Preprint

High Mobility Group Box 1 enhances ADP-mediated platelet activation by increasing platelet surface P2Y12 localization

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Thrombosis and inflammation are intimately linked and synergistically contribute to the pathogenesis of a number of vascular diseases. On a cellular level, while the platelet is central to thrombus formation as well as an active mediator of inflammation, the molecular mechanisms of cross-talk between thrombosis and inflammation remain elusive. High-Mobility Group Box 1 protein (HMGB1) is an inflammatory regulator that also stimulates platelet activation through its interaction with toll-like receptor 4 (TLR4). However, it remains unclear whether cross-talk between HMGB1 and traditional thrombotic agonists exists to modulate platelet activation. Using isolated human platelets, we tested whether HMGB1 treatment affects platelet activation mediated by traditional agonists. We found that HMGB1 enhances ADP-mediated platelet activation, but not platelet activation stimulated by thrombin or collagen. Further, inhibition of the canonical ADP purinergic P2Y 12 receptor attenuates HMGB1-dependent platelet activation. Mechanistically, we discovered that HMGB1 activates platelet surface TLR4 to release ADP from the platelet and concomitantly increase the localization of P2Y 12 on the platelet membrane. These data demonstrate that ADP-dependent P2Y 12 activation contributes to HMGB1 mediated platelet activation, while HMGB1 primes platelets for an enhanced activation response to ADP. These novel findings further our understanding of thrombo-inflammatory signaling and provide new insight for therapeutic P2Y 12 inhibition. Key Points HMGB1 enhances ADP-mediated platelet activation but not platelet activation stimulated by collagen or thrombin. HMGB1 stimulates platelet ADP release and increases platelet surface localization of P2y12 receptors via TLR4-dependent mechanism(s). Visual Abstract Caption: HMGB1 activates TLR4 to activate platelets, release platelet ADP, and upregulate P2Y 12 at the platelet surface.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
PurposeSince ticagrelor inhibits the cellular uptake of adenosine, thereby increasing extracellular adenosine concentration and biological activity, we hypothesized that ticagrelor has adenosine-dependent antiplatelet properties. In the current study, we compared the effects of ticagrelor and prasugrel on platelet activation in acute coronary syndrome (ACS).Methods Platelet surface expression of P-selectin and activated glycoprotein (GP) IIb/IIIa in response to adenosine diphosphate (ADP), the toll-like receptor (TLR)-1/2 agonist Pam3CSK4, the TLR-4 agonist lipopolysaccharide (LPS), the protease-activated receptor (PAR)-1 agonist SFLLRN, and the PAR-4 agonist AYPGKF were measured by flow cytometry in blood from 80 ticagrelor- and 80 prasugrel-treated ACS patients on day 3 after percutaneous coronary intervention. Residual platelet aggregation to arachidonic acid (AA) and ADP were assessed by multiple electrode aggregometry and light transmission aggregometry.ResultsADP-induced platelet activation and aggregation, and AA-induced platelet aggregation were similar in patients on ticagrelor and prasugrel, respectively (all p ≥ 0.3). Further, LPS-induced platelet surface expression of P-selectin and activated GPIIb/IIIa did not differ significantly between ticagrelor- and prasugrel-treated patients (both p > 0.4). In contrast, Pam3CSK4-induced platelet surface expression of P-selectin and activated GPIIb/IIIa were significantly lower in ticagrelor-treated patients (both p ≤ 0.005). Moreover, SFLLRN-induced platelet surface expression of P-selectin and activated GPIIb/IIIa were significantly less pronounced in patients on ticagrelor therapy compared to prasugrel-treated patients (both p < 0.03). Finally, PAR-4 mediated platelet activation as assessed by platelet surface expression of activated GPIIb/IIIa following stimulation with AYPGKF was significantly lower in patients receiving ticagrelor (p = 0.02).Conclusion Ticagrelor inhibits TLR-1/2 and PAR mediated platelet activation in ACS patients more strongly than prasugrel.
Article
Full-text available
Introduction Platelets are critical for hemostasis, and a low platelet count predicts mortality in trauma. The role of platelet dysfunction in severe traumatic hemorrhage and coagulopathy needs to be further defined. The aim of this study was to evaluate the platelet function in a new model of experimental traumatic hemorrhage. Material and methods New Zealand white rabbits (n = 10) were subjected to tracheostomy and trauma laparotomy, and then bilateral femur fractures with 40% hemorrhage of their estimated blood volume. Arterial blood gases, standard coagulation tests, mean platelet volume, platelet aggregation using impedance aggregometry with agonist collagen, arachidonic acid (ASPI), and adenosine diphosphate (ADP), rotational thromboelastometry, and fibrinogen binding of platelets were analyzed using flow cytometry. Results After traumatic hemorrhage, there was a significant physiological response with a rise in lactate (P < .001) and a decrease in base excess (P < .001) and temperature (P < .001). Platelet count decreased from a mean of 244x10⁹/L to 94 x10⁹/L (P = .004) and the mean platelet volume increased from 5.1fL to 6.1fL (P = .002). Impedance aggregometry with the agonist collagen, ASPI, and ADP was all significantly decreased after hemorrhage (P = .007). However, there was an increased fibrinogen binding of ADP-activated platelets after traumatic hemorrhage analyzed by flow cytometry (P < .05). Conclusions This traumatic hemorrhage model presents two parallel pathophysiological responses of platelets; platelet consumption as evidenced by a significant decrease in platelet count and aggregation, and platelet hyperreactivity as shown by a higher mean platelet volume and enhanced platelet fibrinogen binding. Further studies are needed to characterize these different aspects of platelet function in severe traumatic hemorrhage.
Article
Full-text available
Host defense against infection is based on two crucial mechanisms: the inflammatory response and the activation of coagulation. Platelets are involved in both hemostasis and immune response. These mechanisms work together in a complex and synchronous manner making the contribution of platelets of major importance in sepsis. This is a summary of the pathophysiology of sepsis-induced thrombocytopenia, microvascular consequences, platelet-endothelial cells and platelet–pathogens interactions. The critical role of platelets during sepsis and the therapeutic implications are also reviewed.
Article
Full-text available
Background: Platelet inhibition is important for patients with coronary artery disease. When dual antiplatelet therapy (DAPT) is required, a P2Y12-antagonist is usually recommended in addition to standard aspirin therapy. The most used P2Y12-antagonists are clopidogrel, prasugrel and ticagrelor. Despite DAPT, some patients experience adverse cardiovascular events, and insufficient platelet inhibition has been suggested as a possible cause. In the present review we have performed a literature search on prevalence, mechanisms and clinical implications of resistance to P2Y12 inhibitors. Methods: The PubMed database was searched for relevant papers and 11 meta-analyses were included. P2Y12 resistance is measured by stimulating platelets with ADP ex vivo and the most used assays are vasodilator stimulated phosphoprotein (VASP), Multiplate, VerifyNow (VN) and light transmission aggregometry (LTA). Discussion/conclusion: The frequency of high platelet reactivity (HPR) during clopidogrel therapy is predicted to be 30%. Genetic polymorphisms and drug-drug interactions are discussed to explain a significant part of this inter-individual variation. HPR during prasugrel and ticagrelor treatment is estimated to be 3-15% and 0-3%, respectively. This lower frequency is explained by less complicated and more efficient generation of the active metabolite compared to clopidogrel. Meta-analyses do show a positive effect of adjusting standard clopidogrel treatment based on platelet function testing. Despite this, personalized therapy is not recommended because no large-scale RCT have shown any clinical benefit. For patients on prasugrel and ticagrelor, platelet function testing is not recommended due to low occurrence of HPR.
