ArticlePDF Available

Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species

MDPI
Plants
Authors:

Abstract and Figures

This investigation focused on the qualitative and quantitative composition of polyphe-nolic compounds of Mediterranean northern shore Cistus creticus and six further, partly sympatric Cistus species (C. albidus, C. crispus, C. ladanifer, C. monspeliensis, C. parviflorus, C. salviifolius). Aque-ous extracts of 1153 individual plants from 13 countries were analyzed via high performance liquid chromatography (HPLC). The extracts of C. creticus were primarily composed of two ellagitannins (punicalagin and punicalagin gallate) and nine flavonol glycosides (myricetin and quercetin glyco-sides, with m-3-O-rhamnoside as the dominant main compound). Differences in the proportions of punicalagin derivatives and flavonol glycosides allowed the classification into two chemovariants. Plants containing punicalagin derivatives and flavonol glycosides were especially abundant in the western and central Mediterranean areas and in Cyprus. From Albania eastwards, punicalagin and punicalagin gallate were of much lesser importance and the predominant chemovariant there was a nearly pure flavonol type. With its two chemovariants, C. creticus takes a central position between the flavonol-rich, purple-flowered clade (besides C. creticus, here represented by C. albidus and C. crispus) and the more ellagitannin-rich, white-or whitish-pink-flowered clade (here represented by C. ladanifer, C. monspeliensis, C. parviflorus and C. salviifolius). The median antioxidative capacity of C. creticus plant material was, with 166 mg Trolox equivalents/g dry wt, about half of the antioxida-tive capacity of C. ladanifer (301 mg te/g dry wt), the species with the highest antioxidative potential.
Content may be subject to copyright.
Plants2021,10,615.https://doi.org/10.3390/plants10040615www.mdpi.com/journal/plants
Article
PolyphenolDiversityandAntioxidantActivityofEuropean
CistuscreticusL.(Cistaceae)ComparedtoSixFurther,Partly
SympatricCistusSpecies
BrigitteLukas*,LauraBragagna,KatharinaStarzyk,KlaudiaLabedz,KlausStolzeandJohannesNovak
InstituteofAnimalNutritionandFunctionalPlantCompounds,UniversityofVeterinaryMedicineVienna,
Veterinärplatz1,1210Vienna,Austria;laura.bragagna@gmail.com(L.B.);a01005378@unet.univie.ac.at(K.S.);
klaudia.lab@gmail.com(K.L.);klaus.stolze@drei.at(K.S.);Johannes.Novak@vetmeduni.ac.at(J.N.)
*Correspondence:Brigitte.Lukas@vetmeduni.ac.at;Tel.:+431250773110;Fax:+431250773190
Abstract:Thisinvestigationfocusedonthequalitativeandquantitativecompositionofpolyphe
noliccompoundsofMediterraneannorthernshoreCistuscreticusandsixfurther,partlysympatric
Cistusspecies(C.albidus,C.crispus,C.ladanifer,C.monspeliensis,C.parviflorus,C.salviifolius).Aque
ousextractsof1153individualplantsfrom13countrieswereanalyzedviahighperformanceliquid
chromatography(HPLC).TheextractsofC.creticuswereprimarilycomposedoftwoellagitannins
(punicalaginandpunicalagingallate)andnineflavonolglycosides(myricetinandquercetinglyco
sides,withm3Orhamnosideasthedominantmaincompound).Differencesintheproportionsof
punicalaginderivativesandflavonolglycosidesallowedtheclassificationintotwochemovariants.
Plantscontainingpunicalaginderivativesandflavonolglycosideswereespeciallyabundantinthe
westernandcentralMediterraneanareasandinCyprus.FromAlbaniaeastwards,punicalaginand
punicalagingallatewereofmuchlesserimportanceandthepredominantchemovarianttherewas
anearlypureflavonoltype.Withitstwochemovariants,C.creticustakesacentralpositionbetween
theflavonolrich,purplefloweredclade(besidesC.creticus,hererepresentedbyC.albidusandC.
crispus)andthemoreellagitanninrich,white‐orwhitishpinkfloweredclade(hererepresentedby
C.ladanifer,C.monspeliensis,C.parviflorusandC.salviifolius).Themedianantioxidativecapacityof
C.creticusplantmaterialwas,with166mgTroloxequivalents/gdrywt,abouthalfoftheantioxida
tivecapacityofC.ladanifer(301mgte/gdrywt),thespecieswiththehighestantioxidativepotential.
Keywords:Cistuscriticus;Cistaceae;rockrose;HPLC;polyphenols;flavonoids;ellagitannins;anti
oxidantactivity;chemotaxonomy
1.Introduction
CistusL.(Cistaceae,Malvales)comprisesabout20frutescentandsuffrutescentshrub
speciesdistributedintheMediterranean,ontheCanaryIslandsandonMadeira.Thege
nusistaxonomicallycomplex,andhybridizationandahighdegreeofmorphologicalpol
ymorphismcomplicatethedeterminationofspeciesboundaries.Variousmonographs
haverecognizedbetween16and28speciesandhaveproposedconflictingintrageneric
classifications.Thelatesttaxonomictreatmentsbasedonmolecularphylogeneticsand
pollenanalysesrecognizedawellsupported,purplefloweredclade(equivalenttosub
genusCistusandincludingallpinkfloweredCistusspeciesexceptforC.parviflorus)and
asecond,sometimesweaklysupportedwhite‐andwhitishpinkfloweredclade(compris
ingthetwosubgeneraLeucocistusandHalimioidesandC.parviflorus)[1,2].Cistuscreticus
L.(syn.C.incanusauct.,C.villosusL.)isaprominentmemberofthesmaller,purpleflow
eredcladeandoneofthefewCistusspecieswidelydistributedintheeasternMediterra
nean.Thespeciesseemstobeagoodtaxonomicentitybutappearstobehighlyvariable
withsomegeographicalstructuring.Thehighmorphologicalvariabilityisreflectedinthe
Citation:Lukas,B.;Bragagna,L.;
Starzyk,K.;Labedz,K.;Stolze,K.;
Novak,J.PolyphenolDiversityand
AntioxidantActivityofEuropean
CistuscreticusL.(Cistaceae)
ComparedtoSixFurther,Partly
SympatricCistusSpecies.Plants
2021,10,615.https://doi.org/10.3390/
plants10040615
AcademicEditor:AntonellaSmeriglio
Received:3March2021
Accepted:21March2021
Published:24March2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Plants2021,10,6152of20
plethoraofscientificnamesgiventothepresentlyrecognizedC.creticustodistinguishthe
variouskindsofvariation.ThespecificnameC.creticusseemstobewidelyaccepted
(Euro+MedPlantBase,[3])buttheputativesynonymsC.incanusandC.villosushavebeen
frequentlyappliedinlocalflorasandtherecentliterature(seelistofreferences).Basedon
morphologicalandphytochemicalcharacteristics,someauthorsrecognizedthreesubspe
cies,Cistuscreticussubsp.eriocephalus(Viv.)GreuterandBurdet,C.creticussubsp.corsicus
(Loisel.)GreuterandBurdet(bothpoorinessentialoil)andC.creticussubsp.creticus,rich
inessentialoil(e.g.,[4–6]).
AmongstotherCistusspecies,C.creticushasbeenknownasamedicinalplantsince
ancienttimes.Ladanum,exudatesfromtheglandularhairsofthestemandleaves,or
herbalinfusionsfromleavesandupperstemshavebeenusedtohealeczema,abscesses,
furunclesanddiarrheaortotreathairloss(e.g.,[7,8]).Today,herbalinfusions,extractsor
cremesareconsumedorappliedforthetreatmentof,e.g.,influenza,respiratorydisorders,
borreliosesorskinirritations.Thediversepositivehealtheffectsobservedcanbeat
tributedtoawidespectrumofsecondarycompounds.TheessentialoilofC.creticusisrich
inlabdanetypediterpenes(e.g.,[5,6,9,10]).Additionally,thepresenceofawiderangeof
nonvolatilecompounds,mainlybelongingtophenolicacids,ellagitanninsandflavonols,
wasdescribed[11–14].Thereisthusconsiderableinterestinthisspeciesandavastnum
berofpublicationspresentdiversepharmacologicalactivities,e.g.,antioxidant(e.g.,
[12,15]),antiinflammatory[16],antiviral(e.g.,[17–19]),antimicrobial(e.g.,[14,20–24]),an
ticancer[25–27],cardiovascularprotecting[28]orskinprotecting(e.g.,[29,30])activities.
Pharmacologicalpropertiesand,subsequently,healthbenefitsofplantpreparations,
however,arestronglydependentontheirsecondarycompoundcomposition.Despitethe
increasingknowledgeofpromisingpropertiesofC.creticusplantmaterial,thenatural
variabilityoftheresponsiblecompoundsislargelyunknown.Pharmacologically,me
thodicallyormorecompoundcharacterizationorientatedinvestigationsofC.creticus
plantmaterial(e.g.,[31–33])oftenrelyontradesamplesorplantmaterialfromjustoneor
afewpooledindividualplants.Inmanycases,plantmaterialusedforthestudieswasnot
chemicallycharacterized.Acomprehensiveoverviewisalsohinderedbytheconfusing
taxonomiccircumstancesandtheuseofdifferentmethodicalapproachesthatimpedea
comparisonandsummaryofresults.Thefewpreviousstudiesonnaturalbiodiversityof
C.creticuspresentedeitheruncharacterizedNMRdata[34]orwerefocusedontheessen
tialoilcomposition(e.g.,[5,6,9,10]).Notmuchisknownaboutabundanceandintraspe
cificvariabilityofnonvolatilesecondarycompoundspresentinC.creticus.Theauthors
of[11]investigatedpolyphenoliccompoundsofoneorafewindividualplantsoftendif
ferentCistusspeciesnativetoSpain(amongthemC.creticus)andprovidedafirstcom
parativeoverviewaboutintragenericdiversityandspeciesspecificcharacteristicsofphe
nolicacidderivatives,ellagitanninsandflavonoids.Twomorepublicationsdescribedthe
flavonolandpunicalagin/punicalagingallatediversityofCypriotC.creticus[35]orcom
parativelydiscussednonvolatilecompoundsofSardinianC.creticusbelongingtodiffer
entsubspecies[14].Themainaimofthisinvestigationwastoexpandthefragmentary
knowledgebycomparativelycharacterizingflavonolcompounddiversityofnaturalpop
ulationsofC.creticus,C.albidus,C.crispus(allthreefromthepurplefloweredclade),C.
ladanifer,C.monspeliensis,C.parviflorusandC.salviifolius(fourspeciesofthewhite‐and
whitishpinkfloweredclade).Basedonourspecificexperimentalprocedure,besidefla
vonols,twomorecompoundsbelongingtotheellagitannincompoundfamily,puni
calaginandpunicalagingallate,wereprominentlypresentinC.creticusandwereincluded
inthecomparativeanalysis.Twoadditionalparameters,antioxidantactivity(2,2diphe
nyl1picrylhydrazyl(DPPH))andtotalphenoliccontent,weredeterminedtodefineand
comparativelydescribedrugactivity.Onethousandonehundredandfiftythreeindivid
ualplantsofaltogether127populationsfrom13Mediterraneancountrieswerestudied
fortheirtotalphenoliccontent,compoundcompositionandantioxidantactivity.Addi
tionally,15commercialsampleswereanalyzedtoverifythelabelingandqualityofCistus
productsformedicalapplications.Theresultspresentedherecontributetotheknowledge
Plants2021,10,6153of20
ofchemicalcharacteristicsandinter‐andintraspecificcompounddiversityofpromising
medicinalplants,mayprovideargumentsforchemosystematicconsiderationsaswellas
evidenceforpharmacologistsandmaytherewithfinallyhelptoimprovedrugactivity
andproductsafety.
2.Results
Intotal,onehundredandtwentysevenpopulations(1153individualplants)of8dif
ferentCistustaxawereanalyzed.Cistuscreticuswasparamount(72populations,704indi
vidualplants),accompaniedbyC.albidus(13populations,131individualplants),C.xca
nescens(onepopulation,oneplant),C.crispus(twopopulations,22individualplants),C.
ladanifer(onepopulation,eightplants),C.monspeliensis(eightpopulations,89individual
plants),C.parviflorus(eightpopulations,48individualplants)andC.salviifolius(22pop
ulations,150individualplants).
2.1.ExtractCompositionandChemotypes
Chromatogramevaluationwasperformedat354nmfocusingonconspicuousand
recurrentpeakspresentinthespeciesofmaininterest,C.creticus.Altogether,13major
peaks(Table1;FigureS1,SupplementaryMaterial)representingbetween55and100%of
thetotalHPLCpeakarea(75to100%inC.creticus,70to100%inC.albidus,91to97%in
C.crispus,80to96%inC.ladanifer,65to93%inC.monspeliensis,55to90%inC.parviflorus
and60to100%inC.salviifolius;datanotshown)wereanalyzed.Amongthese13peaks
werenineflavonols,fourmyricetinglycosides(m3Ogalactoside,m3Oglucoside,m
Oxylosideorm3Oarabinoside,m3Orhamnoside)andfivequercetinglycosides(q3
Orutinoside,q3Ogalactoside,q3Oglucoside,qOxylosideorq3Oarabinoside,q3
Orhamnoside).Basedoncompoundtablesoftherelevantliterature,weinitiallyfocused
onsuchmyricetinandquercetinglycosidesandweresurprisedbytheappearanceoffour
additionalprominentpeaksthatelutedmuchearlierandexhibiteddistinctUVspectra.
Thesefourpeaksweresubsequentlyidentifiedaspunicalaginderivatives,morespecifi
callytwopunicalaginisomersandtwopunicalagingallateisomers(Table1).
Amongtheminorcompounds,thepresenceoffurthermyricetinglycosides(onem
OrhamnosideOhexoside,oneputativebreakdownproductofm3Orhamnoside),
quercetinglycosides(oneqpentoside,q3Orutinoside7Ohexosideand/orq3O
(2’caffeoyl)rutinosideandonefurtherqderivative)andellagitannins(cornusiinBiso
mers,bishexahydroxydiphenoyl(HHDP)glucoseorpedunculagin,galloylHHDPglu
coside,probably7xylosideellagicacid)wasindicated(datanotshown).Furtherminor
compoundsweretentativelyidentifiedaskaempferolderivatives(k3Ogalactosideor‐
glucoside,kdiglucosides(s)ortilirosideisomersandonefurtherputativekderivative),
flavanols((epi)gallocatechindimerorprodelphinidinB4,(epi)catechin,(epi)gallocatechin
trimer)andapropiophenonederivative(3,4ʹ‐dihydroxypropiophenone3‐β‐Dglucoside).
Table1.HPLCretentiontimes(Rt)ofthe13evaluatedpeaks,massdata(baseionsatnegativemode([MH]),mainfrag
mentions(MS/MS)),peakidentification(M=myricetin,Q=quercetin)andrelevanceofcompoundswithinaqueousex
tractsofC.creticus(rangeofrelativeareapercentagesat354nm).1)Highlightscompoundsthatwereidentifiedviarefer
encecompounds;2highlightspeaksthatwereshowntobedoublepeaksinapartoftheaccessions(characteristicsofthe
overlainpeakareindicatedbelowtherespectiveline).Identificationliterature[11–13,26,31,36–38].
