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ABSTRACT 

The number of civilian, commercial and military applications are dependant on accurate knowledge of 

bathymetry of coastal regions. Conventionally, hydrographic surveying methods are used for bathymetric 

surveys carried by ship-based acoustic systems, but needs high-cost resources. Space technology has provided a 

cost-effective alternate means for charting near shore and inaccessible waters. The optical satellite data have 

capabilities to offer alternate solution in near-shore region, which has been researched for past 50 years, using 

evolving algorithms to estimate Satellite Derived Bathymetry (SDB). However, there is no agreement on use of 

terms like approach, model, method and techniques, which have been used varyingly and interchangeably as per 

context of SDB research. This paper suggests a classification scheme for SDB algorithms which is also 

applicable to other Marine Remote Sensing studies.  

 In this paper, based on literature available on SDB for the past five decades, an insight on SDB 

classification has been offered grounded in research philosophy. The SDB Approaches, models, methods and 

techniques have been elaborated with chronological development, along with SDB studies based on them, their 

accuracy and errors in SDB retrieval. We have suggested a matrix of prerequisite satellite data, in-situ data 

resolution, methods and algorithms of SDB based on level of accuracy needs to be achieved, which will guide 

future researchers to select one as per their context of research.  
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1. INTRODUCTION 

 

The importance of accurate knowledge of bathymetry is manifested in its application areas, 

which includes, marine navigation, harbours, submarine pipelines & cables laying, etc. 

Bathymetric surveys use traditional methods of collecting data mostly by acoustic echo 

sounding technique. The acoustic echo-sounding is done by two different methods; Single 

Beam Echo Sounding (SBES) which provides less coverage and spatial data resolution, and 

Multi Beam Echo Sounding (MBES) which provides better coverage and depict underwater 

topography by complete insonification of the area. The sensor development was further 

advanced by evolving depth profilers, current profilers, bio-optical sensors, etc. further 

increasing the accuracy of data collection. 

Recently, various modern techniques have been adopted to determine the bathymetry of 

the ocean, this includes LIDAR operated from aerial platforms, use of Remotely Operated 

Vehicles (ROV’s) & Autonomous Underwater Vehicles (AUV’s) for effective determination 

of depth in coastal waters. The cost of operation for Hydrographic surveying is very high, 

which restricts repetitive and frequent survey in any area of interest. Besides, in shallow 

waters regions the scanning width of the echosounders becomes narrow limiting coverage. 

Some remote and difficult areas such as massive hidden reefs, creeks and estuaries, tides 

bores and surge areas are so complex to undertake hydrographic surveys due to risk of life of 

men and loss of materials. The remote and autonomous technologies like ROV & AUV are 

also very expensive for its high purchasing and maintenance costs. It needs huge resources to 

undertake frequent hydrographic surveys in countries like India having coastline of more than 

7500 kms. This has led researchers, way back since the 1970's to search for alternative 

methods to bathymetric surveying. One of the practical solutions to assess dynamic changes 

in the vast coastal region with reasonable accuracy was provided by space technology. 

The objective of the paper is to critically analyse the relevance and shortcomings of 

SDB algorithm development over the past five decades. Algorithms have been categorized 

into empirical, semi empirical, quasi analytical, analytical on the basis of statistical, bio-

optical and physical optical properties.  This paper aims to establish the suitability of 

algorithms in varying coastal depths.  

 

                  



1.1 Satellite Derived Bathymetry Methods 

The viable alternatives researched for the past five decades is SDB, which effectively 

provides a key solution to coastal regions characterized by swift seabed changes and complex 

areas. However, these methods have potential to generate results, relatively based on existing 

ins-situ bathymetric data. The SDB Method was developed based on the theory of underwater 

reflectance, underwater optics, and algorithms to derive SDB using optical remote sensing 

data (Polcyn, 1969 & Colleagues).  Simultaneously other groups of researchers focused on 

other methods to derive SDB, using Satellite Altimetry data (Haxby et al., 1983; Dixon et al., 

1983) and SAR data (Alpers, & Hennings, 1984).  