Article
Full-text available
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Article
Full-text available
Despite treatment advances for sepsis and pneumonia, significant improvements in outcome have not been realized. Antiplatelet therapy may improve outcome in pneumonia and sepsis. In this study, the authors show that ticagrelor reduced leukocytes with attached platelets as well as the inflammatory biomarker interleukin (IL)-6. Pneumonia patients receiving ticagrelor required less supplemental oxygen and lung function tests trended toward improvement. Disruption of the P2Y12 receptor in a murine model protected against inflammatory response, lung permeability, and mortality. Results indicate a mechanistic link between platelets, leukocytes, and lung injury in settings of pneumonia and sepsis, and suggest possible therapeutic approaches to reduce complications.(Targeting Platelet-Leukocyte Aggregates in Pneumonia With Ticagrelor [XANTHIPPE]; NCT01883869)
Article
Full-text available
Platelet activation mediates systemic inflammatory response during infection. However, data on platelet reactivity (PR) varies among different settings. We assessed PR along different stages of sepsis and tried to predict for determinants of its variance. In parallel, we evaluated it as an early bedside diagnostic biomarker. This was an observational prospective cohort study. Incoming patients were assorted to distinct groups of uncomplicated infection, sepsis, and severe sepsis/septic shock. A control group of healthy volunteers was used as comparison. PR was assessed using the bedside point-of-care VerifyNow assay, in P2Y12 reaction units (PRU) alongside with levels of major inflammatory markers and whole blood parameters. A total of 101 patients and 27 healthy volunteers were enrolled. PR significantly and reversibly increases during sepsis compared to uncomplicated infection and healthy controls (244 ± 66.7 vs 187.33 ± 60.98, p < 0.001 and 192.17 ± 47.51, p < 0.001, respectively). In severe sepsis, PR did not significantly differ compared to other groups. Sepsis stage uniquely accounts for 15.5% of PR in a linear regression prediction model accounting for 30% of the variance of PR (F = 8.836, p < 0.001). PRU >253 had specificity of 91.2% and sensitivity of 40.8% in discriminating septic from non-septic patients. The addition of PRU to SOFA and qSOFA scores significantly increased their c-statistic (AUC SOFA + PRU, 0.867 vs SOFA, 0.824, p < 0.003 and AUC qSOFA + PRU, 0.842 vs qSOFA, 0.739, p < 0.001), making them comparable (AUC SOFA + PRU vs qSOFA + PRU, p = 0.4). PR significantly and reversibly increases early in sepsis, but seems to exhaust while disease progresses. Bedside assessment of PR can provide robust discriminative accuracy in the early diagnosis of septic patients.
Article
Full-text available
Deep venous thrombosis (DVT) is one of the most common cardiovascular diseases, but its pathophysiology remains incompletely understood. Although sterile inflammation has recently been shown to boost coagulation during DVT, the underlying molecular mechanisms are not fully resolved, which could potentially identify new anti-inflammatory approaches to prophylaxis and therapy of DVT. Using a mouse model of venous thrombosis induced by flow reduction in the vena cava inferior, we identified blood-derived high-mobility group box 1 protein (HMGB1), a prototypical mediator of sterile inflammation, to be a master regulator of the prothrombotic cascade involving platelets and myeloid leukocytes fostering occlusive DVT formation. Transfer of platelets into Hmgb1-/- chimeras showed that this cell type is the major source of HMGB1, exposing reduced HMGB1 on their surface upon activation thereby enhancing the recruitment of monocytes. Activated leukocytes in turn support oxidation of HMGB1 unleashing its prothrombotic activity and promoting platelet aggregation. This potentiates the amount of HMGB1 and further nurtures the accumulation and activation of monocytes through receptor for advanced glycation end products (RAGE) and Toll-like receptor 2, leading to local delivery of monocyte-derived tissue factor and cytokines. Moreover, disulfide HMGB1 facilitates formation of prothrombotic neutrophil extracellular traps (NETs) mediated by RAGE, exposing additional HMGB1 on their extracellular DNA strands. Eventually, a vicious circle of coagulation and inflammation is set in motion leading to obstructive DVT formation. Therefore, platelet-derived disulfide HMGB1 is a central mediator of the sterile inflammatory process in venous thrombosis and could be an attractive target for an anti-inflammatory approach for DVT prophylaxis.
Article
Full-text available
Background: Platelets play an important role in coagulation activation. P2Y12-receptor inhibition may be beneficial in inflammatory states. Hypothesis: Prasugrel, a potent, irreversible inhibitor of P2Y12 receptor induced platelet activation may reduce coagulation activation in a human LPS model. Patients/methods: A double-blind, randomized, crossover trial with a minimum washout period of 6 weeks was performed. Sixteen subjects were randomly assigned to a treatment group that received prasugrel or placebo two hours prior to infusion of a bolus of LPS (2ng/kg bodyweight), while four subjects were assigned to a control group receiving prasugrel or placebo without LPS. Histone-complexed DNA (hcDNA), coagulation and platelet specific parameters were measured by enzyme immunoassay. Leukocyte aggregate formation was analyzed by flow cytometry, and thromboelastometry was performed. Results: LPS infusion markedly activated coagulation. However, prasugrel did not reduce changes in prothrombin fragments F1+2, thrombin-antithrombin complexes, microparticle associated tissue factor, CD 40 ligand, P-selectin, platelet leukocyte aggregation, hcDNA levels or the coagulation profile measured by thromboelastometry. hcDNA plasma levels increased approximately six-fold after LPS infusion in both treatment groups, but not in the control groups. Conclusion: Potent irreversible P2Y12 inhibition by prasugrel does not affect LPS induced coagulation activation. hcDNA plasma levels increased six-fold after infusion of LPS, indicating the formation of neutrophil extracellular traps during sterile inflammation.
Article
Full-text available
Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis. Mice lacking HMGB1 in platelets exhibited increased bleeding times as well as reduced thrombus formation, platelet aggregation, inflammation, and organ damage during experimental trauma/hemorrhagic shock. Platelets were the major source of HMGB1 within thrombi. In trauma patients, HMGB1 expression on the surface of circulating platelets was markedly upregulated. Moreover, evaluation of isolated platelets revealed that HMGB1 is critical for regulating platelet activation, granule secretion, adhesion, and spreading. These effects were mediated via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent protein kinase I (cGKI). Thus, we establish platelet-derived HMGB1 as an important mediator of thrombosis and identify a HMGB1-driven link between MyD88 and GC/cGKI in platelets. Additionally, these findings suggest a potential therapeutic target for patients sustaining trauma and other inflammatory disorders associated with abnormal coagulation.
Article
Full-text available
Key Points SCD increases release of HMGB1. HMGB1 plays a major role in increasing TLR4 activity in SCD.
