,P.B.Leavesandstembarkfrom
AllophylusafricanusP.Beauv.:Anapproachtoanti‐inflammatorypropertiesandcharacterizationoftheirflavonoidprofile.Food
Chem.Toxicol.2018,118,430–438.
16. Luís,Â.;Domingues,F.;Duarte,A.P.Bioactivecompounds,RP‐HPLCanalysisofphenolics,andantioxidantactivityofsome
Portugueseshrubspeciesextracts.Nat.Prod.Commun.2011,6,1863–1872.
17. Gonçalves,S.;Gomes,D.;Costa,P.;Romano,A.ThephenoliccontentandantioxidantactivityofinfusionsfromMediterranean
medicinalplants.Ind.CropsProd.2013,43,465–471.
18. Sun,C.;Wu,Z.;Wang,Z.;Zhang,H.Effectofethanol/watersolventsonphenolicprofilesandantioxidantpropertiesofBeijing
propolisextracts.Evid.BasedComplementaryAltern.Med.2015,2015,1–9.
19. Lockowandt,L.;Pinela,J.;Roriz,C.L.;Pereira,C.;Abreu,R.M.V.;Calhelha,R.C.;Barros,L.;Ferreira,I.C.F.R.Chemicalfeatures
andbioactivitiesofcornflower(CentaureacyanusL.)capitula:Theblueflowersandtheunexplorednon‐ediblepart.Ind.Crops
Prod.2019,128,496–503.
20. Hadžifejzović,N.;Kukić‐Marković,J.;Petrović,S.;Soković,M.;Glamočlija,J.;Stojković,D.;Nahrstedt,A.Bioactivityofthe
extractsandcompoundsofRuscusaculeatusL.andRuscushypoglossumL.Ind.CropsProd.2013,49,407–411.
21. Carlos,J.;Leocádio,S.AinfluênciadoMétododeExtraçãonaBioatividadeePerfilMetabólicodeExtratosdeRosmaninho.
Master’sThesis,UniversidadedeCoimbra,Coimbra,Portugal,2018.
22. Kobus‐Cisowska,J.;Szymanowska,D.;Szczepaniak,O.M.;Gramza‐Michałowska,A.;Kmiecik,D.;Kulczyński,B.;Szulc,P.;
Górnaś,P.Compositionofpolyphenolsofasparagusspears(Asparagusofficinalis)andtheirantioxidantpotential.CienciaRural
2019,49,1–8.
23. Bassil,N.M.;Abdel‐Massih,R.;El‐Chami,N.;Smith,C.A.;Baydoun,E.PleurotusostreatusandRuscusaculeatusextractscause
non‐apoptoticjurkatcelldeath.J.PlantStud.2012,1,14–24.
24. Chen,Q.W.;Zhang,X.;Gong,T.;Gao,W.;Yuan,S.;Zhang,P.C.;Kong,J.Q.Structureandbioactivityofcholestaneglycosides
fromthebulbsofOrnithogalumsaundersiaeBaker.Phytochemistry2019,164,206–214.
25. Dunder,R.J.;Quaglio,A.E.V.;Maciel,R.P.;Luiz‐Ferreira,A.;Almeida,A.C.A.;Takayama,C.;deFaria,F.M.;Souza‐Brito,A.R.M.
Anti‐inflammatoryandanalgesicpotentialofhydrolyzedextractofAgavesisalanaPerrineexEngelm.,Asparagaceae.Braz.J.
Pharmacog.2010,20,376–381.
26. Pereira,D.F.S.FitoterapianosCuidadosCapilares:SegurançaeEficácia;UniversidadedeCoimbra:Coimbra,Portugal,2015.
27. Ali‐Shtayeh,M.S.;Yaghmour,R.M.‐R.;Faidi,Y.R.;Salem,K.;Al‐Nuri,M.A.Antimicrobialactivityof20plantsusedinfolkloric
medicineinthePalestinianarea.J.Ethnopharmacol.1998,60,265–271.
28. Sousa,G.O.AvaliaçãodaAtividadeAntimicrobianaePerfilQuímicodoExtratodeSisal(AgaveSisalanaPerrine).Master’s
Thesis.FaculdadeMariaMilza,GovernadorMangabeira,Brazil,2017.
29. Bessada,S.M.F.;Barreira,J.C.M.;Barros,L.;Ferreira,I.C.F.R.;Oliveira,M.B.P.P.Phenolicprofileandantioxidantactivityof
Coleostephusmyconis(L.)Rchb.f.:Anunderexploitedandhighlydisseminatedspecies.Ind.CropsProd.2016,89,45–51.
30. Spréa,R.M.;Fernandes,Â.;Calhelha,R.C.;Pereira,C.;Pires,T.C.S.P.;Alves,M.J.;Canan,C.;Barros,L.;Amaral,J.S.;Ferreira,
I.C.F.R.Chemicalandbioactivecharacterizationofthearomaticplant:LevisticumofficinaleW.D.J.Koch:Acomprehensivestudy.
FoodFunct.2020,11,1292–1303.
31. Guimarães,R.;Barros,L.;Dueñas,M.;Carvalho,A.M.;Queiroz,M.J.R.P.;Santos‐Buelga,C.;Ferreira,I.C.F.R.Characterisation
ofphenoliccompoundsinwildfruitsfromNortheasternPortugal.FoodChem.2013,141,3721–3730.
32. Abreu,R.M.V.;Ferreira,I.C.F.R.;Calhelha,R.C.;Lima,R.T.;Vasconcelos,M.H.;Adega,F.;Chaves,R.;Queiroz,M.J.R.P.Anti‐
hepatocellularcarcinomaactivityusinghumanHepG2cellsandhepatotoxicityof6‐substitutedmethyl3‐aminothieno[3,2‐
b]pyridine‐2‐carboxylatederivatives:Invitroevaluation,cellcycleanalysisandQSARstudies.Eur.J.Med.Chem.2011,46,5800–
5806.
33. Sobral,F.;Sampaio,A.;Falcão,S.;Queiroz,M.J.R.P.;Calhelha,R.C.;Vilas‐Boas,M.;Ferreira,I.C.F.R.Chemicalcharacterization,
antioxidant,anti‐inflammatoryandcytotoxicpropertiesofbeevenomcollectedinNortheastPortugal.FoodChem.Toxicol.2016,
94,172–177.
34. Pires,T.C.S.P.;Dias,M.I.;Barros,L.;Calhelha,R.C.;Alves,M.J.;Oliveira,M.B.P.P.;Santos‐Buelga,C.;Ferreira,I.C.F.R.Edible
flowersassourcesofphenoliccompoundswithbioactivepotential.FoodRes.Intern.2016,3,914–915.