PeakRt
(min)
[MH]‐
(m/z)
MS/MS
(m/z) ProposedCompoundLiteratureRel.Area
%
110.11083301/541Punicalagin,isomer11[11,13,26,31,36] 0–16%
214.41083301/541Punicalagin,isomer21[11,13,26,31,36] 0–19%
314.81251541/603Punicalagingallate,isomer1[11,26,31,36] 0–10%
422.11251541/603Punicalagingallate,isomer2[11,26,31,36] 0–14%
532.1479316M3Ogalactoside[11,12,26,31,37,38] 0–47%
632.8479316M3Oglucoside[11–13,26,31,37,38]0–6%
737.3449316MOxylosideand/orm3Oarabinoside2[26,31,37,38] 0–50%
Plants2021,10,6154of20
838.4463316M3Orhamnoside(myricitrin)1[11–13,26,31,37,38]5–83%
939.3609 301 Q3Orutinoside(rutin)1,2[11–13,26,31,37,38]0–17%

521316Putativemderivative,ev.anartifact
1040.0463301Q3Ogalactoside(hyperoside)1[26,31,37,38] 0–12%
1140.8463301Q3Oglucoside(isoquercetin)1[11,13,26,31,36–38]0–3%
1246.0433 301 QOxylosideand/orq3Oarabinoside2[11–13,26,31,36–38]0–9%
1348.9447301Q3Orhamnoside(quercitrin)1[11–13,26,31,37,38]0–35%
Tovisualizetheincidenceandvariabilityofthemajorcompounds,thepeakareasof
thefourmainmyricetinglycosides(m3Ogalactoside,m3Oglucoside,mOxyloside
orm3Oarabinoside,m3Orhamnoside),thefivemainquercetinglycosides(q3Oru
tinoside,q3Ogalactoside,q3Oglucoside,qOxylosideorq3Oarabinoside,q3O
rhamnoside)andthetwopunicalaginderivatives(punicalaginandpunicalagingallate)
werequantified(equivalenttotherespectivemajorcompoundm3Orhamnoside,q3
Orhamnosideandpunicalagin),cumulatedandplotted(Figure1).
2.1.1.MyricetinGlycosides
Theoverallhighestcontentsofmyricetinderivativeswerepresentinthethreeflavo
nolrich,purplefloweringspecies(C.creticus,C.albidusandC.crispus),whereasthewhite
(C.ladanifer,C.monspeliensis,C.salviifolius)‐orpink(C.parviflorus)floweringspeciesex
hibitedloweramountsorweredevoidofsomeofthesecompounds(Figure1a).Witha
mediancontentof11mg/gdrywt,C.creticusdifferedsignificantlyfromC.albidus(7mg/g
drywt),C.salviifolius(4mg/gdrywt)andthepairC.ladaniferandC.parviflorus(<LOD
and0.3mg/gdrywt).Withinthepurplefloweredspecies,C.crispus(9mg/gdrywt)could
notbedifferentiatedfromC.creticusandC.albidus.Cistusmonspeliensis,with5mg/gdry
wt,thewhitefloweredspeciesrichestinmyricetinglycosides,occupiedacentralposition
betweenC.albidusandC.salviifolius.Withinthethreepurplefloweringspecies,m3O
rhamnosidewasthemainmyricetinglycosideandmaincompound(upto83%relative
peakareapercentageinC.albidus;datanotshown).Inrarecases,m3Ogalactosidewas
higherthanm3Orhamnoside(upto47%inanAlbanianaccessionofC.creticus;datanot
shown).Withinthewhite‐orthepinkfloweringspecies,apredominanceofm3Ogalac
tosideormOxylosidewasmorefrequentortherule.WithinC.parviflorusandC.salviifo
lius,m3Orhamnosidewasgenerallyloworevennotpresent(TableS1,Supplementary
Material).
WithinC.creticus,thehighestamountsofmyricetinglycosidesweredetectedinItaly
andCyprus(mediancontentof13and12mg/gdrywt,respectively;Figure1b).Popula
tionsderivingfromthesetwocountriesdifferedsignificantlyfrompopulationsoriginat
ingfromGreece,Ukraine,IsraelandJordangrowninthegreenhouse(mediancontents
between5and8mg/gdrywt)thatexhibitedtheoveralllowestamountsofmyricetingly
cosides.WildpopulationsofAlbania(12mg/gdrywt)werenotsignificantlydifferent
fromthepopulationsrichestinmyricetinglycosides.WildpopulationsfromSpainand
Croatia(both10mg/gdrywt)andtheLebanesegreenhousepopulation(10mg/gdrywt)
werenotsignificantlydifferentfrompopulationspoorinmyricetinglycosides.
2.1.2.QuercetinGlycosides
Withamediancontentof5mg/gdrywt,C.salviifoliuswasthespecieswiththehigh
estcontentofquercetinderivatives(Figure1c).Significantdifferencesweredetectedbe
tweenC.salviifolius,C.creticus(3mg/gdrywt),C.albidus(2mg/gdrywt)andthethree
speciescomparativelylowinorcompletelylackingquercetinglycosides(C.ladanifer,C.
monspeliensisandC.parvifloruswithcontentsbetween0and1mg/gdrywt).Cistuscrispus
(1mg/gdrywt)tookacentralpositionbetweenC.albidusandthethreewhiteflowering
specieslowinquercetinglycosides.TheextraordinaryC.salviifoliuswasthesolespecies
withquercetinglycosidesasthepredominantflavonolcompoundfamily.Intheflavonol
richaccessionsofpurplefloweringC.creticus,C.albidusandC.crispus,thecontentsof
Plants2021,10,6155of20
quercetinglycosideswereusuallyconspicuouslylowerthanthoseofthemyricetinglyco
sides.WithinC.monspeliensisandC.parviflorus,thepredominanceofthemyricetinglyco
sideswasnotthatdistinctive.Cistusladaniferlackedbothmyricetinandquercetinglyco
sides.InC.creticusandC.albidus,q3Orhamnosidewasoftenthemainquercetinglyco
side(upto34%and80%relativepeakareapercentage;datanotshown).However,the
predominanceofthequercetinrhamnosidewasnotaspronouncedasthatofthemyricetin
rhamnoside(seeabove).Someaccessionsevenshowedq3Orutinosideorq3Ogalac
tosideasthemainquercetinglycosides(about20%oftheC.creticusaccessions,about2%
oftheC.albidusaccessions;datanotshown).WithinC.crispus,q3Ogalactosidewasthe
mainquercetinglycoside.WithinC.monspeliensis,q3Ogalactoside,qOxylosideandq
3Orhamnosidewerepresentinhigheramounts.WithinC.parviflorusandC.salviifolius,
q3Orhamnosidewasonlypresentintraceamountsandq3OgalactosideandqOxy
loside(and/ororq3Oarabinoside)werethemainquercetinglycosides(TableS1,Sup
plementaryMaterial).
WithinC.creticus,theoverallhighestamountsofquercetinglycosideswerepresent
inpopulationsofSpainandItaly(mediancontentsof5and4mg/gdrywt;Figure1d).
BothcanclearlybedifferentiatedfrompopulationsofCyprus(3mg/gdrywt)andthe
greenhousepopulationsfromGreece,UkraineandtheNearEast(allaround1mg/gdry
wt).ThepopulationsfromCroatiaandAlbania(bothwithamediancontentaround2
mg/gdrywt)werenotclearlydifferentiated.
2.1.3.PunicalaginDerivatives
Theoverallhighestamountsofpunicalaginandpunicalagingallatewerepresentin
thealsohereoutstandingC.salviifolius(mediancontentof149mg/gdrywt).Cistussalviifo
liusdifferedsignificantlyfromthefurtherthreewhite‐ orpinkfloweringspecies(C.
ladanifer,C.monspeliensisandC.parviflorus,withmediancontentsbetween57and68mg/g
drywt).CistussalviifoliusalsodifferedfromC.creticus(15mg/gdrywt)andtheothertwo
purplefloweringspecies(C.albidusandC.crispus),whoexhibitednoorsolelytracesof
punicalaginandpunicalagingallate(Figure1e).Cistuscreticuswastheonlypurpleflow
eredspecieswithaccessionsexhibitingnoteworthyamountsofpunicalaginderivatives.
Higherproportionsofpunicalaginandpunicalagingallatewereusuallyalsodetected
withinC.ladanifer.Cistusmonspeliensis,C.parviflorusandC.salviifoliuswererichinpuni
calaginbutthetwopunicalagingallateisomerswerenotpresentinhigheramounts(ex
ceptasmallernumberofsingleaccessionsfromthewholedistributionarea)(TableS1,
SupplementaryMaterial).Besidethetwopunicalagingallatepeaksevaluated,however,
thechromatogramsofwhite‐ andwhitishpinkfloweringspeciesexhibitedtwoaddi
tional,veryconspicuouspeakswithaclearpunicalagingallatesignatureindicatingthe
presenceoftwofurtherisomersthatarespecificforthewhite‐andwhitishpinkflowered
clade.
WithinC.creticus,thehighestproportionsofpunicalaginandpunicalagingallate
weredetectedintheItalian,CroatianandCypriotpopulations(mediancontentsbetween
16and19mg/gdrywt,Figure1f).Populationsfromthesethreecountriesdifferedsignif
icantlyfromthoseofAlbania,Greece,UkraineandtheNearEast(allwithmediancontents
between0and4mg/gdrywt).ThepopulationsfromSpain(9mg/gdrywt)werebetween
punicalaginderivativerichand‐poorC.creticuspopulations.Regardingthetwoevalu
atedellagitannins,C.creticuswasextremelyvariable.About20%oftheC.creticussamples
weredevoidofpunicalaginandpunicalagingallate(morespecificallyamountsbelowour
calculatedLODof0.2μg/μl).SomeaccessionsofC.creticuscontainedloweramountsof
punicalaginbutnodetectableamountsofpunicalagingallate,andsomeexhibitedlower
amountsofboth.Singleaccessionsreachedamountscomparabletothoseextractedfrom
themoreellagitanninrichspecies.AhighdiversitywasobservedespeciallyinItalywhere
thepunicalaginderivativecontentsofC.creticusrangedfrom<LODto147mg/gdrywt.
Plants2021,10,6156of20
Figure1.Comparisonof(a)myricetinglycosideamounts(mg/gdrywt),(c)quercetinglycosideamounts(mg/gdrywt)
and(e)amountofpunicalaginderivatives(mg/gdrywt)ofC.creticus,C.albidus,C.crispus,C.ladanifer,C.monspeliensis,
C.parviflorusandC.salviifolius.Specieswiththesameletterontopdonotdiffersignificantlyfromeachother(groupswere
determinedbyTukeyhonestlysignificantdifference(HSD)test,alpha=0.005).Comparisonof(b)myricetinglycoside
amounts(mg/gdrywt),(d)quercetinglycosideamounts(mg/gdrywt)and(f)ellagitanninamounts(mg/gdrywt)ofC.
creticuspopulationsoriginatingfromSpaintoJordan.Colorsdeterminenatural(pink)orgreenhouseorigin(lightpink)of
plantmaterial.Countrieswiththesameletterontopdonotdiffersignificantlyfromeachother(groupsweredetermined
byTukeyHSDtest,alpha=0.005).ES=Spain(threepopulations),IT=Italy(twocultivatedpopulationsandelevennatural
populations),HR=Croatia(16populations),AL=Albania(fourpopulations),GR=Greece(fourpopulations),UA=
Ukraine(onepopulation),CY=Cyprus(28populations),LB=Lebanon(onepopulation),IL=Israel(onepopulation),JO
=Jordan(onepopulation).
Plants2021,10,6157of20
2.2.SampleClassification
Aprincipalcomponentanalysis(PCA)wasperformedbyusingcompositiondataof
the13majorpeaks(relativepeakareapercentages;Figure2a).Thefirsttwodimensions
explainedabout59%ofthevariance.Principalcomponent1(41%)differentiatedpurple‐
fromwhite‐orwhitishpinkfloweringspecies.Themostimportantvariablesresponsible
forthisdifferentiationincludethetwoflavonolsmyricetin‐andquercetin3Orhamno
sideaswellasthefourpeaksrepresentingthepunicalaginderivatives(Figure2b).More
over,PC1separatedC.monspeliensisfromthethreeotherwhite‐orpinkfloweringspecies,
withsomemglycosidesasdiscriminatingvariables.Withinthepurplefloweredclade,
principalcomponent2(18%ofthevariation)distinguishedC.creticusandC.albidusfrom
C.crispus.Themostinfluentialvariableherewasm3Ogalactoside.Withinthewhite‐
andwhitishpinkfloweredclade,PC2providedonlymarginaldistinguishingpower.The
separationofC.ladaniferindividualsalongastraightlinereflectedthecompletelackof
nineofthethirteenincludedpeaks(allninemyricetinandquercetinglycosides).Witha
closerlookattheC.creticuspopulations,noconspicuousintraspecificdifferentiationwas
obvious(Figure2c).Accordingtoprincipalcomponent1(33%),allthecultivatedpopula
tionsclusteredcloselytogetherontheleftmarginbasedonthepredominanceofq‐and
m3Orhamnoside(Figure2d).Principalcomponent2(28%)providednonoticeabledis
criminationbetweencultivatedandwildpopulationsorpopulationsofdifferentcoun
tries.However,thegroupmidpointsofthegeographicallydistantAlbanianandSpanish
populationsclusteredmorecloselytoeachother(andtothegroupmidpointsofthecul
tivatedpopulations)thantotheirgeographicallycloserpopulations.
Figure2.Principalcomponentanalysis(PCA)andcorrespondingfactorloadings.(a)Plotofthefirsttwodimensions(dim)
fromPCAperformedoverallsevenspeciesandtheelevenevaluatedcompounds(relativeareapercent).In(b),theinflu
enceofeachincludedvariableisindicated.(c)PlotoffirstandsecondprincipalcomponentsfromPCAperformedover
Plants2021,10,6158of20
allsampledC.creticuspopulations(countrywisecombined,groupmidpointswereaccentuated)andtheelevenmaincom
poundsusedforquantification(relativeareapercent).(d)Factorloadingsofthethirteenvariablesincluded.Thepercent
ageofvarianceexplainedbyeachdimensionisindicatedinparenthesis.Colorsindicateeitherspeciesaffiliation(2a)or
differentiatewild(pink)andcultivated(lightpink)populations(2c).ES=Spain(threepopulations),IT=Italy(twoculti
vatedpopulationsandelevennaturalpopulations),HR=Croatia(16populations),AL=Albania(fourpopulations),GR=
Greece(fourpopulations),UA=Ukraine(onepopulation),CY=Cyprus(28populations),LB=Lebanon(onepopulation),
IL=Israel(onepopulation),JO=Jordan(onepopulation).