Article
Full-text available
Upon activation by extracellular matrix components or soluble agonists, platelets release in excess of 300 active molecules from intracellular granules. Those factors can both activate further platelets and mediate a range of responses in other cells. The complex microenvironment of a growing thrombus, as well as platelets' roles in both physiological and pathological processes, require platelet secretion to be highly spatially and temporally regulated to ensure appropriate responses to a range of stimuli. However, how this regulation is achieved remains incompletely understood. In this review we outline the importance of regulated secretion in thrombosis as well as in 'novel' scenarios beyond haemostasis and give a detailed summary of what is known about the molecular mechanisms of platelet exocytosis. We also discuss a number of theories of how different cargoes could be released in a tightly orchestrated manner, allowing complex interactions between platelets and their environment.
Article
Full-text available
Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.
Article
Full-text available
Platelet hyperreactivity is associated with an increased risk of thrombosis. Cancer patients are at an increased risk of thrombosis, a risk that increases with disease progression. While cancer patients show evidence of platelet activation in vivo, few studies have extensively assessed whether these patients display platelet hyperreactivity. We hypothesized that patients with metastatic cancer would display platelet hyperreactivity, reflecting their associated high risk of thrombosis. In a cohort of patients with metastatic cancer (n = 13), we assessed platelet function using well-established assays of platelet reactivity (agonist-induced platelet aggregation, spontaneous platelet aggregation, and agonist-induced P-selectin expression). In comparison with healthy controls (n = 10), patients with metastatic cancer displayed global platelet hyperreactivity. Agonist-induced platelet aggregation responses to ADP (adenosine diphosphate), epinephrine, collagen, arachidonic acid, and PAR-1 (protease-activated receptor-1) activating peptide, as well as spontaneous platelet aggregation, were significantly increased in patients with metastatic cancer. Furthermore, agonist-induced platelet P-selectin expression was also significantly increased within the patient cohort. We demonstrate that patients with metastatic cancer are characterized by global platelet hyperreactivity, a factor that may contribute to their increased risk of thrombosis. We assessed platelet function in a cohort of patients with metastatic cancer (n = 13) using well-established assays of platelet reactivity. Agonist-induced platelet aggregation and activation in response to platelet agonists, as well as spontaneous platelet aggregation, was significantly increased in cancer patients compared with healthy controls. We demonstrate that patients with metastatic cancer are characterized by global platelet hyperreactivity, a factor that may contribute to their increased risk of thrombosis.
Article
Full-text available
Significance: In the cells' nuclei, high-mobility group box protein 1 (HMGB1) is a nonhistone chromatin-binding protein involved in the regulation of transcription. Extracellularly, HMGB1 acts as a danger molecule with properties of a proinflammatory cytokine. It can be actively secreted from myeloid cells or passively leak from any type of injured, necrotic cell. Increased serum levels of active HMGB1 are often found in pathogenic inflammatory conditions and correlate with worse prognoses in cancer, sepsis, and autoimmunity. By damaging cells, superoxide and peroxynitrite promote leakage of HMGB1. Recent advances: The activity of HMGB1 strongly depends on its redox state: Inflammatory-active HMGB1 requires an intramolecular disulfide bond (Cys23 and Cys45) and a reduced Cys106. Oxidation of the latter blocks its stimulatory activity and promotes immune tolerance. Critical issues: Reactive oxygen and nitrogen species create an oxidative environment and can be detoxified by superoxide dismutase (SOD), catalase, and peroxidases. Modifications of the oxidative environment influence HMGB1 activity. Future directions: In this review, we hypothesize that manipulations of an oxidative environment by SOD mimics or by hydrogen sulfide are prone to decrease tissue damage. Both the concomitant decreased HMGB1 release and its redox chemical modifications ameliorate inflammation and tissue damage.
Article
Full-text available
Western blotting is an important technique used in cell and molecular biology. By using a western blot, researchers are able to identify specific proteins from a complex mixture of proteins extracted from cells. The technique uses three elements to accomplish this task: (1) separation by size, (2) transfer to a solid support, and (3) marking target protein using a proper primary and secondary antibody to visualize. This paper will attempt to explain the technique and theory behind western blot, and offer some ways to troubleshoot.
Article
Full-text available
The link between platelet activation and vascular injury in Systemic Sclerosis (SSc) is poorly characterized. Here we report that platelet activation results in i) the translocation from the cytoplasm to the surface of HMGB1, a prototypical DAMP signal associated with tissue regeneration and ii) the release of platelet derived microparticles (PDμP) expressing HMGB1. Decreased HMGB1 content (334.6 ± 21.2 vs 587.1 ± 11.1 AUF, P < 0.001) and HMGB1 translocation to the outer leaflet of the plasma membrane (17.8 ± 3.5 vs 4.5 ± 0.5%, P < 0.001) characterize circulating platelets of SSc patients (n = 29) when compared with age-matched healthy controls (HC, n = 20). Conversely, a significantly higher fraction of PDμP in the blood of SSc patients, but not of HC, consistently expose (HMGB1 (MFI 62.8 ± 3.95 vs 4.3 ± 0.7). Platelet HMGB1 depletion is significantly associated in SSc patients with degranulation and with expression of P-selectin and of tissue factor as well as with fibrinogen binding to their plasma membrane. These findings indicate that platelets represent a source of HMGB1, an ancestral signal of necrosis, in the vasculature of SSc patients, possible contributing to persistent microvascular injury and endothelial cell activation.
Article
Full-text available
Platelet aggregation is not only an essential part of hemostasis, but also initiates acute coronary syndrome or ischemic stroke. The precise understanding of the activation mechanism of platelet aggregation is fundamental for the development of more effective agents against platelet aggregation. Adenosine diphosphate, thrombin, and thromboxane A(2) activate platelet integrin αIIbβ3 through G protein-coupled receptors. G protein-mediated signaling pathways, which are initiated by G(q), G(12)/G(13) or G(i), include phospholipase C with calcium signaling, Rho signaling, protein kinase C and phosphatidylinositol 3-kinase. Rap1b, Ca(2+) and diacylglycerol-regulated guanine nucleotide exchange factor I, Rap1-GTP-interacting adaptor molecule, and Akt are important proteins involved in G protein-mediated activation of integrin αIIbβ3. Binding of talin-1 and kindlin-3 to cytoplasmic domains of β3-integrin triggers a conformational change in the extracellular domains that increases its affinity for ligands, such as fibrinogen or von Willebrand factor. Fibrinogens act as bridges between adjacent platelets to generate a platelet aggregate.