Synthetic Aperture Radar (SAR) data is used to estimate coastal bathymetry in site 

specific conditions like high energetic wave area with several limiting factors such as the 

intensity of the swells, relationship between swell and sea waves. Although SAR data has 

moderate resolution and coverage, it is complex to derive the required input parameter and 

implement an algorithm. This technique is unreliable in shallow coastal waters (Wiehle, 

Pleskachevsky, & Gebhardt, 2019).  Another group of researchers has used satellite altimeter 

measurements along with sparse in-situ bathymetry to derive a low-resolution bathymetry of 

the seafloor. The satellite altimetry data has comparatively very low accuracy and resolution 

to have utility in coastal regions (Smith & Sandwell, 2004). Thus, the only option that assures 

feasibility to provide alternatives to bathymetric surveying with similar accuracy level, but 

low cost is multispectral optical data (especially Multispectral). Availability of high 

resolution optical data and improvement in algorithms has led to significant improvement in 

mapping of seabed topography. The optical data has been used for the past 50 years by 

different researchers, using evolving algorithms.  The existing bathymetry techniques are 

summarized below in table 1 representing sensible depth, accuracy, strength and limitations 

of each technique. 
 

Table 1: Summary of Bathymetry (Modified after Jawak, Vadlamani, & Luis, 2015) 

Method  System  Sensible 
depth  

Accuracy  Affecting factors  Strengths  Limitations  Applications  
 

Ship 
based  
Systems 
Echo  
Sounders 

Singlebeam 
ES 

Shallow 
to deep 

High Single Footprint Highly reliable 
Wide depth range 

Expensive, High 
cost of operation 

Diverse environments as 
per the IHO Standards 

Multibeam 
ES 

Shallow 
to deep 

Very high Swath, Heave High Precision 
Wide depth range 

Expensive High 
cost of operation 

Diverse environments 
with Very High 
Resolution 

 
 
Non-
imaging  
Active 
RS 

LiDAR 
 

Up to 70 
m  

Very high Water clarity, 
bottom material, 
surface state,  
background light  

Wide depth range;  
concurrent  
measurement not  
essential  

Expensive  
Limited swath 
width  

Clear waters with 
Very High Resolution 

Radar 
Altimetry 
 

Beyond 
40 km  
From the 
coast 

Very Low Elastic thickness 
Of lithosphere 
and/or 
Crustal thickness, 
sediments 

Global coverage, 
needs Only simple 
altimetry with no iono 
/ troposphere 
measurement 

Possible over a 
limited 
Wavelength band 

Coarse bathymetry  
Derivation in open ocean 
Deep seas & Oceans with 
accuracy of ± 50 m 

Imaging  
Active 
RS 

Microwave 
/ SAR 
Spaceborne 

Shallow 
to  
deep  

Low  Image resolution  
slicks, fronts, 
weather condition 
(eg, waves)  

Over large areas  
Not subject to  
cloud cover  

Complex and Not 
so accurate  

Open, coastal and 
oceanic waters but 
Unreliable, 
 Low accuracy 

 
 
 
 
Imaging  
Passive 
RS 

Optical  
– analytical  
 

Up to 30 
m  

High  Water quality,  
atmospheric 
conditions  

Based on physical  
Process, Accurate 

Complex as 
several input 
parameters  
required 
Concurrent sea 
truth essential  

Turbid and shallow 
inland waters, estuary 
and river Nearshore and 
coastal waters 
 
Theoretically, the 0.48–
0.60  
μm radiation is able to 
penetrate clear, calm sea 
water up to 20 m. 

Optical  
– empirical  
 

Up to 30 
m  

Varying  Atmospheric  
calibration, water  
turbidity Bottom 
reflectance  

Simple to implement 
Accurate at certain 
depth  

Limited depth  
Accuracy lower 
at a depth 
Concurrent sea 
truth essential 

Video  Tidal High  Image resolution  Able to reveal minor Restrictive area, Shallow water with 

                  



 

1.2 Optical SDB 

The optical SDB derivations rely on reflected radiant energy of EMR in the visible spectrum, 

intensity of which decays gradually with depth due to IOP’s of the water column in the 

coastal region. The various confounding factors that limit radiance are induced by signal 

attenuation by atmosphere, water column properties, nature of seabed, and depth of water. 