2.3.ExtractCompositionandClassificationofTradeSamples
FifteentradesamplesofcoarsecutCistusproducts(onetradesamplewaslabeledas
C.creticus,twelveasC.incanusandtwosamplesasCistussp.;Table2)werepurchased
fromdifferentsupplierstocomparetheircompoundcompositionwiththatofthewild
andgreenhousepopulations.Thefourmainmyricetinglycosidessummeduprangedbe
tween1and10mg/gdrywt,thatofthefivemainquercetinglycosidesbetween<LOD
and3mg/gdrywtandthatofthetwopunicalaginderivativesbetween<LODand161
mg/gdrywt(Table2).Asthepeakpatternsofthechromatogramsofthetradesamples
appearedratherheterogeneousandexhibitedattributescharacteristicfordifferentspe
cies,werefrainedfromincludingthemasonesamplegroupintheprimarystatistical
analysisandplots.Theheterogeneityofthetradesampleswaswelldemonstratedwhen
includedinthePCAanalysis(FigureS2,SupplementaryMaterial).Onlyfivesamples
groupedwithinoratleastclosetosamplesofC.creticus,whereasthecompositionofthe
othertradesamplescorrespondedmoretothatofwhitefloweringspecies(C.mon
speliensisandC.salviifolius).
Table2.Designationandgeographicalorigin(whenindicated)ofthe15commercialtradesamplespurchasedfromdif
ferentpharmacies1orhealthretailers2(kbA=controlledorganiccultivation)andtheircontentsofpunicalaginderivatives
andmyricetinandquercetinglycosides(mg/gdryweight).
SampleDeclarationOriginPDerivativesMGlycosidesQGlycosidesTentativeIdentification
   (mg/gdrywt)(mg/gdrywt)(mg/gdrywt)(viaHPLCprofile)
CHP011)Cistussp.TR161.24.82.4Whitefloweredspecies
CHP021C.incanusL. GR<LOD4.00.8C.creticus
CHP031C.incanus‐ 16.810.02.5C.creticus
CHP041C.incanusL. GR<LOD0.70.2C.creticus
CHP052C.incanus‐ 81.14.11.5Whitefloweredspecies
CHP062C.incanuskbA‐ 33.10.50.2Whitefloweredspecies
CHP072C.incanuskbACY85.38.42.3C.creticus
CHP082C.incanusTR22.18.62.0C.creticus(adulterated?)
CHP092C.incanus‐ 50.75.91.7Whitefloweredspecies
CHP102C.incanus‐ 61.54.01.3Whitefloweredspecies
CHP112C.incanus‐ 79.63.51.1Whitefloweredspecies
CHP122C.creticus‐ 123.33.33.0Whitefloweredspecies
CHP132C.incanuskbATR66.03.21.4Whitefloweredspecies
CHP142C.incanus‐ 82.95.12.7Whitefloweredspecies
CHP152Cistussp.TR29.46.51.5C.creticus(adulterated?)
2.4.AntioxidantActivityandTotalPhenolics
ADPPHradicalscavengingassaywasusedtocharacterizetheantioxidantactivity
oftheCistusplantsamples.ThehighestantioxidantactivitieswerepresentinC.ladanifer
(medianantioxidantcapacityof301milligramTroloxequivalentspergramdryweight)
andC.salviifolius(261mgte/gdrywt;Figure3a).BothdifferedsignificantlyfromC.albidus
(142mgte/gdrywt)withtheoveralllowestantioxidativeactivity.Cistuscrispus(201mg
te/gdrywt)wasnotclearlydifferentiatedfromthetwospecieswiththehighestactivities.
Cistusmonspeliensis(171mgte/gdrywt),C.creticus(166mgte/gdrywt)andC.parviflorus
(147mgte/gdrywt)werenotdifferentfromC.albidus,thespecieswiththelowestanti
oxidantactivity.
Plants2021,10,6159of20
WithinC.creticus,thehighestantioxidantcapacitywaspresentintheAlbanianpop
ulations(medianantioxidantcapacityof232mgte/gdrywt;Figure3b).Thepopulations
fromAlbaniaweresignificantlydifferentfromgreenhousepopulationsofcloselylocated
Greecethatexhibitedthelowestantioxidantactivity(115mgte/gdrywt).TheLebanese
(230mgte/gdrywt)andIsraeli(198mgte/gdrywt)populationscouldnotbedifferenti
atedfromtheAlbanianpopulations.ThewildpopulationsfromItaly(174mgte/gdry
wt),Cyprus(170mgte/gdrywt),Spain(164mgte/gdrywt)andCroatia(160mgte/gdry
wt)aswellasthegreenhousepopulationsoriginatingfromIsrael(198mgte/gdrywt),
Jordan(170mgte/gdrywt)andUkraine(139mgte/gdrywt),werenotsignificantlydif
ferentfromtheGreekpopulationswiththelowestantioxidativecapacity.
ThetotalphenoliccontentofCistusplantsampleswasevaluatedspectrophotometri
callyusingcaffeicacidasthestandard.Thehighestcontentsofphenoliccompoundswere
againpresentwithinC.ladanifer(121milligramcaffeicacidequivalentspergramdry
weight)andC.salviifolius(105mgcae/gdrywt)thatcanclearlybedifferentiatedfromC.
monspeliensis(68mgcae/gdrywt),C.creticus(65mgcae/gdrywt),C.parviflorus(54mg
cae/gdrywt)andC.albidus(56mgcae/gdrywt;Figure4c).Cistuscrispus(69mgcae/g
drywt)couldnotclearlybedifferentiatedfromboththespecieswithhigherandthespe
cieswithcomparativelylowcontentsoftotalphenolics.
WithinC.creticus,theAlbanianpopulations(71mgcae/gdrywt),togetherwith
Spanish(79mgcae/gdrywt),Italian(73mgcae/gdrywt)andCypriotpopulations(62
mgcae/gdrywt;Figure4d),exhibitedthehighestmediancontentsofphenoliccom
pounds.TheywerestatisticallydifferentfromthegreenhousepopulationsfromGreece
(45mgcae/gdrywt)withtheoveralllowestcontentsoftotalphenoliccompounds.Pop
ulationsoriginatingfromCroatia(64mgcae/gdrywt),theUkraine(63mgcae/gdrywt)
andtheNearEast(mediancontentsoftotalphenolicsbetween47and58mgcae/gdrywt)
werenotsignificantlydifferentfromboth.SimilartotheresultsfromtheDPPHradical
scavengingassay,nosignificantinfluenceoforigin(fromwildorcultivatedpopulations)
wasdetectable(datanotshown).
WhencomparingtheplotsdescribingDPPHandphenoliccontent,ahighsimilarity
betweenthepatternsofFigure3a/bandofFigure3c/dbecameobvious,indicatingasim
ilarvariabilityofbothparametersbetweenCistusspeciesandC.creticuspopulationsfrom
differentcountries.Thiswasstatisticallyconfirmedbyastrongpositivecorrelation(r=
0.77)betweenantioxidantcapacityandphenoliccontent(TableS2,SupplementaryMate
rial).However,therewasonlyapositivecorrelationbetweenantioxidativeactivity/total
phenolicsandthesummedcontentofpunicalaginandpunicalagingallate(r=0.47/0.43)
andonlyaratherweakpositivecorrelationbetweenantioxidativeactivity/totalphenolics
andthesummedcontentofquercetinglycosides(r=0.27/0.34).Myricetinglycosidesdo
notparticipatemuchinantioxidativeactivity(r=−0.05).
Plants2021,10,61510of20
Figure3.Comparisonof(a)2,2diphenyl1picrylhydrazyl(DPPH)radicalscavengingactivity(mgte/gdrywt)and(c)
totalphenoliccontent(mgcae/gdrywt)ofC.creticus,C.albidus,C.crispus,C.ladanifer,C.monspeliensis,C.parviflorusand
C.salviifolius.Specieswiththesameletterontopdonotdiffersignificantlyfromeachother(groupsweredeterminedby
TukeyHSDtest,alpha=0.005).Comparisonof(b)DPPHradicalscavengingactivity(mgte/gdrywt)and(d)totalphenolic
content(mgcae/gdrywt)ofC.creticuspopulationsoriginatingfromSpaintoJordan.Colorsdetermineeitherspeciesor
natural(pink)orgreenhouseorigin(lightpink)oftheanalyzedplantmaterial.Countrieswiththesameletterontopdo
notdiffersignificantlyfromeachother(groupsweredeterminedbyTukeyhonestlysignificantdifference(HSD)test,
alpha=0.005).ES=Spain(threepopulations),IT=Italy(twocultivatedpopulationsandelevennaturalpopulations),HR
=Croatia(16populations),AL=Albania(fourpopulations),GR=Greece(fourpopulations),UA=Ukraine(onepopula
tion),CY=Cyprus(28populations),LB=Lebanon(onepopulation),IL=Israel(onepopulation),JO=Jordan(onepopu
lation).
3.Discussion
PlantmaterialofsevenCistusspeciesfrom13Mediterraneancountrieswassampled,
aimingtoprovideaprimaryinventoryofnaturalflavonoidvariabilitywithinC.creticus
andtoallowadirectcomparisonofqualitativeandquantitativeextractcompositionwith
thatofdifferent,partlysympatricCistusspecies.
Tooptimizesamplepreparation,initialexperimentswereperformedtoassessthe
influenceofdifferentsampleweightsandextractiontimesandtocomparethecomposi
tionofaqueous(basedontheprotocolof[11])andhydromethanolicextracts(asused,e.g.,
by[32,39]).Thedifferentsolventextractsexhibitedhighlycomparablepeakpatternsbut
differentquantitativecharacteristics(FigureS3,SupplementaryMaterial).Comparedto
hydromethanolicextracts(50%),purewaterextractsexhibitedhigheramountsofthetwo
punicalaginderivativesconsideredinthework(5to30%)andloweramountsofthemain
flavonoidcompounds(20to40%).Basedontheprimaryresults,wedecidedondeionized
waterastheextractionmediumbecauseofthecompositionalsimilarityofwaterextracts
Plants2021,10,61511of20
toCistusteapreparations,themostcommonpharmaceuticalformofuse.Onefurther,
pragmaticargumentwasthemoresafeandsustainableextractionprocedureforthehigh
numberofsamplesexpected.Theherepresentedvaluesquantifyingtotalphenolicsand
antioxidantcapacitymightbe,bytrend,lowerthanthosewithhydroethanolicorhydro
methanolicextracts(seealso[33],whocomparativelydiscussedcharacteristicsofaqueous
andhydroethanolicC.incanusextracts).
Qualitatively,chromatogramsofallthesevenCistusspeciesexhibitedquitestable
and,forthefirmlytrainedeye,verydistinguishingpeakpatterns(FigureS1,Supplemen
taryMaterial).Quantitatively,awiderangeofvariationwasobserved.Polyphenolsare
thoughttobeimportantfactorsforplants’abilitytocopewithdifficultenvironmental
conditionsandaresupposedtoaidtheirpersistenceinextremehabitats.Ashighlyre
sponsivetospecifichabitatconditions,polyphenoliccompoundlevelsandpatternscan
varysignificantlywithinaspecies(e.g.,[40–43]).Theauthorsof[44]observedamoderate
positiveinfluenceoftemperatureandsolarirradianceonthetotalphenoliccontentofC.
incanus,specificallyonthecontentofquercetinandtanninderivatives.Theauthorsof[45]
describedasuiteofgenesregulatingflavonoidbiosynthesisandtransporttobelargely
overexpressedinsunadaptedleavesofC.incanusandreportedalightinducedaccumu
lationofmyricetinandquercetinglycosides.Backedupbytheseresults,itcanbehypoth
esizedthatthelowercompoundlevelsofthepottedpopulationscanbeprimarilyascribed
tolatituderelatedeffectssuchaslowermeansolarirradianceandmeantemperatures
duringtheyear.ThewildCistusplantsweresampledalongawidegeographicalgradient
andfromvarioushabitats.Eachindividualplantwasexposedtospecificenvironmental
conditionsandrespondedtotheminanindividualway.Toovercomethisvariabilityand
toobtainstatisticalsignificance,wecollectedplantmaterialfromahighnumberofwide
spreadpopulationsandanalyzed,inmostcases,atleasttenindividualplantsperpopu
lation.Tominimizeeffectsrelatedtoplantdevelopmentorseason[33,44],plantsexhibit
ingacomparablephenologicalstage(fulltoendingbloom)wereharvested.Basedonthis
carefullycollectedandextensivesampleset,persistentoveralltendencieswerefound.
ExtractsofC.creticuswereusuallycharacterizedbypunicalaginasthemaincom
poundinthe“ellagitanninhalf”andm3Orhamnoside(inrarecasesm3Ogalactoside)
asthemaincompoundinthe“flavonolhalf”ofthechromatogram.Inoursampleset,
about80%oftheC.creticusplantsexhibitedbothflavonolglycosidesandpunicalagin
derivates.About20%ofourC.creticussamplesweredevoidofpunicalaginandpuni
calagingallate(morespecificallyamounts<LODof0.2μg/μl).Thisnearlypureflavonol
variantwasdetectedfromSpaintotheNearEast,withhigherabundanceinthemost
western(37%inSpain)andmoreeasternmostpopulations(40%inAlbaniaandthe
Ukraine,75%inGreece,upto100%inpopulationsoftheNearEast)andaconspicuously
lesserfrequencyinItaly(9%),Croatia(8%)andCyprus(12%).Therarerflavonolchemov
ariantrelatesC.creticustoitscloserelativesC.albidusandC.crispusandseemstobea
specificcharacteristicofthepurplefloweredclade,aswasalreadypostulatedby[11].
ComparedtoC.creticus,thechromatogramcharacteristicsofC.albidusappearedtobe
morestable,withtheflavonolvariantasthepredominantone(87%ofthesamples)and
fewindividualplantsexhibitingcomparativelysmallamountsofpunicalaginderivatives.
WithinthetwopopulationsofC.crispus,solelytheflavonolvariantwasdetected.The
frequentchemovariantcharacterizedbythepresenceofflavonolglycosidesandpuni
calaginderivativesrelatespurplefloweredC.creticustothewhite‐orwhitishpinkflow
eredspeciesC.ladanifer,C.monspeliensis,C.parviflorusandC.salviifolius.ComparedtoC.
creticus,thewhite‐orwhitishpinkfloweringspeciesusuallycontainedhigherpercent
agesandamountsofpunicalaginand,inmanycases,alsoofpunicalagingallate.Moreo
ver,withinthewhite‐andpinkfloweredspecies,twoadditionalpunicalagingallateiso
merswereprominentlypresent,indicatingclade‐andspeciesspecificpeculiaritiesinthe
respectivebiosyntheticpathway.Inthewhite‐orwhitishpinkfloweringspecies,flavonol
compoundswereusuallyoflessimportancethaninthepurplefloweringones.Theone
populationofC.ladanifercompletelylackedthemyricetinandquercetinglycosidesand
Plants2021,10,61512of20
bothcompoundfamilieswerescarcelypresentwithinC.parviflorus.Somehow,higherper
centagesofflavonolsweredetectedwithinC.monspeliensisandC.salviifolius,thespecies
thatwasexceptionalregardingitsvariabilityandpartlyoutstandinghighcontentofquer
cetinglycosides.Regardingchemotypecomposition,ourresultsresembled,inprinciple,
previousresultsdescribedfromsingleorfewsamplesofSpanishC.creticus,C.albidus,C.
crispus,C.ladanifer,C.salviifoliusandC.monspeliensis[11]andItalianC.creticus[12–14,44].