Article
Full-text available
It is known that hepatic metabolism limits the antiaggregatory activity of clopidogrel and, as a consequence, its clinical benefits. In this study, we investigated whether other factors exist that could account for clopidogrel's suboptimal antithrombotic activity. Using an in vivo murine FeCl(3) thrombosis model coupled with intravital microscopy, we found that at equivalent, maximal levels of inhibition of ADP-induced platelet aggregation, clopidogrel (50 mg/kg p.o.) failed to reproduce the phenotype associated with P2Y(12) deficiency. However, elinogrel (60 mg/kg p.o.), a direct-acting reversible P2Y(12) antagonist, achieved maximal levels of inhibition in vivo, and its administration (1 mg/kg i.v.) abolished residual thrombosis associated with clopidogrel dosing. Because elinogrel is constantly present in the plasma, whereas the active metabolite of clopidogrel exists for ∼2 h, we evaluated whether an intracellular pool of P2Y(12) exists that would be inaccessible to clopidogrel and contribute to its limited antithrombotic activity. Using saturation [(3)H]2-(methylthio)ADP ([(3)H]2MeSADP) binding studies, we first demonstrated that platelet stimulation with thrombin and convulxin (mouse) and thrombin receptor activating peptide (TRAP) (human) significantly increased surface expression of P2Y(12) relative to that of resting platelets. We next found that clopidogrel dose-dependently inhibited ADP-induced aggregation, signaling (cAMP), and surface P2Y(12) on resting mouse platelets, achieving complete inhibition at the highest dose (50 mg/kg), but failed to block this inducible pool. Thus, an inducible pool of P2Y(12) exists on platelets that can be exposed upon platelet activation by strong agonists. This inducible pool is not blocked completely by clopidogrel, contributes to thrombosis in vivo, and can be blocked by elinogrel.
Article
Full-text available
Bacterial LPS induces rapid thrombocytopenia, hypotension, and sepsis. Although growing evidence suggests that platelet activation plays a critical role in LPS-induced thrombocytopenia and tissue damage, the mechanism of LPS-mediated platelet activation is unclear. In this study, we show that LPS stimulates platelet secretion of dense and alpha granules as indicated by ATP release and P-selectin expression, and thus enhances platelet activation induced by low concentrations of platelet agonists. Platelets express components of the LPS receptor-signaling complex, including TLR (TLR4), CD14, MD2, and MyD88, and the effect of LPS on platelet activation was abolished by an anti-TLR4-blocking Ab or TLR4 knockout, suggesting that the effect of LPS on platelet aggregation requires the TLR4 pathway. Furthermore, LPS-potentiated thrombin- and collagen-induced platelet aggregation and FeCl(3)-induced thrombus formation were abolished in MyD88 knockout mice. LPS also induced cGMP elevation and the stimulatory effect of LPS on platelet aggregation was abolished by inhibitors of NO synthase and the cGMP-dependent protein kinase (PKG). LPS-induced cGMP elevation was inhibited by an anti-TLR4 Ab or by TLR4 deficiency, suggesting that activation of the cGMP/protein kinase G pathway by LPS involves the TLR4 pathway. Taken together, our data indicate that LPS stimulates platelet secretion and potentiates platelet aggregation through a TLR4/MyD88- and cGMP/PKG-dependent pathway.
Article
Full-text available
Diabetes is associated with increased platelet reactivity. Factors that contribute directly to greater platelet reactivity include metabolic abnormalities such as hy-perglycemia and hyperlipidemia, both insulin resistance (relative insulin deficiency) and absolute insulin deficiency, as well as associated conditions such as oxi-dative stress, inflammation, and endothe-lial dysfunction. Although antiplatelet therapy is necessary to suppress increased platelet reactivity, control of hyperglyce-mia with regimens that decrease insulin resistance and prevent apoptosis of pancreatic β-cells should decrease platelet reactivity and enhance the efficacy of antiplatelet therapy by addressing root causes of increased reactivity.
Article
Full-text available
In the present study, we investigated the desensitization and trafficking of the P2Y1 and P2Y12 receptors after agonist-induced stimulation of platelets or astrocytoma cells transfected with the P2Y1 or P2Y12 receptors fused to green fluorescent protein. In platelets and in transfected cells, exposure to 10 microM ADP caused desensitization of the P2Y1 receptor-driven calcium signal, whereas the P2Y12 receptor-mediated inhibition of cAMP formation was not affected. Plasma membranes from ADP-stimulated platelets also retained P2Y12 activity. Agonist-induced P2Y1 receptor desensitization was accompanied by its internalization in platelets and transfected cells. In contrast, although a substantial fraction of P2Y12 receptors was rapidly and transiently internalized, most of the P2Y12 receptors remained at the plasma membrane. Activated P2Y1 receptors were internalized through a clathrin-dependent pathway in cells and platelets, whereas the P2Y12 receptors seemed to use a distinct, clathrin-independent pathway. Together, these data indicate that the P2Y1 and P2Y12 receptors are differentially regulated upon activation. The absence of desensitization of the Gi protein-coupled P2Y12 receptor-dependent responses could represent a mechanism to preserve the hemostatic properties of otherwise unresponsive platelets.
Article
Full-text available
Clopidogrel is considered to be an important therapeutic advance in anti-platelet therapy. We investigated whether inhibition by clopidogrel results in a reduced capacity of platelets to adhere and stimulate pro-atherothrombotic and inflammatory functions in polymorphonuclear leukocytes (PMN) and in monocytes (MN). An eventual effect on these processes could further substantiate anti-atherothrombotic properties of this drug. The effects of clopidogrel or of its active metabolite were investigated on ADP or thrombin receptor-induced platelet activation and on platelet-leukocyte interactions ex vivo in the mouse or in vitro in isolated human cells or whole blood, respectively. Clopidogrel inhibited platelet aggregation, expression of P-selectin, platelet-PMN adhesion and platelet-dependent ROS production in mouse PMN. Similarly pretreatment of human platelets with the active metabolite of clopidogrel in vitro resulted in a profound inhibition of platelet P-selectin expression, platelet-PMN adhesion and production of ROS by PMN. Pretreatment with the active metabolite of clopidogrel significantly impaired the ability of platelets to up-regulate the expression of TF procoagulant activity in MN, in a washed cell system. Moreover, the active metabolite of clopidogrel inhibited rapidTF exposure on platelet as well as on leukocyte surfaces in whole blood. By reducing platelet-dependent up-regulation of inflammatory and pro-atherothrombotic functions in leukocytes, clopidogrel may reduce inflammation that underlies the chronic process of atherosclerosis and its acute complications.
Article
Platelets have long been known for their role in hemostasis. In this, platelet adhesion and activation leads to the formation of a firm thrombus and thus the sealing of a damaged blood vessel. More recently, inflammatory modes of function have been attributed to these non–nuclei-containing cellular fragments. Interaction with leukocytes, secretion of proinflammatory mediators, and migratory behavior are some of the recent discoveries. Nonetheless, platelets also have anti-inflammatory potential by regulating macrophage functions, regulatory T cells, and secretion of proresolving mediators. This review summarizes current knowledge of platelet functions with a special focus on inflammation and resolution of inflammation.
Article
Platelet activation contributes to organs failure in inflammation and plays an important role in endotoxemia. Clopidogrel inhibits platelet aggregation and activation. However, the role of clopidogrel in modulating inflammatory progression of endotoxemia remains largely unexplored. Therefore, we investigated the role of clopidogrel on the activation of platelet and leukocytes in lipopolysaccharide (LPS)‐induced inflammation in mice. Animals were treated with clopidogrel or vehicle before LPS induction. The expression of neutrophil‐platelet aggregates and platelet activation and tissue factor was determined. Immunofluorescence was used to analyze platelet‐leukocyte interactions and tissue factor (TF) expression on leukocytes. Clopidogrel pretreatment markedly decreased lung damage, inhibited platelet‐neutrophil aggregates and TF expression. In addition, clopidogrel reduced thrombocytopenia and affected the number of circulating white blood cell in endotoxemia mice. Moreover, clopidogrel also reduced platelet shedding of CD40L and CD62P in endotoxemic mice. Taken together, clopidogrel played an important role through reducing platelet activation and inflammatory process in endotoxemia.
