We discuss the existence and uniqueness of the weak solution of the following quasilinear parabolic equation
$$
\left\{
\begin{array}{ll}
u_t-\Delta _{p(x)}u = f(x,u)&\quad \text{in }
\quad Q_T \stackrel{{\rm{def}}}{=} (0,T)\times\Omega,\\
u = 0 & \quad\text{on}
\quad \Sigma_T\stackrel{{\rm{def}}}{=} (0,T)\times\partial\Omega,\\
u(0,x)=u_0(x)& \quad \text{in}
\quad \Omega
... [Show full abstract] \end{array}
\right.
\quad\quad (P_{T})
$$involving the p(x)-laplacian operator. Next, we discuss the global behaviour of solutions and in particular some stabilization properties.