OnefurthersampleofPortugueseC.ladaniferexhibited,contraryto[11]andourresults,
alsosmalleramountsofquercetinglycosides[36].
Thefirsttwodimensionsoftheprincipalcomponentanalysisvisualizewelltheout
comesdiscussedaboveandearlierhypothesesthatwerebasedontheanalysisofsingle
orfewextractsoftendifferentCistusspecies[11].Accordingtotheirpolyphenolicprofiles,
thepurplefloweredclade(subgenusCistus)couldbewellseparatedfromthewhite‐and
whitishpinkfloweredclade(allfourspecieshererepresentingsubgenusLeucocistus).
Thisdifferentiationwasmainlybasedonthepresenceandproportionsofpunicalagin,
punicalagingallateandm‐andq3Orhamnoside,butalsofurthermyricetinandquerce
tinderivativeswereinvolved.Withinthepurplefloweredclade,C.crispuswasclearly
distinct,whereasC.creticusandC.albiduswerenotdifferentiatedfromeachother.These
resultsresembledearlierfindingsbasedonDNAsequenceandpollenanalysisthatpos
tulatedacloseevolutionaryrelationshipofC.creticusandC.albiduswithC.crispusasa
moredistantlyrelatedsistertaxon[1,2].Obviously,theseparationofthepurpleflowered
andthewhite‐andwhitishpinkfloweredcladewasnotentirelyperfect,mainlydueto
themanyItalian,CroatianandCypriotaccessionsofC.creticusthatexhibitedcompara
tivelyhighpercentagesofpunicalaginderivativesandtendedtowardssubgenusLeucocis
tus.Theunequalgeographicaldistributionofplantsrichinpunicalaginderivativeswithin
C.creticuswasalsolightlyindicatedinthePCAplots.Thetwogroupmidpointsrepre
sentingC.creticusfromgeographicallydistinctSpainandAlbania,respectively,clustered
morecloselytoeachotherthantothegroupmidpointsrepresentingtheaccessionsfrom
theirgeographicallyclosercountriesItalyandCroatia.Suchanaccumulationofspecial
featuresincertaingeographicalareasofaspeciesdistributionmightconstitutearesponse
tospecifichabitatfactors(seeabove).However,theoveralltendencyofahigherfrequency
ofpunicalaginderivativescontainingplantsinpopulationsoriginatingfromthemid
Mediterraneanareaandtheminorimportanceofpunicalaginderivativesinthecontinen
taleasternMediterraneanareawere,tosomedegree,reflectedinthegreenhousepopula
tionsthatwerecultivatedandharvestedunderuniformconditions.Thesecongruentpat
ternswouldarguemoreforthelocalpresenceofgeneticvariantsorforlocalgeneticex
change.GeneticanalysisruninparallelindeeddetecteduniqueDNAsequencecharacter
isticsintheItalian,CroatianandCypriotpopulations(Lukasetal.,unpublished).Besides
thenongradualclusteringofpopulationsrelatedtogeography,noclusteringclearlyre
latedtoourdesignationofsubtaxa(subspeciesorvarieties)wasobserved.Thisisinac
cordancewith[35],whoanalyzedflavonoiddiversityofCypriotC.creticusinmoredetail
anddescribedaconspicuouspopulationclustercomparativelypoorinflavonolglyco
sidesthatwasinthemostwesternpartoftheisland(geographicallyclosetoorwithinthe
PolisBasin)andincludedpopulationsofbothC.creticusvarietiesvar.tauricusandvar.
creticus.Basedon52compounds,[14]couldnotdetectsignificantqualitativedifferences
inpolyphenoliccompoundpatternsofSardinianC.creticussubsp.corsicus,subsp.erio
cephalusandsubsp.creticus.Thesubtaxonrelated,intraspecificdifferentiationbasedon
essentialoilandNMRdata[6,34]andfromgeneticdata[6]seemsnottobereflectedin
thepolyphenolicprofilesofC.creticus.Withinthewhite‐ andwhitishpinkflowered
clade,C.monspeliensisseparatedclearly,whereastheotherthreespecieswerenotsepa
rated.Theevolutionaryrelationshipsthatlinkwhite‐andwhitishpinkfloweredspecies
weredescribedtoberathercomplexandarestillunresolvedinmanydetails[1,2].Cistus
monspeliensis(sect.LedoniaDunal),C.ladanifer(sect.Ladanium(Spach.)Gren.&Godr.),C.
parviflorus(sect.LedonellaDunal)andC.salviifolius(sect.LedoniaDunal)havebeenas
signedtothreedifferentgenericsectionsbutnoneofthesesectionsweresubsequently
Plants2021,10,61513of20
supportedbycombinedDNAsequenceandpollenanalysis[2].Thepolyphenolprofiles,
asrecordedduringthisinvestigation,didnotprovidedistinctivesignalsinthecaseof
threeofthefourspeciesincluded.However,itmustbeconsideredthat,duetotheprimary
aimofthisinvestigation,ahigherproportionofthetotalHPLCpeakareaofthewhite‐or
whitishpinkfloweringspecieswasnotconsidered.Thehereneglectedcompoundsmay
providefurtherdistinctivesignalsforaclearerspeciesdiscrimination.Theauthorsof[11]
defined,besidepunicalagin,hexahydroxydiphenoylglucose,(epi)catechin,(epi)gallocat
echinandan(epi)catechin(epi)gallocatechindimerascompoundswithhighdiscriminat
ingpower.
Theoverallhighestantioxidativeactivitieswereobservedintwospeciesofthewhite‐
andwhitishpinkfloweredclade,C.ladanifer(meanvalueof303mgte/gdrywt)andC.
salviifolius(264mgte/gdrywt).Asexpected,theantioxidativecapacitycorrelated
stronglywiththetotalphenoliccontentbuttherewassolelyamoderate(punicalaginde
rivatives),weak(quercetinglycosides)orevenno(myricetinglycosides)correlationbe
tweenantioxidantactivityandquantifiedcontentsofmaincompoundsandmaincom
poundfamilies.Inparticular,theweakorlackingstatisticalcorrelationbetweenantioxi
dativeactivityandmyricetinorquercetinglycosideswasrathersurprising.Myricetin,
quercetinandsomeoftheirglycosides,especiallytheirrhamnosides,weredescribedto
bepowerfulantioxidants,withanantioxidantactivitysimilartoorslightlyweakerthan
thatofvitaminE[37,46].However,whencomparingtheplotsoftotal,myricetin,querce
tinandpunicalaginderivativecontentsofthedifferentspecieswiththeplotvisualizing
theirantioxidativecapacity,thepatternsareobviouslynotcongruent.Thiswasespecially
obviouswithinC.creticus.Althoughstrikinglypoorerinthesecompounds,theantioxida
tivecapacityofplantmaterialfromsomecultivatedC.creticuspopulationswascompara
bletothatofmanynaturalpopulations.Thesefindingsimplythat,besidetherecorded
punicalaginderivativesandflavonolglycosides,furthercomponents(possiblynotthat
sensitivetocertaingrowingconditions)mustbesignificantlyinvolvedintheantioxida
tivecapacityofCistusplantmaterial.Suchcandidatecompoundswouldbe,e.g.,hexahy
droxydiphenoylglucose,gallocatechin,gallicacidandcatechinthatwere,besidesm3O
rhamnoside,identifiedascompoundswithstrongerantioxidantactivityinC.incanus
herbalteainfusions[36].
Withinthepurplefloweredclade,plantmaterialofC.crispus(206mgte/gdrywt)
andplantmaterialofC.albidus(142mgte/gdrywt)exhibitedaslightlyhigheranda
slightlylowerantioxidativeactivity,respectively,thanthatofC.creticus(170mgte/gdry
wt).Comparedtothewhite‐orwhitishpinkfloweredspecies,theantioxidativecapacity
ofC.creticusplantmaterialwasabouthalfofthatofC.ladanifer,abouttwothirdsofthat
ofC.salviifoliusorclosetothatofC.monspeliensis(175mgte/gdrywt)andC.parviflorus
(169mgte/gdrywt).Directcomparisonsofphenoliccontentsandantioxidantactivity
withresultsofpreviousinvestigationsofCistusplantmaterialweredifficultasvarious
experimentalconditionsanddifferentmodesofresultexpressionwereused.Thetotal
phenoliccontentsdeterminedinthecourseofthisinvestigationseemtobesomehow
higherthanthosepublishedby[47](about55mggallicacidequivalents(gae)/gdrywtin
ethanolicextractsofTunisianC.monspeliensisandC.salviifolius),seemtosomehowresem
blethoseof[32](about65mggae/gdrywtinanaqueousextractofSyrianC.creticus,
about70mggae/gdrywtinanaqueousextractofC.salviifolius)orseemtobesomehow
lowerthanthosepredictedby[48](about250mggae/gdrywtinanethanolicextractofa
PortugueseC.ladanifersample),[33](upto115mggae/gdrywtinethanolicextractsofa
BulgarianC.creticussample),[49](about500mggae/gdrywtinanethanolicextractofa
TunisianC.salviifoliusleafsample)or[39](about408mggae/gdrywtor335mggae/g
drywtinaqueousextractsofMoroccanC.salviifoliusandC.monspeliensis).Whencompar
ingC.creticustoprominentaromaticplantsoftheLamiaceaefamilythatwerepreviously
studiedinourlabbythesamequantificationmethodusedhere,theantioxidativeactivity
ofC.creticuswashigherthanthatofSalviaofficinalis[50]orThymusvulgarisL.[51].How
ever,thetotalphenoliccontentofC.creticuswascomparabletothatofSalviaofficinalis[50]
Plants2021,10,61514of20
andslightlyhigherthanthatofThymusvulgarisL.[51],indicatingspecificcompoundsof
higheractivityinCistus.
Inrecentyears,CistusplantmaterialandCistuspreparationshavebeenincreasingly
usedfordiversemedicinalpurposes.However,uptodate,noCistusmonographisavail
ableintheEuropeanPharmacopoeia[52]todefinetargetspeciesandminimumquality
parameters.DespiteitslongtraditionaluseinsomeSouthEuropeancountries,Cistusis
subjecttothe“novelfoodregulation”(EU2015/2283).Acertainvarietylocallynativeto
northernGreece,CistusincanusL.Pandalisherba,hasbeenregisteredinthecategory
herbalinfusions[53].Apartfrompharmacies,differentCistusplantmaterialsareoften
offeredasa“bathadditive”.Inthefaceoflackingguidelinesfordrugqualityrequire
mentsandconfusioncausedbytheinconsistentcategorizationofCistusplantmaterial,it
isdoubtfulthatconsumerscanrelyonaconstantactivesubstancecontentandaconsistent
qualityandpurityoftheirhealthremedies.Tovalidatethepolyphenoliccontentandcom
positionofcurrentlyavailablecommercialproducts,15tradesamplesofcoarsecutCistus
plantmaterialfromdifferenttrademarks,pharmaciesandhealthretailerswereincluded
inouranalysis.TwelveofthesetradesampleswereoriginallylabeledasC.incanusand
oneasC.creticus,andtwofurtherCistusherbal“teas”hadnospeciesdesignationonthe
label.Thecontentofwatersolublecompoundsofthetradesamplesvariedhighly,from
nearlyzerotowellcomparablewiththatofplantmaterialcollectedduringthisinvestiga
tion.Thisstrikingvariabilityinpolyphenoliccompoundlevelsmightreflectdifferences
inindividualsamplecomposition,ageorsamplingandstorageconditionsoftrade
batches.Theauthorsof[31]revealedthatthewoodenfractionoftradesamplescontained
onlysmallamountsofpolyphenolscomparedtotheleafyfraction.Therewasalsohigh
variabilityconcerningthequalitativecompositionoftheaqueousextracts,whatwasim
mediatelyvisiblefromthecharacteristicpeakpatternsoftheirchromatograms.Theprin
cipalcomponentanalysisthenplacedsixofthetradesampleswithinorclosetotheC.
creticus/C.albiduscluster,whereastheotherninesamplesseemedtoresemblemorethe
typicalqualitativecharacteristicsofwhitefloweringspecies.Smallwhiteflowerpieces
presentinsomeofthesetradesamplessubsequentlyconfirmedourresults.Theseout
comesledtotheconclusionthat(currently)tradebatchesofCistusplantmaterialcandif
ferhighlyinqualityandarealmostcertainlynotdesignatedcorrectlyorareatleastad
mixturesofC.creticusanddifferentCistusspecies.Thesefindingsshouldbeconsidered
whenpostulating,assigningorcomparingpharmaceuticaleffectsbasedonresultsgained
fromtheanalysisoffewCistustradesamplepreparations.
4.MaterialsandMethods
4.1.PlantMaterial
Onehundredandtwentysevenpopulationsand1153individualplantsofC.creticus
L.(72populations,704individualplants),C.albidusL.(13populations,131individual
plants),C.xcanescensSweet(onepopulation,oneplant),C.crispusL.(twopopulations,22
individualplants),C.ladaniferL.(onepopulationofeightplants),C.monspeliensisL.(eight
populations,89individualplants),C.parviflorusLam.(eightpopulations,48individual
plants)andC.salviifoliusL.(22populations,150individualplants)and15tradesamples
fromdifferentsupplierswereanalyzedforthisinvestigation.Themainpartoftheplant
materialwascollectedinthewildfromnativepopulationsinAlbania,Croatia,Cyprus,
France,Italy,PortugalandSpain,inautumn2016(Albania)orthelatespringof2017and
2018.ExceptforthefiveAlbanianpopulationsandtwoPortuguesepopulationsofC.cris
pus,thebiggerpartofthewildplantswasharvestedatacomparablephenologicalstage
(beginningtoendofbloom).Thesecondpartoftheanalyzedplantmaterialwasfrom
pottedC.creticus(tenpopulations)andC.albidus(fivepopulations)plantsgrowninthe
greenhouse(greenhousecultivationinwinter,openlandcultivationfromearlyspringto
lateautumn)attheUniversityofVeterinaryMedicineVienna.Seedsforthegreenhouse
grownplantswereobtainedfromtheMilleniumSeedbank(RoyalBotanicGardensKew)
Plants2021,10,61515of20
andtheSeedBankBerlinDahlem.Thecultivatedplantswereinfullbloomwhenthey
wereharvestedintheirsecondvegetationperiod(earlysummer2018).Geographicallo
cationsofpopulationscanbeseeninFigure4,geographicalcoordinatesofthenativepop
ulationsandseedbankaccessionnumbersaresummarizedinTableS1(Supplementary
Material)andtradesamplesarecharacterizedinTable2.Theincludedpicturegallery
(SupplementaryMaterial)offersaviewofselectednaturalpopulationsandpottedplants.