Article
A key inflammatory mechanism recently identified in platelets involves the Nod-like receptor nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK), which control activation of caspase-1 within inflammasome complexes. We investigated platelet caspase-1 activity in the context of sickle cell disease (SCD) directly in platelets isolated from SCD patients (n = 24) and indirectly by incubating platelets from healthy subjects with plasma obtained from SCD patients (n = 20), both in steady state and during an acute pain crisis (paired samples). The platelet NLRP3 inflammasome was upregulated in SCD patients under steady state conditions compared with healthy controls, and it was further upregulated when patients experienced an acute pain crisis. The results were consistent with indirect platelet assays, in which SCD plasma increased caspase-1 activity of platelets from healthy subjects in an NLRP3-dependent fashion. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) was elevated in plasma of SCD subjects compared with healthy controls and correlated with caspase-1 activity in platelets. Pharmacological or antibody-mediated inhibition of HMGB1, Toll-like receptor 4, and BTK interfered with sickle plasma-induced platelet caspase-1 activation. In Townes SCD mice, caspase-1 activity and aggregation of circulating platelets were elevated, which was suppressed by IV injection of an NLRP3 inhibitor and the BTK inhibitor ibrutinib. Activation of the platelet NLRP3 inflammasome in SCD may have diagnostic and therapeutic implications.
Article
Platelet activation occurs during host defence and in various inflammatory disorders. In animal models of infection and inflammation, experimental depletion of platelets leads to significantly reduced leukocyte recruitment and impaired clearance of pathogens from the lung. It is now appreciated that purinergic receptor activation is required for leukocyte activation, motility and adhesion, and platelet interactions with leukocytes can be modulated by purinergic stimulation of platelets. Here, we have investigated the role of platelet P2Y1, P2Y12, P2Y14, and P2X1 receptors on leukocyte recruitment and chemotaxis. Mice were administered either vehicle controls or selective P2Y1, P2Y12, P2Y14, or P2X1 antagonists intravenously before intranasal administration of lipopolysaccharide (LPS) to investigate the effect of these drugs on pulmonary leukocyte recruitment, peripheral platelet counts, bleeding times, and ex vivo platelet aggregation. Separately, platelets were incubated with P2Y1, P2Y12, P2X1 antagonists, or P2Y14 agonists to assess effects on platelet-induced neutrophil chemotaxis in vitro. Pulmonary neutrophil recruitment induced by intranasal LPS administration was inhibited in mice administered either with P2Y1 or P2Y14 antagonists, but not with P2Y12 or P2X1 antagonists. Furthermore, the administration of either a P2Y1 or a P2Y14 antagonist reversed the incidence of peripheral thrombocytopaenia associated with LPS exposure. Bleeding times were significantly increased in mice administered P2Y1, P2Y12, or P2X1 antagonists, whilst ex vivo platelet aggregation to ADP was significantly reduced. These haemostatic responses remained unaltered following antagonism of P2Y14. In vitro chemotaxis assays revealed direct antagonism of platelet P2Y1, but not P2Y12 or P2X1 receptors suppressed platelet-dependent neutrophil motility towards Macrophage derived chemokine (MDC, CCL22). Furthermore, the stimulation of platelets with selective P2Y14 agonists (UDP-glucose, MRS2690) resulted in significant platelet-dependent neutrophil chemotaxis. These results reveal a role for P2Y1 and P2Y14 activation of platelets following exposure to LPS, whilst haemostatic indices were unaffected by inhibition of platelet function with the P2Y14 antagonist in response to LPS.
Article
Hemostasis requires tightly regulated interaction of the coagulation system, platelets, blood cells, and vessel wall components at a site of vascular injury. Dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is robust. Studies have elucidated the major molecular signaling pathways responsible for platelet activation and aggregation. Antithrombotic agents targeting these pathways are in clinical use. This review summarizes research examining mechanisms by which these multiple platelet signaling pathways are integrated at a site of vascular injury to produce an optimal hemostatic response.
Article
As the most prominent clinical drug targets for the inhibition of platelet aggregation, P2Y12 and P2Y13 have been found to be highly expressed in both platelets and macrophages. However, the roles and function of P2Y12/13 in the regulation of macrophage-mediated innate immune responses remain unclear. Here, we demonstrate that adenosine 5'-diphosphate (ADP), the endogenous ligand of P2Y1, P2Y12 and P2Y13, was released both in E. coli-infected mice and from macrophages treated with either lipopolysaccharide (LPS) or Pam3CSK4. Furthermore, the expression of P2Y13 was clearly increased in both LPS-treated macrophages and tuberculosis patients. ADP protected mice from E. coli 0111-induced peritonitis by recruiting more macrophages to the infected sites. Consistent with this, ADP and ADP-treated cell culture medium attracted more macrophages in the transwell assay by enhancing the expression of MCP-1. Nevertheless, P2Y1 is dispensable for ADP-mediated protection against bacterial infection. However, either P2Y12/P2Y13 deficiency or blocking the downstream signaling of P2Y12/P2Y13 blocked the ADP-mediated immune response and allowed more bacteria to persist in the infected mice. Furthermore, extracellular signal-regulated kinase (ERK) phosphorylation was clearly increased by ADP, and this type of activation could be blocked by either forskolin or analogs of cyclic AMP (cAMP) (for example, 8-bromo-cAMP). Accordingly, ADP-induced MCP-1 production and protection against bacterial infection could also be reduced by U0126, forskolin and 8-bromo-cAMP. Overall, our study reveals a relationship between danger signals and innate immune responses, which suggests the potential therapeutic significance of ADP-mediated purinergic signaling in infectious diseases.Cellular & Molecular Immunology advance online publication, 21 November 2016; doi:10.1038/cmi.2016.56.
Article
Objective: Clinical studies suggest that platelet P2Y12 inhibitors reduce mortality from sepsis, although the underlying mechanisms have not been clearly defined in vivo. We hypothesized that P2Y12 inhibitors may improve survival from sepsis by suppressing systemic inflammation and its prothrombotic effects. We therefore determined whether clopidogrel and the novel, more potent P2Y12 inhibitor, ticagrelor, modify these responses in an experimental human model. Approach and results: We randomized 30 healthy volunteers to ticagrelor (n=10), clopidogrel (n=10), or no antiplatelet medication (controls; n=10). We examined the effect of P2Y12 inhibition on systemic inflammation, which was induced by intravenous injection of Escherichia coli endotoxin. Both P2Y12 inhibitors significantly reduced platelet-monocyte aggregate formation and peak levels of major proinflammatory cytokines, including tumor necrosis factor α, interleukin-6, and chemokine (C-C motif) ligand 2. In contrast to clopidogrel, ticagrelor also significantly reduced peak levels of IL-8 and growth colony-stimulating factor and increased peak levels of the anti-inflammatory cytokine IL-10. In addition, ticagrelor altered leukocyte trafficking. Both P2Y12 inhibitors suppressed d-dimer generation and scanning electron microscopy revealed that ticagrelor also suppressed prothrombotic changes in fibrin clot ultrastructure. Conclusions: Potent inhibition of multiple inflammatory and prothrombotic mechanisms by P2Y12 inhibitors demonstrates critical importance of platelets as central orchestrators of systemic inflammation induced by bacterial endotoxin. This provides novel mechanistic insight into the lower mortality associated with P2Y12 inhibitors in patients with sepsis in clinical studies.