The core doctrine of remote sensing methods is to identify most of unknown parameters with 

the help of coarsely collected known parameters from field observation. Thus, the depth of 

water can be resolved by finding values for the few unknown parameters. Polcyn & Rollin, 

(1969) used a semi analytical method, using optical bandwidth to derive SDB. Polcyn et al., 

(1970) developed an algorithm based on a ratio of reflectance in two spectral bands in the 

visible spectrum, to determine shallow water depth. The further segregation of the 

methodology was continued to focus on reducing the number of unknown parameters, which 

paves way for empirical methods, which has continued in SDB research for almost two 

decades. Challenging few of the tacit assumptions of empirical approach and excluded water 

column properties which predominantly influence water leaving reflectance, Lee et al., 

(1998) proposed SA methodology to derive not only bathymetry but also various IOPs. The 

last decade of SDB research was dedicated to correlating IOPs to bathymetry and water 

column parameters. The huge database of marine IOP’s and ancillary oceanographic 

observation drove the enthusiasm of synthesizing the data, and LUT techniques were 

developed in the last decade. Further, development in huge data storage and processing 

capabilities by advanced computers introduced several ML algorithms and automation in 

applying SDB algorithms.   

 

1.3 SDB Algorithms 

The five decades of SDB literature has been classified majorly on the basis of method used 

for estimation of coefficients for SDB derivation into analytical, SA and empirical methods 

(Jawak, Vadlamani, & Luis, 2015; Misra et al., 2018; Traganos et al., 2018). Other few 

referred the same studies into the category of statistical and Physics-based methods (Dekker 

et al., 2011). Wherein, the majority of studies referred methods employed e.g. statistical, 

empirical, ML, etc. as the basis of classification. In addition, same studies have been referred 

varyingly among above either of classification as per context of research. The SDB 

researchers who are mostly from technical backgrounds used the terms like approach, 

method, technique, tools, & model frequently and interchangeably without understanding the 

philosophical worldview of these terminologies. Although, there is vast difference in these 

terms, none has got any advantage on other, but relates to altogether different objectives, 

have discrete meanings and should be used suitably. For systematic classification of any 

subject matter, there should be focus on details of subject and consensus among stakeholders 

on the appropriate practice of terms. In this paper, based on literature available on SDB for 

the past five decades, an insight on SDB classification has been offered grounded in research 

philosophy. 

 

1.3.1 Proposed Classification of SDB 

height bathymetric change Bathymetry along 
profiles 

vegetation; accuracy not 
yet established  

                  



Anthony, (1963) has differentiated use of terms Approach, Method, and Technique in 

language learning theories. The term Approach is defined as the basic philosophy or belief 

regarding a specified subject oriented in a direction to solve a problem based on a set of 

assumptions originating from an assemblage of theories, and concepts (Hofler 1983; 

Andiappan & Kin, 2020). In SDB literature, two approaches are majorly cited; first is 

Statistical Approach which refers to identifying relationship between remote sensing spectral 

data and bathymetry without any deliberation on physics of light propagation in water and 

water column properties, and other is Physics-Based Approach emphasizing on propagation 

of light in the water and its attenuation due to water constituents and environmental 

parameters. A Model defines a theoretical framework or the general strategy to resolve a 

problem. The synonyms like Methodology or framework are often used interchangeably to 

understand a model as a system of methods applied with specific set rules. More the 

rationality in determination of a model, more precise method can be preferred. The RT 

Physics based approach of SDB can be categorized into Bio-optical model and Physio-optical 

model where Bio-optical model is based on assumption that optical properties of water are 

principally controlled by the biological materials in the water column, mainly phytoplankton 

and its derivatives (Smith and Baker 1977) and Physio-optical model which explains remote 

sensing reflectance as a function of water quality, water depth, and bottom reflectance by a 

forward-model which when inverted gives depth estimation (Lee et al., 1999; Hedley et al., 

2009).      