Allplantmaterialofwildpopulationswassampledinaccordancewiththeguidelinesof
theNagoyaProtocol(https://www.cbd.int/abs/text(accessedon15September2016)).Spe
cieswereidentifiedbyfollowingkeysofthelocalfloras(referencesareprovidedinTable
S1,SupplementaryMaterial).Voucherspecimensofwildandcultivatedpopulations,cur
rentlykeptattheherbariumoftheInstituteforAnimalNutritionandFunctionalPlant
Compounds,UniversityofVeterinaryMedicineVienna,willbesubmittedtotheHerbar
iumoftheInstituteofBotany,UniversityofVienna(WU).Copyrightofpicturesinthe
graphicalabstractbelongstoJohannesNovak,CorinnaSchmiderer,MartinaPettighofer
and,inthecaseofC.crispus,WillemvanKruijsbergen(SaxifragaFoundation;
http://www.freenatureimages.eu(accessedon15October2020).
 
Figure4.GeographicaloriginoftheCistuspopulationsanalyzed(distributionmapwascompiledwithGoogle
Earth(https://www.google.com/earth/download/(accessedon12March2020)).ThethreemarksinCyprusrep
resentthe29populationsofC.creticus,eightpopulationsofC.parviflorusandsevenpopulationsofC.salviifoliussampled
(mainly)inSouthernCyprus.GeographicalcoordinatesaresummarizedinTableS1,SupplementaryMaterial.
4.2.SamplingProcedureandHandlingofPlantMaterial
Fromeachindividualsampledplant,onerepresentativebranchwascollectedfrom
thecanopytop.Theplantmaterialwaseitherairdried(wildpopulations)ordriedina
dryingcabinet(30°C,greenhousepopulations).Thedryplantmaterialwasthenkeptin
cartonsatroomtemperature.Foranalysis,allleavesofabranchwereseparatedfromthe
stems.Stemsand,whenpresent,flowersandearlyfruitswereremoved.Immediatelybe
foreextraction,arepresentativeportionoftheroughlycrushedleaveswasgroundtoa
finepowderbyusingaballmill(Pulverisette,Fritsch,Germany).
4.3.Extractions
Onehundredandfiftymgoffinelygroundedplantmaterialwasextractedwitheight
mlmilliQwaterat60°C,for120mininashakingwaterbath(basedontheprotocolof
[11]).ThefilteredextractswerealiquotedinHPLCvials(forHPLCanalysis)andin1.5ml
Eppendorftubes(foranalysisofDPPHandtotalphenolics).Thealiquotswerekeptat‐20
°Cuntilanalysis.
Plants2021,10,61516of20
4.4.HPLCandHPLCMSAnalysis
HPLCanalyseswereperformedusingaShimadzuNexeraXRchromatograph(Shi
madzu,Austria)equippedwithacontroller(CBM20A),adegasser(DGU20A5R),aqua
ternarypump(LC20ADXR),anautosampler(SIL20AXR),acolumnoven(CTO20AC)
andaphotodiodearraydetector(SPDM20A).ThesoftwarepackageLabSolutions5.82
(Shimadzu,Austria)wasusedfordatacollectionandprocessing.Separationswereper
formedonaXBridge™ShieldRP18column(3.5μm,4,6×150mm;Waters,Austria)
equippedwithaC18guardcolumn(ODSOctadecyl,4mm×0.3mm,Phenomenex,Ger
many).Alineargradientelutionwascarriedoutataflowrateof1mL/minandanoven
temperatureof25°Cusingacetonitrile(CarlRoth,Germany;solventA)and2%acetic
acid(CarlRoth,Germany;solventB).Thefollowinggradientwasused:min0–38,6–17%
AinB(lineargradient);min38–53,17–20%AinB(lineargradient);min53–58,100%A
(isocratic);min58–65,0–6%AinB(lineargradient).Injectionvolumewas20μL.Peak
detectionwasperformedat354nm,closetotheUV/Visabsorptionmaximumofmany
flavonoids.
Aftervisualinspectionofthefirst30chromatogramsofCypriotC.creticus,13prom
inentand/orrecurrentpeaksweredefinedandsubsequentlyevaluated(Table1andFig
ureS1,SupplementaryMaterial).Identificationandverificationoftransspeciesoccur
renceoftheseprominentcompoundswereconductedvialiteraturedata(referencesare
providedinTable1),bycomparingretentiontimesandUVspectratothoseofavailable
referencechromatographystandards(punicalagin,myricetin3Orhamnoside,quercetin
3Orutinoside,quercetin3Ogalactoside,quercetin3Oglucoside,quercetin3Orham
noside;allfromPhytolab,Germany)andbycomparativerunsofselectedaccessionsof
thesevenCistusspecies,commercialstandardsandcharacterizedgreenteasamplesona
HPLCMS(Waters,Austria)(Table1).TheHPLCMSwasequippedwithaseparation
module(Waters2695),aphotodiodearraydetector(Waters996)andamassspectrometer
(WatersMicromassQuattromicroTM).Variousrunsusingalternativecolumns,sol
vents/gradientsandscanmodeswereperformedandcomparativelyanalyzedtotracese
lected(mass)componentsandtoverifythepresenceorcompositionofmultiplepeaks.
TheESIsourcewasoperatedinnegativemodeusingthefollowingconditions:capillary
voltage2.5kV,conevoltage35V,extractor3V,RFlens0V,sourcetemperature150°C,
desolvationtemperature350°C.Nitrogenwassetat600L/min.Theunambiguousidenti
ficationofsmallerorminorpeaks,however,wasfinallyhinderedbythecombinationof
lowsignalstrengthandslightretentiontimeshiftsandpatternshiftswhencomparing
HPLCandHPLCMSchromatograms.
Thequantificationofpunicalaginandpunicalagingallateaswellasthatofmainmy
ricetinandquercetinglycosideswasconductedbycomparisonwithexternalstandardsof
punicalagin(y=3345451x,r2=0.995;LOD=0.189μg/μL,LOQ=0.631μg/μL;quantifica
tionofpunicalagingallatewasperformedequivalenttopunicalagin),myricetin3O
rhamnoside(y=36317204x,r2=0.998;LOD=0.0199μg/μL,LOQ=0.066μg/μL;quantifi
cationofm3Ogalactoside,m3OglucosideandmOxylosidewasperformedequiva
lenttom3Orhamnoside)andquercetin3Orhamnoside(y=42551527x,r2=0.999;LOD
=0.009μg/μL,LOQ=0.032μg/μL;quantificationofq3Orutinoside,q3Ogalactoside,
q3OglucosideandqOxylosideorq3Oarabinosidewasperformedequivalenttoq3
Orhamnoside).Quantificationwasexpressedasmilligrampergramdryweight(mg/g
drywt).
4.5.TotalPhenolics
Thetotalphenoliccontentwasevaluatedasdescribedin[50],withsmallmodifica
tions.ThewaterextractsweredilutedwithmilliQwater(1:10).Tenμlofthedilutionwas
mixedwith100μlofmilliQwaterand5μlofFolin–Ciocalteu’sphenolreagent(Merck,
Germany)inamicroplatewell.Themixturewaskeptatroomtemperaturefor3minand
then10μlofNa2CO3solution(CarlRoth,Germany;35gin100mlmilliQwater)and125
Plants2021,10,61517of20
μlofmilliQwaterwereadded.After60minofincubationinthedark,theabsorbanceat
750nmwasmeasuredusingamicroplatereader(iMark,BioRad,Austria).Caffeicacid
(SigmaAldrich,Austria;10mgin100mlmilliQwater)wasusedasstandard.Ablank
wasusedtocorrectthereadings.Calibrationpointsandsampleswerepipettedandmeas
uredasquadruplicates.Theresultswereexpressedasmilligramofcaffeicacidequiva
lentspergramdryweight(mgcae/gdrywt).
4.6.DPPHRadicalScavengingActivity
TheDPPHradicalscavengingactivitywasevaluatedaccordingto[50].Thewater
extractsweredilutedwithmilliQwater(1:10).OnehundredandfiveμLofthedilution
wasthenmixedwith95μlmethanol(CarlRoth,Germany)and100μLofsolution(2,2
diphenyl1picrylhydrazyl,SigmaAldrich,Germany;0.0038gin25mlmethanol).After
30minincubationinthedarkatroomtemperature,theabsorbanceofthereactionmixture
wasmeasuredat490nmusingamicroplatereader(imark,BioRad,Austria).Trolox(6
hydroxy2,5,7,8tetramethylchroman2carboxylicacid,SigmaAldrich,Austria;0,0063g
in10mlpureethanol)wasusedasstandard.Ablankwasusedtocorrectallreadings.
Calibrationpointsandsampleswerepipettedandmeasuredasquadruplicates.There
sultswereexpressedinmilligramTroloxequivalentspergramdryweight(mgte/gdry
wt).
4.7.Statistics
Statisticalanalyses(basicstatisticalparameters,correlations,AnalysisofVariance
(ANOVA),Tukeyhonestlysignificantdifference(HSD)test,principalcomponentanaly
sis(PCA))wereperformedandvisualizedbyusingR3.5.2[54]andthepackagesagrico
lae,corrplot,dplyr,factoextra,FactoMiner,ggplot2,ggpubr,ggsci,Hmisc,
multcompView,PerformanceAnalytics,readxl,tidyverseandRColorBrewer.
5.Conclusions
Cistuscreticusexhibitedanimpressivediversityintotalcontentofwatersolublecom
poundsandincontentsofpunicalaginderivativesandflavonolglycosides.Twochemov
ariantsbasedonthepresence/absenceofpunicalaginderivativeswereidentified:amore
frequentonecontainingpunicalaginderivativesandarareronewithoutpunicalaginde
rivatives.Punicalaginderivativescontainingplantsaccumulatedregionallyinthewest
ernandespeciallythemidMediterraneanareasandinCyprus.Inpopulationsoftheeast
ernMediterraneanarea,punicalaginandpunicalagingallatewere(almost)absent.Beside
thislargescalepattern,therewasnoobviouscorrelationbetweenpolyphenolicprofiles
andsmallscalemorphologicaldiversitysupportingaclassificationofC.creticusvariants
tosubspeciesorvarieties.NaturalandcultivatedC.creticuspopulationsdifferedsignifi
cantlyinflavonolglycosideandpunicalaginderivativecontentsbutnotintotalphenolic
contentandantioxidativecapacity.ComparedtotheCistusspecieswiththeoverallhigh
estantioxidativecapacity,C.ladanifer,theantioxidativecapacityofC.creticuswasapprox
imatelyhalf.ComparedtotwoLamiaceaespeciesoftendeclaredasmedicinalplantswith
highantioxidativecapacity,SalviaofficinalisandThymusvulgaris,theantioxidativecapac
ityofC.creticuswashigher.
ThespecificpolyphenoliccompoundcompositionofCistusspeciesseemstobere
latedtoevolutionaryevents.Basedonrelativepercentagesofpunicalaginderivativesand
themainflavonolglycosides,purplefloweredandwhite‐ andwhitishpinkflowered
cladescouldprincipallybewellseparated.WithinthepurplefloweringsubgenusCistus,
C.crispusdifferentiatedclearlyfromthestronglyoverlappingclustersofC.creticusandC.
albidus.MorepunicalaginderivativerichplantsofC.creticussegregatedtowardssubge
nusLeucocistusandmightindicateanevolutionaryeventdifferentiatingwestern/mid
MediterraneanpopulationsandeasternMediterraneanpopulationsofC.creticus.Within
Plants2021,10,61518of20
subgenusLeucocistus,C.monspeliensisseparatedclearly,whereastheotherthreespecies
didnotdifferentiate.
SupplementaryMaterials:Thefollowingareavailableonlineatwww.mdpi.com/2223
7747/10/4/615/s1,FigureS1:(a)ExamplechromatogramofCypriotC.creticusrecordedat354nm.
Redmarksrefertotheretentiontimesofthe13peaksdefinedafterinitialinspectionofrepresenta
tivechromatograms.Thepeaknumbersindicatedinthegraphcorrespondtothepeaknumbersand
compoundslistedinTable1andTableS1.(b)Directcomparisonofrepresentativeexamplechro
matogramsofC.creticus(SRC580,cre),C.albidus(SRC71,alb),C.crispus(SRC135,cri),C.ladanifer
(SRC59,lad),C.monspeliensis(SRC115,mon),C.parviflorus(SRC595,par)andC.salviifolius(SRC96,
sal).Identificationofthequantifiedmaincompoundsisindicated.,FigureS2:PrincipalComponent
Analysis‐plotofthefirsttwodimensionsfromPCAperformedoverallsevenspeciesandtheeleven
evaluatedmaincompounds(relativeareapercent).Blacksquaresindicatethepositionofthe15
tradesamples.,FigureS3:HPLCchromatograms(354nm)ofSRC170andSRC204(C.creticus,Cy
rus),comparisonofhydromethanolicextract(50:50;blackline)andpurewaterextract(pinkline).,
TableS1(sheet1):GeographicaloriginofnaturalandcultivatedCistuspopulations,collectionde
tails,numberofplantsanalysed,populationmeanvaluesandstandarddeviationsofquantified
maincomponents,totalphenolicsandantioxidativeactivity.TableS1(sheet2):Speciesminimum
values,maximumvalues,meanvaluesandstandarddeviationsofmaincomponents,totalphenolics
andantioxidantactivity.TableS2:Statisticalcorrelationbetweentotalphenolics(mgcae/gdrywt),
antioxidantactivity(mgte/gdrywt)andsumsofpunicalaginderivatives,myricetin‐andquercetin
glycosides(mg/gdrywt).,Picturegallery:ViewofselectednaturalC.creticuspopulationsandpot
tedCistusplants.
AuthorContributions:Conceptualization,B.L.andJ.N.;datacuration,B.L.;formalanalysis,B.L.,
K.S.(KlausStolze)andJ.N.;fundingacquisition,B.L.;investigation,B.L.,L.B.,K.S.(Katharina
Starzyk),K.L.andK.S.(KlausStolze);methodology,B.L.andJ.N.;projectadministration,B.L.;
supervision,B.L.,K.S.(KlausStolze)andJ.N.;validation,B.L.,K.S.(KlausStolze)andJ.N.;writ
ing—originaldraft,B.L.;writing—reviewandediting,B.L.,L.B.,K.S.(KatharinaStarzyk),K.L.,
K.S.(KlausStolze)andJ.N.Allauthorshavereadandagreedtothepublishedversionoftheman
uscript.
Funding:FinancialsupportforthisstudywasprovidedbytheAustrianScienceFoundation
(FWF;grantno.P29305B22).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Dataarecontainedwithinthearticle.