Article
Platelet P2Y12 inhibitors form a major part of the treatment strategy for patients with acute coronary syndromes (ACS) due to the importance of the platelet P2Y12 receptor in mediating the pathophysiology of arterial thrombosis. It has been increasingly recognised that platelets also have a critical role in inflammation and immune responses. P2Y12 inhibitors reduce platelet release of pro-inflammatory α-granule contents and the formation of pro-inflammatory platelet-leukocyte aggregates. These are important mediators of inflammation in a variety of different contexts. Clinical evidence shows that P2Y12 inhibition by clopidogrel is associated with a reduction in platelet-related mediators of inflammation, such as soluble P-selectin and CD40L, following atherothrombosis. Clopidogrel in addition to aspirin, compared to aspirin alone, also reduces markers of systemic inflammation such as tumour necrosis factor (TNF) α and C-reactive protein (CRP) following ACS. The more potent thienopyridine P2Y12 inhibitor, prasugrel, has been shown to decrease platelet P-selectin expression and platelet-leukocyte aggregate formation compared to clopidogrel. The PLATO study suggested that the novel P2Y12 inhibitor ticagrelor might improve clinical outcomes from pulmonary infections and sepsis compared to clopidogrel in patients with ACS. Ticagrelor is a more potent P2Y12 inhibitor than clopidogrel and also inhibits cellular adenosine uptake via equilibrative nucleoside transporter (ENT) 1, whereas clopidogrel does not. Further examination of the involvement of these mechanisms in inflammation and immunity is therefore warranted.
Article
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed High-Mobility Group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhbitiors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localizationtion, structure, post-translational modification, and identifccation of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Article
Despite their small size and anucleate status, platelets have diverse roles in vascular biology. Not only are platelets the cellular mediator of thrombosis but platelets are also immune cells that initiate and accelerate many vascular inflammatory conditions. Platelets are linked to the pathogenesis of inflammatory diseases such as atherosclerosis, malaria infection, transplant rejection, and rheumatoid arthritis. In some contexts platelet immune functions are protective, while in others platelets contribute to adverse inflammatory outcomes. In this review we will discuss platelet and platelet derived mediator interactions with the innate and acquired arms of the immune system and platelet-vessel wall interactions that drive inflammatory disease. There have been many recent publications indicating both important protective and adverse roles for platelets in infectious disease. Because of this new accumulating data, and the fact that infectious disease continues to be a leading cause of death globally, we will also focus on new and emerging concepts related to platelet immune and inflammatory functions in the context of infectious disease.
Article
Objective Low-dose aspirin prevents platelet aggregation by suppressing thromboxane A(2) (TXA(2)) synthesis. However, in some individuals TXA(2) suppression by aspirin is impaired, indicating suboptimal inhibition of platelet cyclooxygenase 1 (COX-1) by aspirin. Because patients with systemic lupus erythematosus (SLE) have increased risk of thrombotic events, many receive aspirin; however, the efficacy of aspirin in SLE has not been determined. We examined the hypothesis that aspirin response is impaired in SLE. Methods We assessed the effect of aspirin by measuring concentrations of the stable metabolite of TXA(2), serum thromboxane B-2 (sTXB(2)), before and after treatment with daily aspirin (81 mg) for 7 days in 34 patients with SLE and 36 control subjects. The inability to suppress sTXB(2) synthesis to <10 ng/ml represents suboptimal inhibition of platelet COX-1 by aspirin. ResultsAspirin almost completely suppressed sTXB(2) in control subjects to median 1.5 ng/ml (interquartile range [IQR] 0.8-2.7) but had less effect in patients with SLE (median 3.1 ng/ml [IQR 2.2-5.3]) (P = 0.002). A suboptimal effect of aspirin was present in 15% (5 of 34) of the patients with SLE but not in control subjects (0 of 36) (P = 0.023). Incomplete responders were more likely to have metabolic syndrome (P = 0.048), obesity (P = 0.048), and higher concentrations of C-reactive protein (CRP) (P = 0.018). Conclusion The pharmacologic effect of aspirin is suboptimal in 15% of patients with SLE but in none of the control subjects, and the suboptimal response was associated with metabolic syndrome, obesity, and higher CRP concentrations.
Article
In recent years, it has become clear that platelets and platelet-derived chemokines, beyond their role in thrombosis and haemostasis, are important mediators affecting a broad spectrum of (patho)physiological conditions. These biologically active proteins are released from α-granules upon platelet activation, most probably even during physiological conditions. In this review, we give a concise overview and an update on the current understanding of platelet-derived chemokines in a context of health and disease. Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.
Article
There are increased levels of circulating microparticles (MPs) in several disease states. Flow cytometry is a common method to examine MPs, but their small size necessitates the use of markers to distinguish specifically MPs from artifact. Annexin V, which binds phosphatidylserine, is a commonly used marker for MP detection. Annexin V requires millimolar calcium ion for optimum binding. Ca(++) can precipitate with phosphate in phosphate-buffered saline (PBS). Calcium-phosphate microprecipitates were formed by titrating Ca(++) into PBS and examined using flow cytometry. Calcium-phosphate microprecipitates were compared with MPs derived from aged donor blood units. Microprecipitates were ∼0.7-0.9 μm in diameter compared with standard beads of known size. The microprecipitates disappeared with the addition of Ca(++) chelator. When we added fluorescently labeled antibodies to microprecipitates, the median fluorescent signal increased with increasing Ca(++) concentration regardless of specificity of the antibody. When repeated with a biological sample, there was an apparent increase in the fluorescent signal that returned to baseline after Ca(++) chelation. The flow cytometry signal of calcium-phosphate microprecipitates overlaps with the MP signal. Since Ca(++) is essential for annexin V binding, it is essential to avoid artifacts from calcium-phosphate microprecipitates when using any buffer or biological fluid containing phosphate. This also highlights the potential utility of flow cytometry for the analysis of crystals in biological fluids. © 2012 International Society for Advancement of Cytometry.
Article
A key question in immunology concerns how sterile injury activates innate immunity to mediate damaging inflammation in the absence of foreign invaders. The discovery that HMGB1, a ubiquitous nuclear protein, mediates the activation of innate immune responses led directly to the understanding that HMGB1 plays a critical role at the intersection of the host inflammatory response to sterile and infectious threat. HMGB1 is actively released by stimulation of the innate immune system with exogenous pathogen-derived molecules and is passively released by ischemia or cell injury in the absence of invasion. Established molecular mechanisms of HMGB1 binding and signaling through TLR4 reveal signaling pathways that mediate cytokine release and tissue damage. Experimental strategies that selectively target HMGB1 and TLR4 effectively reverse and prevent activation of innate immunity and significantly attenuate damage in diverse models of sterile and infection-induced threat.