A Method describes a practical solution to be implemented in order to solve the 

problem. The Statistical approach is straightforward and can be executed by Empirical 

Methods which includes several statistical techniques. Wherein, both the Bio-optical model 

and Physio-optical model can be executed via Semi-Empirical (SE), and Analytical methods. 

SE methods are based on explicit assumption of RT of light and its attenuation in propagating 

medium and uses statistical calibration of transformed to field data. Analytical methods are 

referred to algorithms grounded in physics of RT of light within a water body purely on the 

basis of water constituents Bio-physio-optical properties. However, the analytical method has 

been considered as an acrimonious mathematical problem, complex to execute practically 

(Mouw et al., 2015; Werdell et al., 2018). These limitations and complexities related to 

analytical methods have been addressed by few theoretical assumptions, based on which 

Analytical methods were bifurcated into Semi-Analytical (SA) and Quasi Analytical (QA) 

methods. SA methods have been pioneered by Lee et al., (1998;1999) who modified 

(Maritorena, Morel, & Gentili, 1994; Mobley, 1994) analytical RT equation to to derive 

water column optical properties, depth, and seafloor reflectance based on water’s absorption 

and backscatter properties of the light using spectral matching technique without any need of 

field data. Wherein, QA method was developed by Lee, Carder, & Arnone, (2002) to derive 

total absorption α (which can be further decomposed to absorption coefficients of 

phytoplankton αϕ and gelbstoff αg) and backscattering coefficients bb, based on relationships 

between remote sensing reflectance and IOPs of the water by applying radiative RT equation.  

The Technique refers to a sequence of actions to be executed to observe and measure the 

phenomena, and also involves data collection, processing and analysis of result (Andiappan 

& Kin, 2020). However, it's not necessary that every problem will be resolved within each 

class, thus suggesting a ‘Hybrid’ (either Approach, Model, Method or Technique). Thus, the 

                  



SDB studies have been proposed to be classified in the scheme as shown in the figure 1 

elaborating the relationship of these above concepts in respect of SDB. 

 
  

 

Figure 1: Conceptual Framework for SDB Classification 

  

2. APPROACHES IN OPTICAL SDB 

 2.1 Statistical Approaches 

The primary aim of the statistical approach is to derive estimates usually the coefficient of 

determination for the same image on which they are derived based on statistical relationship. 

There is no consideration for any spectral, radiometric or environmental parameter in this 

relationship. The statistical approach employs empirical methods (discussed in section 4.1) 

and the accuracy depends on the data on which statistical coefficients are derived or the 

physical model it was trained upon. The statistical approach should not be confused with 

statistical analysis (calculation of statistical indices such as Root Mean Square Error, Mean 

Absolute Error, etc. between in-situ and derived data) of result, errors, and uncertainty in 

derivation of result in various studies.  

The major advantages of statistical approach are that they are easy to apply, tools are 

readily available to process & analyse data, and recent developments in advanced ML 

techniques enhanced the efficiency to process huge in-situ data. The limitations are 

requirement of in-situ data, specific adaptation to the same image & same site, difficult to 

transfer to other sites (Dörnhöfer & Oppelt, 2016). However, few of the studies have 

employed ‘spatial transfer’ (application of the statistical empirical method to a nearby site) 

and ‘temporal transfer’ (application of the statistical empirical model to acquisitions on same 

site but different dates) to SDB studies (Danilo & Melgani, 2019).  

 

2.2 RT Physics-Based Approaches 

The Physics-Based Approaches relies on the physics of exponential attenuation of light with 

depth in the water column and its reflection from either water column or from the seabed 

(Bramante, Raju, & Sin, 2013). Generally, the bands with the lowest level of light absorption 

                  



(Blue & Green) are used for SDB. The physics-based approaches estimate and explain the 

physical properties of spectral, water column, and environmental parameters, e.g. Chl 

concentration, TSM, Detritus concentration, spectral shape, absorption & backscattering 

coefficients, and water depth (Brando et al., 2009; Lee et al., 1999). The inherent strength of 

the physics-based approaches is in the estimation of the physical parameters affecting spectral 

observations with or without in-situ data. However, the RT Physics based approaches have 

been referred as the difficult mathematical problems, complex to implement pragmatically 

(Mouw et al., 2015). Besides, RT Physics based approaches need detailed theoretical 

knowledge about the under-consideration parameters to explain the modelled relationship. 