Acknowledgments:TheauthorsthanktheProtectedAreasandBiodiversityServiceofCastillaLa
ManchaforauthorizingthecollectionofsamplesofC.creticus,aprotectedspeciesinSpain.The
authorsthankCorinnaSchmiderer,MartinaPettighoferandLinaMerzafortheirhelpwithplant
collectioninCyprus,ItalyandCroatiaaswellasProf.JoséGómezNavarroandProf.ArturoVal
desfortheirhelpwithcollectingandherborizingplantsinSpain.Theauthorswishtoextendtheir
gratitudetoGabrielaDekroutSzpusztaandBettinaBeinLobmaierfortheirvaluablehelpinthe
greenhouseandwithplantmaintenance,andtoMartinFinsterböckforhistechnicalassistance
withHPLCanalyses.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Guzman,B.;Vargas,P.Systematics,characterevolution,andbiogeographyofCistusL.(Cistaceae)basedonITS,trnLtrnF,and
matKsequences.Mol.Phylogenet.Evol.2005,37,644–660.
2. Civeyrel,L.;Leclercq,J.;Demoly.J.P.;Agnan,Y.;Quebre,N.;Pelissier,C.;Otto,T.Molecularsystematics,characterevolution,
andpollenmorphologyofCistusandHalimium(Cistaceae).PlantSyst.Evol.2011,295,23–54.
3. VonRaabStraube,E.Cistaceae.Euro+MedPlantbase—TheInformationResourceforEuroMediterraneanPlantDiversity.
Availableonline:http://ww2.bgbm.org/EuroPlusMed/(accessedon5March2021).
4. Greuter,W.;Burdet,H.M.;Long,G.MedChecklist.ACriticalInventoryofVascularPlantsoftheCircumMediterraneanCountries;
ConservatoireetJardinBotaniquedelaVilledeGeneve:Geneve,Switzerland.Availableonline:
http://ww2.bgbm.org/mcl/home.asp(accessedon5March2021).
Plants2021,10,61519of20
5. Demetzos,C.;Anastasaki,T.;Perdetzoglou,D.A.ChemometricInterpopulationStudyoftheEssentialOilsofCistuscreticusL.
GrowinginCrete(Greece).Z.Naturforsch.C2002,57,89–94.
6. Paolini.J.;Falchi,A.;Quilichini,Y.;Desjobert,J.M.;DeCian,M.C.;Varesi,L.;Costa,J.Morphological,chemicalandgenetic
differentiationoftwosubspeciesofCistuscreticusL.(C.creticussubsp.eriocephalusandC.creticussubsp.corsicus).Phytochemistry
2009,70,1146–1160.
7. Brussel,D.E.MedicinalplantsofMt.Pelion,Greece.Econ.Bot.2004,58,174–202.
8. Lardos,A.;PrietoGarcia,J.;Heinrich,M.ResinsandGumsinHistoricalIatrosophiaTextsfromCyprus—ABotanicalandMed
icopharmacologicalApproach.Front.Pharmacol.2011,2,32.
9. Mastino,P.M.;Marchetti,M.;Costa,J.;Usai,M.ComparisonofessentialoilsfromCistusspeciesgrowinginSardinia.Nat.Prod.
Res.2016,31,1–9.
10. Mastino,P.M.;Marchetti,M.;Costa,J.;Usai,M.InterpopulationVariabilityintheEssentialOilCompositionofCistuscreticus
subsp.eriocephalusfromSardinia.Chem.Biodivers.2018,15,e1800151.
11. BarrajonCatalan,E.;FernandezArroyo,S.;Roldan,C.;Guillen,E.;Saura,D.;SeguraCarretero,A.;Micol,V.ASystematicStudy
ofthePolyphenolicCompositionofAqueousExtractsDerivingfromSeveralCistusGenusSpecies:EvolutionaryRelationship.
Phytochem.Anal.2011,22,303–312.
12. Gori,A.;Ferrini,F.;Marzano,M.C.;Tattini,M.;Centritto,M.;Baratto,M.C.;Pogni,R.;Brunetti,C.CharacterisationandAnti
oxidantActivityofCrudeExtractandPolyphenolicRichFractionsfromC.incanusLeaves.Int.J.Mol.Sci.2016,17,1344.
13. Maggi,F.;Lucarini,D.;Papa,F.;Peron,G.;Dall’Acqua,S.PhytochemicalanalysisofthelabdanumpoorCistuscreticussubsp.
eriocephalus(Viv.)GreuteretBurdetgrowingincentralItaly.Biochem.Syst.Ecol.2016,66,50–57.
14. Mastino,P.M.;Marchetti,M.;Costa,J.;Juliano,C.C.AnalysisandPotentialAntimicrobialActivityofPhenolicCompoundsin
theExtractsofCistuscreticusSubspeciesfromSardinia.Nat.Prod.J.2018,8,166–174.
15. BarrajonCatalan,E.;FernandezArroyo,S.;Saura,D.;Guillen,E.;FernandezGuiterrez,A.;SeguraCarretero,A.;Micol,V.Cis
taceaeaqueousextractscontainingellagitanninsshowantioxidantandantimicrobialcapacity,andcytotoxicactivityagainst
humancancercells.FoodChem.Toxicol.2010,48,2273–2282.
16. Petereit,F.PolyphenolischeInhaltsstoffeundUntersuchungenzurEntzündungshemmendenAktivitätderTraditionellen
ArzneipflanzeCistusincanusL.(Cistaceae).Ph.D.Thesis,WestfälischeWilhelmsUniversität,Münster,Germany,1992.
17. Droebner,K.;Ehrhardt,C.;Poetter,A.;Ludwig,S.;Planz,O.CYSTUS052,apolyphenolrichplantextract,exertsantiinfluenza
activityinmice.Antivir.Res.2007,76,1–10.
18. Kuchta,K.;Tung,N.H.;Ohta,T.;Uto,T.;Raekiansayh,M.;Grötzinger,K.;Rausch,H.;Shoyama,Y.;Rauwald,H.W.;Morita,K.
TheoldpharmaceuticaloleoresinlabdanumofCistuscreticusL.,exertspronouncedinvitroantidenguevirusactivity.J.Eth
nopharm.2020,257,112316.
19. Rebensburg,S.;Helfer,M.;Schneider,M.;Koppensteiner,H.;Eberle,J.;Schindler,M.;Gürtler,L.;BrackWerner,R.Potentin
vitroantiviralactivityofCistusincanusextractsagainstHIVandFilovirusestargetsviralenvelopeproteins.Nat.Sci.Rep.2016,
6,20394.
20. Feng,J.;Leone,J.;Schweig,S.;Zhang,Y.EvaluationofNaturalandBotanicalMedicinesforActivityagainstGrowingandNon
growingFormsofB.burgdorferi.Front.Med.2020,7,6.
21. Rauwald,H.;Liebo,T.;Grötzinger,K.;Lehmann,J.;Kuchta,K.LabdanumandLabdanesofCistuscreticusandC.ladanifer:Anti
Borreliaactivityanditsphytochemicalprofiling.Phytomedicine2019,60,152977.
22. TomasMenor,L.;MoralesSoto,A.;BarrajonCatalan,E.;RoldanSegura,C.;SeguraCarretero,A.;Micol,V.Correlationbe
tweentheantibacterialactivityandthecompositionofextractsderivedfromvariousSpanishCistusspecies.FoodChem.Toxicol.
2013,55,313–322.
23. TomasMenor,L.;BarrajonCatalan,E.;SeguraCarretero,A.;Marti,N.;Saura,D.;Menendez,J.A.;Joven,J.;Micol,V.ThePro
miscuousandSynergicMolecularInteractionofPolyphenolsinBactericidalActivity:AnOpportunitytoImprovethePerfor
manceofAntibiotics?Phytother.Res.2015,29,466–473.
24. Viapiana,A.;Konopacka,A.;Waleron,K.;Wesolowski,M.CistusincanusL.commercialproductsasagoodsourceofpolyphe
nolsinhumandiet.Ind.Crop.Prod.2017,107,297–304.
25. Hatziantoniou,S.;Dimas,K.;Georgopoulos,A.;Sotiriadou,N.;Demetzos,C.Cytotoxicandantitumoractivityofliposome
incorporatedsclareolagainstcancercelllinesandhumancoloncancerxenografts.Pharmacol.Res.2006,53,80–87.
26. Moreira,H.;Slezak,A.;Szyjka,A.;Oszmianski,J.;Gasiorowski,K.AntioxidantandCancerChemopreventiveActivitiesof
CistusandPomegranatePolyphenols.ActaPol.Pharm.2017,74,688–698.
27. Skoric,M.;Todorovic,S.;Gligorijevic,N.;Jankovic,R.;Zivkovic,S.;Ristic,M.;Radulovic,M.Cytotoxicactivityofethanolex
tractsofinvitrogrownCistuscreticussubsp.creticusL.onhumancancercelllines.Ind.Crop.Prod.2012,38,153–159.
28. Kuchta,A.;Konopacka,A.;Waleron,K.;Viapiana,A.;Wesolowski,M.;Dabkowski,K.;Cwiklinska,A.;Mickiewicz,A.;
Sledzinska,A.;Wieczorek,E.;etal.TheeffectofCistusincanusherbalteasupplementationonoxidativestressmarkersandlipid
profileinhealthyadults.Cardiol.J.2019,doi:10.5603/CJ.a2019.0028.
29. Attaguile,G.;Russo,A.;Campisi,A.;Savoca,F.;Acquaviva,R.;Ragusa,N.;Vanella,A.Antioxidantactivityandprotective
effectonDNAcleavageofextractsfromCistusincanusL.andCistusmonspeliensisL.CellBiol.Toxicol.2000,16,83–90.
30. GawelBeben,K.;KukulaKoch,W.;Hoian,U.;Czop,M.;StrzepekGomolka,M.;Antowiewicz,B.CharacterizationofCistusx
incanusL.andCistusladaniferL.ExtractsasPotentialMultifunctionalAntioxidantIngredientsforSkinProtectingCosmetics.
Antioxidants2020,9,202.
Plants2021,10,61520of20
31. Wittpahl,G.;KöllingSpeer,I.;Basche,S.;Hermann,E.;Hannig,M.;Speer,K.;Hannig,C.Thepolyphenoliccompositionof
CistusincanusherbalteaanditsantibacterialandantiadherentactivityagainstStreptococcusmutans.PlantaMed.2015,81,1727–
1735.
32. Waed,A.;Ghalia,S.;Adawia,K.EvaluationofRadicalScavengingActivity,TotalPhenolicsandTotalFlavonoidsContentsof
CistusSpeciesinSyria.Int.J.Pharmacogn.Phytochem.Res.2016,8,1071–1077.
33. Dimcheva,V.;Karsheva,M.CistusincanusfromStrandjaMountainasaSourceofBioactiveAntioxidants.Plants2018,7,8.
34. Moosmang.S.;Sturm,S.;Novak,J.;Lukas,B.;Stuppner,H.DifferentiationbetweenCistusL.(sub)species(Cistaceae)using
NMRmetabolicfingerprinting.PlantaMed.2020,86,11481155.
35. Lukas,B.;Bragagna,L.;Starzyk,K.;Labedz,K.;Stolze,K.;Novak,J.PolyphenolVariabilitätvonzypriotischemCistuscreticus
L.InProceedingsoftheVIIIthConferenceofMedicinalandAromaticPlantResearch,Bonn,Germany,10–13September2018.
36. Barros,L.;Duenas,M.;Alves,C.T.;Silva,S.;Henriques,M.;SantosBuelga,C.;Ferreira,I.C.F.R.Antifungalactivityanddetailed
chemicalcharacterizationofCistusladaniferphenolicextracts.Ind.Crop.Prod.2013,41,41–45.
37. Riehle,P.;Vollmer,M.;Rohn,S.PhenoliccompoundsinCistusincanusherbalinfusions—Antioxidantcapacityandthermal
stabilityduringthebrewingprocess.FoodRes.Int.2013,53,891–899.
38. Riehle,P.PhenolischeInhaltsstoffeinCistusincanusTee—CharakterisierungundStabilitätinnerhalbderTeezubereitung.Ph.D.
Thesis,UniversityofHamburg,Hamburg,Germany,2014.
39. Sayah,K.;Marmouzi,I.;NaceiriMrabti,H.;Cherrah,Y.;AbbesFaouzi,M.AntioxidantActivityandInhibitoryPotentialof
Cistussalviifolius(L.)andCistusmonspeliensis(L.)AerialPartsExtractsagainstKeyEnzymesLinkedtoHyperglycemia.BioMed
Res.Int.2017,2017,2789482.
40. Baskar,V.;Venkatesh,R.;Ramalingam,S.Flavonoids(antioxidantsystems)inhigherplantsandtheirresponsetostresses.In
AntioxidantsandAntioxidantEnzymesinHigherPlants;Gupta,D.K.,Palma,J.M.,Corpas,F.J.,Eds.;Springer:Cham,Switzerland,
2018;pp.253–268.
41. Bautista,I.;Boscaiu,M.;Lidon,A.;Llinares,J.V.;Lull,C.;Donat,M.P.;Vicente,O.Environmentallyinducedchangesinantiox
idantphenoliccompoundslevelsinwildplants.ActaPhysiol.Plant.2016,38,9.
42. Borges,C.V.;Minatel,I.O.;GomezGomez,H.A.;Lima,G.P.P.MedicinalPlants:Influenceofenvironmentalfactorsonthecon
tentofsecondarymetabolites.InMedicinalPlantsandEnvironmentalChallenges;Ghorbanpour,M.,Varma,A.,Eds.;Springer:
Cham,Switzerland,2017;pp.259–277.
43. Yang,L.;Wen,K.S.;Ruan,X.;Zhao,Y.X.;Wei,F.;Wang,Q.ResponseofPlantSecondaryMetabolitestoEnvironmentalFactors.
Molecules2018,23,762.
44. Gori,A.;Nascimento,L.B.;Ferrini,F.;Centritto,M.;Brunetti,C.SeasonalandDiurnalVariationinLeafPhenolicsofThree
MedicinalMediterraneanWildSpecies:WhatIstheBestHarvestingMomenttoObtaintheRichestandtheMostAntioxidant
Extracts?Molecules2020,25,956.
45. Sebastini,F.;Torre,S.;Gori,A.;Brunetti,C.;Centritto,M.;Ferrini,F.;Tattini,M.DissectingAdaptationMechanismstoCon
trastingSolarIrradianceintheMediterraneanShrubCistusincanus.Int.J.Mol.Sci.2019,20,3599.
46. Hopia,A.;Heinonen,M.Antioxidantactivityofflavonolaglyconesandtheirglycosidesinmethyllinoleate.J.Am.OilChem.
Soc.1999,76,139–144.
47. Mahmoudi,H.;Aouadhi,C.;Kaddour,R.;Gruber,M.;Zargouni,H.;Zaouali,W.;BenHamida,N.;BenNasri,M.;Ouerghi,Z.;
Hosni,K.ComparisonofantioxidantandantimicrobialactivitiesoftwocultivatedCistusspeciesfromTunisia.Biosci.J.Uber
landia2016,32,226–237.
48. Andrade,D.;Gil,C.;Breitenfeld,L.;Domingues,F.;Duarte,A.P.BioactiveextractsfromCistusladaniferandArbutusunedoL.
Ind.Crop.Prod.2009,30,165–167.