Article
Collagen-induced platelet aggregation is associated with the release of ADP and the catabolism of radioactive ATP. These studies demonstrate that the amount of human platelet ADP released and ATP catabolized increase with time of stirring of the collagen-platelet rich plasma (PRP) mixture and with increasing amounts of collagen. These changes in adenine nucleotides occurred simultaneously with the aggregation. No early changes preceding aggregation were noted. Stirring the collagen-PRP mixture maximized ADP release and ATP catabolism; some ADP release and ATP catabolism occurred with minimal agitation. Incubation of PRP with metabolid poisons (2-deoxyglucose with either KCN or oligomycin), which lowered platelet ATP content, also reduced collagen-induced release of ADP and aggregation. However, platelet adhesion to collagen was unaffected by metabolic poisons. These data suggest that collagen directly stimulates ADP release. The demonstration of release in EDTA-PRP further suggest that platelet aggregation is not required for collagen-induced ADP release.
Article
Baseline studies of 111Indium oxine labelled platelet life-span, platelet alpha-granule release products, beta-thromboglobulin (beta TG) and platelet factor 4 (PF4), and factor VIII related activities were performed on 9 asymptomatic patients with sickle cell disease, who were subsequently randomised in a prospective double-blind trial of ticlopidine (250 mg. b. d.) or placebo for one month and the investigations repeated. Control studies indicated that 5 of the 9 patients had shortened platelet survivals: mean beta TG (50.8 ng/ml) and PF4 (19.5 ng/ml), factor VIII:C (283.4 i.u./dl) and factor VIIIR:AG (168.7 u/dl) levels were raised. Ticlopidine treatment did not significantly improve platelet life-span or factor VIII levels, though it was associated with reduced values of beta TG and PF4. One patient taking ticlopidine developed an infarctive sickle crisis. Although ticlopidine blocked platelet activation, this alone did not improve platelet survival or prevent sickle crisis: in view of evidence of platelet activation in sickle cell disease, however, a longer trial of prophylactic antiplatelet drugs might be warranted.
Article
The effects of long-term aspirin for the treatment of sickle cell disease were compared with placebo in a double-blind trial completed by 29 patients. Each patient was submitted to a 5-month period of treatment with aspirin (median dose 31 mg/kg/day) and an equivalent period with placebo. No clinical or laboratory differences were observed between the two phases, including the frequency of painful crises and infectious episodes, hemoglobin concentration, PCV, reticulocytes, Hb F, bilirubin, irreversibly sickled cells, filterability of red cell, sickling in vitro and hypoxia-induced potassium loss.
Article
Amphoterin is a heparin-binding protein that is developmentally regulated in brain and functionally involved in neurite outgrowth. Unexpectedly, amphoterin has a high mobility group 1 (HMG1)-type sequence. In the present study we have expressed amphoterin cDNA in a baculovirus vector and produced antibodies against the recombinant protein and several synthetic peptides. It was found that the amphoterin cDNA encodes the 30-kDa form of the protein isolated from tissues, whereas the co-purifying 28- and 29-kDa proteins (p28 and p29) have closely related but distinct primary structures. Partial amino acid sequencing shows several local changes in the sequences of p28 and p29 compared with amphoterin, suggesting the occurrence of a multigene family that encodes at least three different HMG1-type sequences in the rat. Studies using the probes that discern amphoterin from the other HMG1-type proteins indicate a high level expression in various transformed cell lines. Immunostaining of cells with the amphoterin-specific antibodies indicates a cytoplasmic localization that becomes remarkably enriched at the leading edges in spreading and motile cells. An extracellular localization is suggested by immunostaining of nonpermeabilized cells and by a plasminogen-dependent degradation of amphoterin in the substratum-attached material of cells. Tissue-derived and recombinant amphoterins strongly enhance the rate of plasminogen activation and promote the generation of surface-bound plasmin both by tissue-type and urokinase-type plasminogen activators. The results suggest an extracellular function for amphoterin in the leading edge of various invasive cells.
Article
Vascular occlusion and vasculopathy underlie much of the morbidity in patients with sickle cell anemia. Platelets may play a role in this vasculopathy. Samples from 12 adults patients with sickle cell anemia were examined for evidence of platelet activation and formation of platelet-erythrocyte aggregates (PEA) using fluorescent-labeled monoclonal antibodies and flow cytometry. We noted an increased expression of activation-dependent antigens on the platelets from patients with sickle cell anemia compared with those from both white and black control subjects. In addition, patients with sickle cell anemia had increased levels of platelet microparticles and PEA. Platelets are activated in patients with sickle cell anemia and they adhere to sickle erythrocytes. The significance of this activation and adherence are the subject of further investigation.
Article
In our studies of human platelets we have detected the presence of the molecular motors kinesin and dynein. Dynein is present at a concentration (0.8 microg/g tissue) that is approximately 1/3 the concentration reported for neuronal tissue. Immunofluorescence microscopy of resting platelets shows that, while platelet microtubules are arranged in coiled hoops forming the marginal band in the cortical region of the platelet, dynein is distributed in a pattern of punctate staining throughout the cytoplasm of the platelets. Fractionation of unactivated platelets shows that dynein partitions to the soluble fraction. Stimulation of platelets with thrombin, ADP or epinephrine causes a partial translocation of dynein from the soluble fraction to the particulate fraction with thrombin being the most efficient agent at promoting this shift. Dynein intermediate chain recovered in the soluble fraction of disrupted platelets following activation displays a transient, time-dependent phosphorylation. In contrast, dynein intermediate chain recovered in the particulate fraction shows decreased phosphorylation. These results indicate that human platelets contain a complex microtubule-based system of motor proteins that is an integral part of the physiological changes occurring during platelet activation.
Article
Amphoterin (HMG1) is a 30-kD heparin-binding protein which is functionally associated with the outgrowth of cytoplasmic processes in developing neurones. Amphoterin has been shown to mediate adhesive and proteolytic interactions at the leading edge of motile cells. Recently it was shown that inhibition of amphoterin interactions with its cell surface receptor (RAGE) suppresses tumour growth and metastasis. In this work we have identified amphoterin polypeptide and its mRNA in human platelets. Amphoterin had a cytoplasmic localisation in resting platelets according to subcellular fractionation studies and immunogold electronmicroscopy. After platelet activation, part of amphoterin was associated with the external surface of plasma membrane. Externalisation of amphoterin during platelet activation was also detected in immunofluorescence studies. Amphoterin was detectable in human serum (0.2 ng/ml) but not in plasma. Resting platelets treated with PGI2 and forskolin bound to immobilised recombinant amphoterin independently of divalent cations. The binding induced a spicular morphology in platelets, and was effectively inhibited by heparin. Amphoterin-binding protein components on the platelet surface were not identified, but amphoterin bound to phosphatidylserine and sulfatide in lipid binding assays. Our results suggest that amphoterin is an endogenous protein in human platelets, which is exported to the cell surface during platelet activation. Interaction of amphoterin with the platelet surface may be mediated by sulfoglycolipids and phospholipids.
Article
The mechanism of ADP-mediated platelet activation has been difficult to unravel due to the large number of receptors for extracellular nucleotides (P2 receptors). mRNA levels in circulating platelets are very low, but have been shown to be translationally active. By optimizing mRNA extraction and using real time (RT)-PCR we were able to establish a protocol for highly sensitive platelet mRNA quantification in human regular blood samples. In platelets from healthy volunteers, only P2X1, P2Y1 and P2Y12 were found in significant levels, with the following order of expression: P2Y12 > P2X1 > P2Y1. Other P2 receptors (P2Y2, P2Y4, P2Y6, P2Y11, P2Y13, P2X4, P2X7) had very low expression. As a control measurement to exclude contamination, P2 receptors in buffy coat were quantified but had a completely different profile. Incubation in vitro revealed a more rapid degradation rate for P2X1 receptor mRNA than for P2Y1 and P2Y12, indicating that the level of P2X1 may be relatively higher in newly released platelets and in megacaryocytes. In conclusion, we have developed the first protocol for quantifying mRNA expression in human platelets limiting the P2 receptor drug development targets to P2Y12, P2Y1 and P2X1. Furthermore, the method could be used to study platelet expression for any gene in human materials.
Article
Stimulating human platelets with thrombin induces the activation of the extracellular signal-regulated kinase 2 (ERK2). We demonstrate that this effect is highly dependent on ADP secretion and P2Y12 receptor signalling. AR-C69931MX (10 μM), a specific antagonist of the Gi-coupled P2Y12 ADP receptor, inhibits ERK2 activation induced by thrombin. Antagonists of the Gq-coupled P2Y1 ADP receptor, A3P5P (500 μM) and MRS2179 (100 μM), have no effect. ADP and its more potent analogue 2-methylthio-ADP alone (both up to 100 μM) do not induce ERK2 activation. Furthermore, we show that the inhibitory effect of AR-C69931MX on ERK2 activation induced by 0.1 U/ml thrombin as well as on platelet aggregation can be bypassed by epinephrine (1 and 10 μM), whereas epinephrine alone has no effect. Epinephrine acts on platelets mainly via α 2A-adrenergic receptors, which, like P2Y12 receptors, couple to inhibitory G proteins. In addition, 2-methylthio-ADP as well as epinephrine provoke ERK2 activation at a thrombin concentration that alone has no detectable effect (0.05 U/ml). Thromboxane A 2 (TXA 2), which, like ADP, is released by activated platelets, acts as a positive feedback mediator. Stimulating the Gq-coupled TXA 2-receptor with U46619 (10 μ M), which leads to ADP secretion and P2Y12 receptor-dependent platelet aggregation, also induces P2Y12-related ERK2 activation. The inhibition of U46619-induced ERK2 activation and platelet aggregation by AR-C69931MX are also rescued by epinephrine. Pretreatment with aspirin inhibits ERK2 activation induced by 0.1 U/ml thrombin, but has no effect at high concentrations of thrombin. The combination of U46619 and thrombin, at concentrations which alone have no effect, provokes ERK2 activation, suggesting that thrombin and released TXA 2 act synergistically. Our data indicate that both primary signalling through Gq, which evokes ADP secretion, as well as subsequent coupling via Gi by the P2Y12 receptor are required for ERK2 activation.
Article
Toll-like receptors (TLRs) play a critical role in stimulating innate immunity by recognizing pathogen-associated molecular patterns (PAMPs) on invading microorganisms. Platelets also play a role in innate immunity, and we studied whether they express TLR. Results show that human and murine platelets variably expressed TLR2, TLR4, and TLR9 by flow cytometry and Western blotting. TLR4 expression was confirmed by demonstrating murine platelet binding to lipopolysaccharide (LPS). Thrombin activation of the platelets significantly enhanced the expression of TLR9, suggesting that at least some TLRs may derive from intracellular compartments. When LPS was administered to LPS-sensitive C3H/HeN and LPS-resistant C3H/HeJ mice, functional TLR4 expression in vivo was shown to be responsible for LPS-induced thrombocytopenia. However, when the C3H/HeN mice were first rendered thrombocytopenic by an antiplatelet antibody and then administered LPS, a significant reduction occurred in their ability to produce TNF-alpha. The decreased cytokine production in the thrombocytopenic mice was restored with platelet transfusion. These results suggest that platelets express various TLRs and that the functional significance of one of these, TLR4, appears to be a role in the modulation of LPS-induced thrombocytopenia and TNF-alpha production. This work implicates platelets as important mediators of innate immune responses against invading microorganisms.
Article
We sought to evaluate the mechanisms that support the stability of platelet aggregates on a thrombogenic surface exposed to flowing blood. Activation of the membrane glycoprotein (GP) IIb/IIIa--mediated in part through the P2Y1 and P2Y12 adenosine 5'-diphosphate (ADP) receptors--is necessary for platelet aggregation. Platelets in growing thrombi exhibit cyclic calcium signal, suggesting that sustained activation may be required for thrombus stability. Blood was perfused over type I collagen fibrils at the wall shear rate of 1,500 s(-1). Three-dimensional visualization of platelet thrombi was obtained in real time with confocal microscopy. The intracytoplasmic Ca2+ concentration ([Ca2+]i) was measured in fluo-3AM-loaded platelets. The height of platelet thrombi in control blood was 13.5 +/- 3.3 microm after 6 min, and increased to 16.3 +/- 4.5 microm (n = 8) after an additional 6 min. In contrast, the height was reduced to 5.4 +/- 2.2 and 3.3 +/- 1.3 microm, respectively (p < 0.01, n = 8), when the blood used in the second 6-min perfusion contained a P2Y1 (MRS2179) or P2Y12 (AR-C69931MX) inhibitor. The [Ca2+]i of platelets within forming thrombi oscillated between 212 +/- 38 nmol/l and 924 +/- 458 nmol/l, with cycles lasting 4.2 +/- 2.8 s that were inhibited completely by AR-C69931MX and partially by MRS2179. Accordingly, thrombi became unstable upon perfusion of blood containing the Ca2+ channel blocker, lanthanum chloride. Flow cytometric studies demonstrated that AR-C69931MX, MRS2179, and lanthanum chloride reduced monoclonal antibody PAC-1 binding to platelets, indicating a decrease of membrane-expressed activated GP IIb/IIIa. Continuous P2Y1 and P2Y12 stimulation resulting in cyclic [Ca2+]i oscillations is required for maintaining the activation of GP IIb/IIIa needed for thrombus stability in flowing blood.
Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice
  • M R Dyer
  • W Alexander
  • A Hassoune
  • Q Chen
  • T Brzoska
  • J Alvikas
  • Y Liu
  • S Haldeman
  • W Plautz
  • P Loughran
  • H Li
  • B Boone
  • Y Sadovsky
  • P Sundd
  • B S Zuckerbraun
  • M D Neal
Dyer, M.R., Alexander, W., Hassoune, A., Chen, Q., Brzoska, T., Alvikas, J., Liu, Y., Haldeman, S., Plautz, W., Loughran, P., Li, H., Boone, B., Sadovsky, Y., Sundd, P., Zuckerbraun, B.S. & Neal, M.D. Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. J Thromb Haemost 17, 1733-1745 (2019).