49. Rebaya,A.;Belghith,S.;Cherif,J.;TrabelsiAyadi,M.TotalPhenolicCompoundsandAntioxidantPotentialofRockrose(Cistus
salviifolius)LeavesandFlowersGrowninTunisia.Int.J.Pharmacogn.Phytochem.Res.2016,8,327–331.
50. LamienMeda,A.;Nell,M.;Lohwasser,U.;Börner,A.;Franz,C.;Novak,J.Investigationofantioxidantandrosmarinicacid
variationinthesagecollectionofthegenebankinGatersleben.J.Agric.FoodChem.2010,58,3813–3819.
51. Chizzola,R.;Michitsch,H.;Franz,C.AntioxidativepropertiesofThymusvulgarisleaves:Comparisonofdifferentextractsand
essentialoilchemotypes.J.Agric.FoodChem.2008,56,6897–6904.
52. CouncilofEurope.EuropeanPharmacopoeia,10thed.;CouncilofEurope:Strasbourg,France,2019.
53. EuropeanCommission.UnionListofNovelFoodsinAccordancewithRegulation(EU)2015/2283oftheEuropeanParliament
andoftheCouncilonNovelFoods.Availableonline:https://eurlex.europa.eu/legalcon
tent/EN/TXT/PDF/?uri=CELEX:32017R2470&from=EN(accessedon5March2021).
54. RCoreTeam.R:ALanguageandEnvironmentforStatisticalComputing;RFoundationforStatisticalComputing:Vienna,Austria.
Availableonline:https://www.Rproject.org(accessedon15.September2018).
... A prior study demonstrated that the chemical composition and, hence, the biological properties of Cistus species were highly affected by many habitat factors and environmental conditions. Besides, no Cistus monograph was available despite the long traditional use of many Cistus species and their implication in diverse medicinal purposes (Lukas et al., 2021). Thus, more indepth investigations on Cistus species grown in different geographical regions are needed to provide guidelines for their pharmacological and nutraceutical applications. ...
... Phenolic acids and coumarins represented, respectively, 6%-9% and 3%-10% of the phytoconstituents in the three species. Lukas et al. (2021) proposed a classification of selected Cistus species, including C. creticus and C. salviifolius, into two main chemovariants: flavonol-rich, purple-flowered clade (C. creticus) and the more ellagitannin-rich, white-or whitish-pink-flowered clade (C. ...
... Lukas et al. 's (2021) classification is based on the chemical profile of leaves' aqueous extracts, while methanol was used to prepare the extracts in the present study, and, therefore, the extraction solvent might have affected compound recovery (Hemmer et al., 2024). In addition, Lukas et al. (2021) reported that the separation of the purpleflowered and the white-and whitish-pink-flowered clade was not entirely perfect, and more investigations are needed, as many Italian, Croatian, and Cypriot accessions of C. creticus exhibited comparatively high percentages of punicalagin derivatives (tannins). Considering the distribution of the other metabolites, four diterpenes, namely isoabienol and manool or 13-epimanool, sclareol, and labda-7,14-dien-13-ol, in addition to abscisic acid (a sesquiterpenoid phytohormone), were only identified in the C. creticus extracts. ...
... In traditional medicine, various preparations are known and used primarily as anti-inflammatory, hemostatic, tonic, anti-diabetic, antispasmodic, and carminative agents [11]. Contemporary scientific investigations [9,[12][13][14][15] have prioritized the process of isolating and identifying the compounds found in extracts and resins derived from Cistus species. Numerous studies [6,11,[16][17][18][19][20][21] have also examined the biological and pharmacological activity of these compounds, which give rise to the therapeutic properties of the plant. ...
... On both occasions, the most abundant polyphenol was myricetin rhamnoside, followed by the quercetin rhamnoside derivative and 1_myricetin glucoside derivative. Lukas et al. [15] also established myricetin rhamnoside as the most abundant polyphenol in C. creticus plants from different regions. Furthermore, the same research team [15] also identified rutin in the C. creticus plant. ...
... Lukas et al. [15] also established myricetin rhamnoside as the most abundant polyphenol in C. creticus plants from different regions. Furthermore, the same research team [15] also identified rutin in the C. creticus plant. Mastino et al. [48] also identified rutin via HPLC-MS in some Cistus plant extracts, such as from C. creticus subsp. ...
Article
Full-text available
The objective of this study was to determine the optimal conditions for the recovery of bioactive and antioxidant compounds in aqueous solutions of Cistus creticus leaves and then employ the optimal extract for the enrichment of yogurt samples. The optimal conditions were established by a response surface methodology and were determined to be a liquid-to-solid ratio of 48 mL/g at 76 °C for 41 min. The optimum extract yielded TPC 157.17 mg GAE/g dw and TFC 2.38 mg QE/g dw, while FRAP and DPPH values were 1258.52 and 933.67 µmol AAE/g dw, respectively. HPLC-DAD was utilized to identify and quantify specific polyphenols, like myricetin rhamnoside, in the extract. The optimal extract was then added to yogurt desserts during their preparation at three different concentrations to study how the physicochemical characteristics of the yogurt, as well as the antioxidant capacity added during enrichment, were affected. Statistical analysis of the results was carried out in order to obtain more valid data. It seems that the most suitable concentration for yogurt fortification was 0.1% w/v of the extract as, at this concentration, the yogurts exhibited higher antioxidant capacity, and their physicochemical characteristics were improved.
... Galloylflavonols have been previously reported in only two species in the whole Cistaceae family: Fumana montana Pomel. [59] and Cistus salvifolius [60]. ...
... In the genus Helianthemum, the presence of polyphenols has been confirmed in H. helianthemoides [6], H. lippii [12], and H. ordosicum, from which gallocatechin-(4a → 8)-epigallocatechin was identified [16]. Ellagitannins and gallotannins have been reported in the genus Cistus, with galloyl-HHDP-hexoside and digalloyl-hexoside found in C. creticus L., and the compound pedunculagin in C. incanus L. [60]. ...
Article
Full-text available
Helianthemum nummularium (HN) and Helianthemum oelanticum subsp. incanum (HO) are plant species, among Cistaceae, that are highly distributed in the Mediterranean region. In the current study, extracts of the aerial parts from both species have been analyzed phytochemically. The non-polar extract analysis resulted in the identification of 15 compounds in each species, mainly terpene and fatty acid derivatives, through GC–MS. The methanolic extract analysis, conducted through UHPLC–MS/MS, led to the identification of 39 metabolites in HN and 29 in HO, respectively, the majority of which were phenolics. Among the identified compounds, several have also been isolated and structurally determined (from HN: rutin, linoleic acid, gallic acid, and isoquercetin, and from HO: quercetin-3-O-(2″-O-galloyl)-galactopyranoside, methyl gallate, catechin-3-O-glucopyranoside, and astragalin, while hyperoside, and cis- and trans-tiliroside have been determined in both species). Furthermore, the methanolic extracts of HN and HO displayed a high total phenolic content (177.2 mg GA/g extract and 150.6 mg GA/g extract, respectively) and considerable free-radical scavenging activity against the DPPH radical (94.6% and 94.0% DPPH inhibition, respectively). Antimicrobial testing showed stronger inhibition of HN against Gram (+) bacterial strains (MIC values 0.07–0.15 mg/mL), while both extracts exhibited low tyrosinase-inhibitory activity. Considering the lack of studies conducted on the chemistry and biological activities of the genus Helianthemum, the chemical characterization of extracts could contribute to new sources of bioactive metabolites to be explored and exploited for further potential applications such as food and/ or the cosmetic industry.
... Two chemovariations were reported depending on whether punicalagin derivatives were present or not. It was also mentioned that the specific composition of polyphenolic compounds of Cistus species seems to be related to evolutionary events [36]. ...
Article
Objective: Cistus creticus L. is widespread in the coastal regions of Türkiye. In this study, we investigated the cytotoxic, antiobesity, antimicrobial and antibiofilm properties as well as the total phenolic and flavonoid content of both aqueous and ethanolic extracts in vitro. Material and Method: Two different extracts were prepared from the flowering aerial parts of Cistus creticus using ethanol and water. The total phenolic content and total flavonoids were determined by the Folin-Ciocalteu method and the aluminum chloride colorimetry, respectively. The effect of extracts on the cell viability of 3T3-L1 was determined by methyl thiazole tetrazolium (MTT), and the evaluation of differentiation and the effects of the plant extracts on lipid accumulation in 3T3-L1 adipocytes was performed by Oil-Red O staining. In addition, MIC values and antibiofilm activities were also investigated. Result and Discussion: The total phenol content of the EtOH and water extract was determined to be 134.2849 mg GAE/g and 96.1803 mg GAE/g, respectively. The total flavonoids in the water and EtOH extracts were found to be 33.1942 mgQE/g and 22.8338 mgQE/g, respectively. The lowest MIC values were determined for the strains Bacillus subtilis DSM 1971, Bacillus licheniformis DSM 13 and Bacillus amyloliquefaciens DSM 7, while the highest MIC concentration was found for the strains Escherichia coli and Eenterococcus gallinarum. The MIC/16 concentration of Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922 also proved to be effective in inhibiting biofilm formation. We observed that noticeable but not strong effects on lipid accumulation were observed in 3T3-L1 adipocytes treated with EtOH extract.
... Specifically, plants of the Cistus genus have been used for a long time as medicines in different countries around the world [23]. Numerous scientific papers, in fact, have shown the presence of various secondary metabolites both in the aerial parts and in the roots of these plant species [11,24], thus suggesting the potential utilization of their extracts as therapeutic agents [25]. The C. monspeliensis plant has been widely applied in folk medicine, although its genotoxicity and antigenotoxic effects have not been studied yet. ...
Article
Full-text available
Cistus monspeliensis L. (C. monspeliensis) is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of C. monspeliensis leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese Hamster Ovarian K1 (CHO-K1) cell line. The phytochemical composition of C. monspeliensis extract was evaluated using an untargeted metabolomic approach by employing UPLC-PDA-ESI/MS. The automated in vitro CBMN assay was carried out using image analysis systems with a widefield fluorescence microscope and the ImageStreamX imaging flow cytometer. The phytochemical profile of C. monspeliensis extract showed, as the most abundant metabolites, punicalagin, myricetin, gallocathechin, and a labdane-type diterpene. C. monspeliensis, at the tested concentrations of 50, 100, and 200 μg/mL, did not induce significant micronuclei frequency, thus indicating the absence of a genotoxic potential. When testing the C. monspeliensis extract for antigenotoxicity in the presence of MMC, we observed a hormetic concentration-dependent effect, where low concentrations resulted in a significant protective effect against MMC-induced micronuclei frequency, and higher concentrations resulted in no effect. In conclusion, our findings demonstrate that C. monspeliensis extract is not genotoxic and, at low concentration, exhibits an antigenotoxic effect. In relation to this final point, C. monspeliensis may act as a potential chemo-preventive against genotoxic agents.
... 16,18 Other study showed that punicalagin was identified in the studied plant, while myricetin glycosides and quercetin glycosides were comparatively low. 19 C. parviflorus is a 100 cm-high shrub; its leaves are ovateoblong in shape, and the plant flowers in March to May with light purple flowers. 20 The plant is widely used in herbal medicine to treat a diverse range of conditions, including fevers and colds; digestive problems as well as diarrhea; and other inflammatory diseases such as skin diseases and rheumatism. ...
Article
Full-text available
Cistus parviflorus L. (Cistaceae) is a medicinal plant with several folkloric applications, including being used for urinary tract infections and as a food additive. In this study, the polyphenolic diversity and the antioxidant, antidiabetic, and antimicrobial activities of the C. parviflorus methanolic extract were evaluated. Spectrophotometric and HPLC-based analyses using standard polyphenolic compounds were conducted to measure the phenolics and flavonoids in the plant extract. The in vitro DPPH, ORAC, FRAP, and α-glucosidase assays were used to evaluate the plant’s antioxidant and antidiabetic activities. Furthermore, disc diffusion and MIC-based microdilution tests were applied to evaluate the antimicrobial activity of the plant against broad-spectrum microorganisms. The analysis revealed the existence of high phenolic and flavonoid quantities that were measured at 302.59 ± 0.6 μg GAE and 134.3 ± 0.5 μg RE, respectively. The HPLC-based analysis revealed the existence of 18 phenolic acids and 8 flavonoids. The major phenolic acid was ellagic acid (169.03 ppm), while catechin was the major flavonoid (91.80 ppm). Remarkable antioxidant activity was measured using three different assays: DPPH, ORAC, and FRAP. Furthermore, strong inhibition of α-glucosidase compared to acarbose was recorded for the plant extract (IC50 0.924 ± 0.6). The results showed that C. parviflorus’s extract had a strong anti-Escherichia coli effect with MIC value of 0.98 μg\mL and IZD value of 32.2 ± 0.58 mm compared to 25.3 ± 0.18 mm for gentamycin, the positive control. Moreover, Aspergillus niger, Aspergillus fumigatus, Staphylococcus aureus, Streptococcus pyogenes, and Salmonella typhimurium all showed significant growth inhibition in response to the extract, a result that may be related to the use of the plant in traditional medicine to treat urinary tract infections. The docking study indicated the higher binding affinity of the major identified compounds, i.e., ellagic acid, rutin, naringin, catechin, and punicalagin, to the S. aureus gyrase-DNA complex, which might suggest the possible mechanisms of the plant as antimicrobial agents.
Article
Full-text available
Wound healing is a process that happens when lost tissue replenishes. For this process, both protective elements and wound healing accelerating factors are required. In recent years, the search for natural products that promote faster healing and prevent adverse effects has gained momentum. This is a systematic review, adhering to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) criteria, of the wound healing effects of natural products, with a focus on natural products from the Mediterranean region. This study sourced the PubMed and Scopus databases for eligible articles and publications over the last six years. Due to the information volume, only the in vitro studies were included in this review. The criteria set concluded in the 28 studies included. These studies showed that many natural products found in the Mediterranean have been studied for the treatment of wounds. The wound healing effect seems to be related to dose, type of wounded tissue, and application time. Moreover, half of the studies were additionally tested and shown antioxidant activity through DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and FRAP (Ferric Reducing Antioxidant Power) assays.
Conference Paper
Full-text available
Zusammenfassung: 30 Populationen (235 Einzelpflanzen) von zypriotischem Cistus creticus L. wurden hinsichtlich ihrer Polyphenol-Variabilität analysiert. Zu den wichtigsten identifizierten Verbindungen zählten Punicalagin und Punicalagingallat sowie verschiedene Glykoside von Myricetin (mit der Hauptverbindung Myricetin-3-O-Rhamnosid) und Quercetin (mit der Hauptverbindung Quercetin-3-O-Rhamnosid). Die Variabilität, sowohl zwischen als auch innerhalb der Populationen war erwartungsgemäß hoch. Die Summe des Gehaltes an Punicalagin und Punicalagingallat variierte zwischen 6,3 und 159,9 mg/g Trockenmasse. Der Gehalt an Myricetin Glykosiden lag zwischen 8,8 und 33,5 mg/g TM, bei den Quercetin Glykosiden lagen die summierten Werte zwischen 1,1 und 12,1 mg/g TM. Bezüglich der Myricetin und Quercetin Glykoside ließ sich ein leichter geografischer Gradient feststellen-mit vergleichsweise geringeren Gehalten in den nord-westlichen Populationen und höheren Werten in den eher östlich gelegenen Populationen des Sammelgebietes. Abstract: 30 populations (235 individual plants) of Cypriot Cistus creticus L. were analysed to learn more about intra-specific polyphenol variability. The most important compounds were punicalagin and punicalagin gallate as well as myricetin glycosides (with myricetin-3-O-rhamnosid as main myricetin glycoside) and quercetin glycosides (with quercetin-3-O-rhamnosid as main quercetin glycoside). The variability observed was high between as well as within populations. The content of punicalagin and punicalagin gallate ranged between 6.3 and 159.9 mg/g dry mass. The content of the most important myricetin glycosides ranged between 8.8 and 33.5 mg/g dry mass and that of the quercetin glycosides was between 1.1 and 12.1 mg/g dry mass. Concerning myricetin and quercetin glycosides a geographical gradient was obvious, with slightly lesser contents of these compounds in the northwestern populations and slightly higher amounts in more eastern populations of the sampled area.
Preprint
Full-text available
The purpose of the present study is survey of extraction conditions and exploring antioxidant potential of the non-traditional for the Bulgarian ethno-medicine wild herb Cistus incanus widespread in Strandja Mountain. The influence of the extraction time (0–500 min) and solvent composition (0–50% ethanol in water) on the polyphenols, flavonoids yields and on antioxidant capacity of the extracts of leaves, stalks (wood parts) and buds mixture were studied. The antioxidant capacity (AOC) was evaluated by use of scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. Total polyphenol and flavonoid contents were quantified using UV–vis spectrometry. Optimal yield of desired components has been obtained with 30% ethanol in water solvent at 390th min extraction time. In addition, the influence of the seasonality (winter and summer Cistus incanus), and of the different areal parts - hard-coated seeds; buds, and mixture of leaves and stalks of the wild plant on the presence of polyphenols, flavonoids and AOC were investigated. Present work revealed the high values of the polyphenols, flavonoids, the high AOC not only in the summer leaves, but also found in the winter leaves, hard-coated seeds, buds and stalks. Based on the obtained results the Cistus incanus from Strandja mountain could be a new excellent source of natural antioxidants in food and pharmaceutical industries.
Article
Full-text available
Skin is constantly exposed to harmful environmental factors, causing photo-oxidative stress in cells and leading to the development of health and aesthetic problems. Multifunctional ingredients of everyday skincare products, possessing antioxidant, UV-protecting, anti-hyperpigmentation, and skin cancer-preventing properties are in high demand. Due to the high content of polyphenolic compounds Cistus × incanus L. and Cistus ladanifer L. are potentially interesting sources of cosmetic ingredients with multiple skin protecting functions. In this study eight extracts from dried C. incanus and C. ladanifer—aerial parts were prepared using 60% (v/v) or 100% (v/v) methanol, on a magnetic stirrer or in Soxhlet apparatus, and compared for their content of phytochemicals and properties important for the skin protection. Extracts from C. incanus prepared in 60% (v/v) methanol contained the highest amount of polyphenolic compounds (331.82–347.27 mg GAE/g DW) and showed the most significant antioxidant activity (IC50 = 3.81–4.05 µg/mL). C. incanus extracts were also effective tyrosinase inhibitors (30–70% inhibition at 100 µg/mL). Statistical correlation analysis revealed that epicatechin, epigallocatechin gallate (EGCG), and myricitrin may be responsible for the antioxidant and tyrosinase inhibitory potential of C. incanus extracts. All analyzed extracts were cytotoxic for human melanoma cells A375 (IC50 = 57.80–199.01 µg/mL), with C. incanus extract prepared in 100% (v/v) methanol using Soxhlet extraction being the most effective. The extracts did not significantly impair the growth of noncancerous human keratinocytes HaCaT. C. incanus and C. ladanifer extracts possess also natural sun protecting activity (SPF 3.42–3.77 at 100 µg/mL), enhancing their anti-hyperpigmentation and anti-melanoma potential.
Article
Full-text available
Mediterranean plants biosynthesize high amounts of polyphenols, which are important health-promoting compounds. Leaf polyphenolic composition changes according to environmental conditions. Therefore, it is crucial to know the temporal variation in their production. This study aimed to: i) evaluate the monthly and daily changes in polyphenols of Phyllirea latifolia, Cistus incanus, and Pistacia lentiscus to identify their best harvesting moment, ii) verify the possible correlations between phenolic production and temperature and irradiation, iii) evaluate their antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical (OH)scavenging assays. The extracts of leaves harvested at 8:00, 13:00 and 18:00, in May, July, and October for two years were analysed by HPLC-DAD. Both “month” and “time of the day” affected the polyphenolic content in all species. July at 13:00 was the best harvesting moment for all polyphenolic classes of P. latifolia and only for some classes of C. incanus and P. lentiscus. Environmental parameters positively correlated with the polyphenols of C. incanus and P. latifolia, while the antioxidant capacity only varied in this last species, reaching the highest value in July. Results of the study allow to determine the balsamic time for each species. Moreover, the relationship between polyphenols and environmental data can be useful for the cultivation of these plants under controlled conditions.
Article
Full-text available
Lyme disease is the most common vector-borne disease in the US and Europe. Although the current recommended Lyme antibiotic treatment is effective for the majority of Lyme disease patients, about 10–20% of patients continue to suffer from persisting symptoms. There have been various anecdotal reports on the use of herbal extracts for treating patients with persisting symptoms with varying degree of improvements. However, it is unclear whether the effect of the herb products is due to their direct antimicrobial activity or their effect on host immune system. In the present study, we investigated the antimicrobial effects of 12 commonly used botanical medicines and three other natural antimicrobial agents for potential anti-Borrelia burgdorferi activity in vitro. Among them, 7 natural product extracts at 1% were found to have good activity against the stationary phase B. burgdorferi culture compared to the control antibiotics doxycycline and cefuroxime. These active botanicals include Cryptolepis sanguinolenta, Juglans nigra (Black walnut), Polygonum cuspidatum (Japanese knotweed), Artemisia annua (Sweet wormwood), Uncaria tomentosa (Cat's claw), Cistus incanus, and Scutellaria baicalensis (Chinese skullcap). In contrast, Stevia rebaudiana, Andrographis paniculata, Grapefruit seed extract, colloidal silver, monolaurin, and antimicrobial peptide LL37 had little or no activity against stationary phase B. burgdorferi. The minimum inhibitory concentration (MIC) values of Artemisia annua, Juglans nigra, and Uncaria tomentosa were quite high for growing B. burgdorferi, despite their strong activity against the non-growing stationary phase B. burgdorferi. On the other hand, the top two active herbs, Cryptolepis sanguinolenta and Polygonum cuspidatum, showed strong activity against both growing B. burgdorferi (MIC = 0.03–0.06% and 0.25–0.5%, respectively) and non-growing stationary phase B. burgdorferi. In subculture studies, only 1% Cryptolepis sanguinolenta extract caused complete eradication, while doxycycline and cefuroxime and other active herbs could not eradicate B. burgdorferi stationary phase cells as many spirochetes were visible after 21-day subculture. Further studies are needed to identify the active constituents of the effective botanicals and evaluate their combinations for more effective eradication of B. burgdorferi in vitro and in vivo. The implications of these findings for improving treatment of persistent Lyme disease are discussed.
Article
Full-text available
Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in the shade or in full sunlight, we performed measurements of relevant physiological traits, such as leaf water potential, gas exchange and PSII photochemistry, RNA-Seq with de-novo assembly, and the analysis of differentially expressed genes. We also identified and quantified photosynthetic pigments, abscisic acid, and flavonoids. Here, we show major mechanisms regulating light perception and signaling which, in turn, sustain the shade avoidance syndrome displayed by the ‘sun loving’ C. incanus. We offer clear evidence of the detrimental effects of excessive light on both the assembly and the stability of PSII, and the activation of a suite of both repair and effective antioxidant mechanisms in sun-adapted leaves. For instance, our study supports the view of major antioxidant functions of zeaxanthin in sunny plants concomitantly challenged by severe drought stress. Finally, our study confirms the multiple functions served by flavonoids, both flavonols and flavanols, in the adaptive mechanisms of plants to the environmental pressures associated to Mediterranean climate.
Article
Full-text available
BACKGROUND: Oxidative stress and dyslipidemia play a critical role in the development of cardiovascular disease (CVD). Regular intake of polyphenol-rich diets is associated with a reduced risk of CVDs. METHODS: The present study was a pilot study with 24 healthy volunteers and was designed to determine if a 12-week administration of Cistus incanus herbal tea, containing phenolic acids and flavonoids, reduces cardiovascular risk factors including oxidative stress and dyslipidemia in healthy adults. Phenolic compounds profile and antibacterial activity of Cistus incanus infusion were also measured. RESULTS: Herbal infusion led to improvement in lipid profile by increase (D4%, p = 0.033) high-density lipoprotein cholesterol concentration and decrease triglyceride (D14%, p = 0.013) concentrations. In addition, the Cistus incanus diet was associated with decreased serum concentrations of malondialdehyde (D16%, p < 0.01) and advanced oxidation protein products (D18%, p < 0.001). CONCLUSIONS: Cistus incanus administration decreases cardiovascular risk factors including oxidative stress and dyslipidemia and this action supports the idea of using Cistus incanus tea on a daily basis as an effective dietary component for prevention of atherosclerotic CVD.
Article
The genus Cistus is taxonomically complex, as taxonomic classification of individual species based on morphological criteria is often difficult and ambiguous. However, specific species contain valuable natural products, especially terpenoids and polyphenols, which exert various biological effects and might therefore be used for treatment of a broad array of disorders. Hence, a fast and reliable method for clear identification of different Cistus (sub-) species is required. Approaches for analysis of secondary metabolite profiles, e.g., with NMR, might remedy the challenging classification of Cistus (sub-) species and help to identify specific markers for differentiation between them. In the present study, 678 samples from wild-growing Cistus populations, including 7 species and 6 subspecies/varieties thereof, were collected in 3 years from populations in 11 countries all over the Mediterranean basin. Samples were extracted with buffered aqueous methanol and analysed with NMR. From the resulting 1D-1H-NOESY and J-Res profile spectra, marker signals or spectral regions for the individual (sub-) species were identified with multivariate statistical tools. By examining the NMR profiles of these extracts, we were able to identify discriminators and specific markers for the investigated Cistus (sub-) species. Various influencing factors, like (sub-) species, wild harvestings of different populations from several countries, numerous collection sites, different years, and cultivation in greenhouses have been considered in this work. As the here identified markers are independent from these influencing factors, the results can be considered a robust model and might be used for future differentiation between Cistus (sub-) species.
Article
Ethnopharmacological relevance: The haemorrhagic dengue fever affects up to 500 million patients, annually causing 20.000 deaths, with no chemotherapeutic agent available. The oleoresin labdanum of Cistus creticus L. has been established as an anti-infective agent since antiquity in Mediterranean ethnopharmacology. Materials and methods: We tested several extracts and fractions of labdanum - standardised on labdane-type diterpenes via GC-MS - on their activity against the dengue virus (DENV-2 strain 00st-22A) in in vitro Vero cell cultures (96-well-plates, 5 days). Preliminary experiments with a labdanum diethyl ether raw-extract did not yield measureable results due to cytotoxic effects against Vero cells. In all following experiments, cell viability was constantly checked using the MTT-test. Fractionation of this raw-extract by liquid-liquid-extraction and column-chromatography on silica-gel (gradient elution with hexane, EtOAc, CHCl3, MeOH) succeeded in separating the anti-viral activity of labdanum from its cytotoxic effect. Results: In the most active fraction GS5 at 30 μg/ml, the dengue virus proliferation was 100% suppressed and cell viability was over 90%. Structural elucidation of major constituents of GS5 is currently ongoing, but thin-layer chromatography showed that this fraction is manly dominated by manoyloxides, a class of labdane-type diterpenes with known antimicrobial activity. Claims concerning the antiviral activity of above ground parts of C. creticus have been made previously, but these generally ascribe this activity to hot water soluble polyphenols and propose an unspecific tanning effect of the viral surface proteins as the mechanism of action. However, the water soluble fraction enhanced viral proliferation. Conclusion: We therefore describe a direct, pharmacological, antiviral activity of a dichloromethane extract of labdanum against a virulent haemorrhagic fever like dengue for the first time.
Article
Background: Intrigued by testimonies of Saxon borreliosis self-help groups concerning considerabl improvements of their symptoms by ingestion of Cistus creticus L. (Cistaceae) leaf preparations, we recently reported on the growth inhibiting activity of extracts with different polarities and its volatile oil against Borrelia burgdorferi sensu stricto (Bbss) in vitro, determined by a bioassay guided procedure. The most active volatile oil (only about 0.10% in leaves) was found to be dominated by labdane-type manoyloxides as well as carvacrol, determined via GC-MS. Hypothesis: These terpenes are major active constituents of the old pharmaceutical oleoresin labdanum, which is secreted from the leaf surface of C. creticus and traditionally harvested, e.g., on Crete by brushing the shrubs. Methods: In order to elucidate the definite anti-Borrelia active principles of C. creticus, preparative scale separation of the diethyl‑ether soluble fraction of Cretan labdanum was achieved by combined silica gel 60-and RP-18 CC and analysed by novel TLC-Extractor/ES-MS as well as by 1d/2d-1H/13C-NMR data. For the antispirochaetal activity tests against Bbss in vitro, all samples were solubilised in water with addition of polysorbate 80, the effect of which on bacterial growth was examined and found to be negligible. Results: This led to isolation and identification of the monoterpene carvacrol as well as of the four major manoyloxides manoyloxide (A), 3-acetoxy-manoyloxide (B), 3‑hydroxy-manoyloxide (C), and epi‑manoyloxide (D). Additionally, 2-keto-manoyloxide (E) and sclareol (F) were identified via GC/EI-MS. In subsequent microbiological tests of the isolated compounds, epi‑manoyloxide (D) exhibited by far the strongest individual antispirochaetal effect, equal to the positive control amoxicilline. Furthermore, manoyloxide (A), carvacrol, and the diethyl‑ether soluble fraction of labdanum as a whole contribute to the strong antispirochaetal activity, while the other labdanes were less active. Isolated manoyloxides were further used as external standards for a GC-MS screening of labdanum samples from different origins, revealing exceptionally high contents of all analysed manoyloxides in the samples of Cretan labdanum from C. creticus, while their contents in other commercial available labdanum samples were lower by several orders of magnitude. Especially in Spanish labdanum samples, declared as Cistus ladanifer L., mainly simple alkanes and at most traces of epi‑manoyloxide (D) and of manoyloxide (A) could be detected. Conclusion: The application of C. creticus preparations by Lyme disease self-help groups may be considered as a reasonable therapy approach. For the first time, isolated epi‑manoyloxide and carvacrol could be evaluated as most promising candidates for drug development and labdanum based phytomedicine development, respectively. They should serve as vital active markers for quality assessments of C. creticus preparations.