RT physics-based approaches are thus only advocated when there exists a strong 

understanding of the physical and biological processes in the water. 

Theoretically, the physics-based approach for SDB has been developed using Beer's 

Law to model radiant intensities that are scattered and absorbed by water. Since then a 

number of different techniques under the label of either Physics-based model or Bio-optical 

model has been developed to estimate SDB.  

 

Models in RT Physics-Based Approach  

The physics-based approaches are applied under the two varying but complementary 

assumptions about the reflectance data. The first is referred as Bio-optical model as its is 

based on assumption that optical properties of water are principally controlled by the 

biological materials in the water column, mainly phytoplankton and its derivatives (Smith 

and Baker 1977) and later is called Physio-optical Model which explains remote sensing 

reflectance as a function of water quality, water depth, and bottom reflectance by a forward-

model which when inverted gives depth estimation (Lee et al., 1999; Hedley et al., 2009). 

 

2.2.1 Physio-Optical Models 

Lord Rayleigh (1899) discovered that the molecular scattering in the atmosphere results from 

diffuse reflection and transmission of sunlight. However, a solution to Rayleigh's problem 

was suggested by Chandrasekhar (1950) in his book RT (Suomi & Haar, 1970). 

Chandrasekhar described ‘RT’ as a mathematical solution to the equation of transfer of 

radiation in a medium which absorbs, emits, and scatters them. In remote sensing science, the 

RT theory provided rationale for causality between observations received at sensors and 

physical processes that generated the signal, thus becoming the most efficient tool for precise 

retrievals of earth and atmospheric properties from satellite data. The RT theories have been 

varyingly studied for scattering behaviour in different mediums of transmission, and 

representation of RT equations in solution methods applied in atmospheric corrections, air 

aerosol & cloud studies, water bodies, vegetation, etc. A specific formula of the RT in a 

medium which is absorbing and scattering is given by the classical RT equation (cf Jerlov, 

1976; Bukata et al., 1995) as follows: 
 

 
  (       )

  
    (   )  (       )    (       )    

 (          )    ( ) 

 

Where, dL - change of radiance, λ – wavelength,     (   )  (       ) - represents loss by 

attenuation,    (       )   gain by elastic scattering traveling a small distance dr in a 

                  



medium at depth z in the direction (θ; ϕ), and   
 (          ) - gain by luminescence. Thus, 

RTE is an integration-differential problem complex to be solved analytically, therefore 

application specific methods are adapted to derive the illumination geometry, relevant shape, 

consistency and composition of the considered medium. 

 

 2.2.2 Bio-Optical Models  

Smith and Baker (1977) used the term ‘Bio-Optical’ refer to the optical state of water, which 

is mainly dependent on optical properties of the biological materials (Chl, phytoplankton, 

etc.) in the water column. Since then, the term has been used widely and inconsistently in 

specifying bio-optical models (Ogashawara, 2015). Bio-optical models are based on 

radiometric quantities (IOPs and AOPs), like downwelling & upwelling spectral irradiance 

and the absorption and scattering properties of elements in the water column. These spectral 

characteristics may be determined at the level of a single cell (using physical structure such 

as cell size, distribution size, chemical composition, etc.), and extended to a population of 

such cells numerically (Morel, 2001). The first bio-optical model using Monte Carlo 

simulation of the RT equations to develop relationships between AOPs and IOPs of sea 

water. The basic RT equation has been suggested by (Gordon, 1973) is presented in simple 

form as below, 
 

   ( )   ,     ( )      ( ) or 

 

   ( )    ( ) 
  ( )

 ( )    ( )
      ( ) 

 
 

where the G(λ) coefficients represent the combined influence of illumination conditions and 

geometry, sea surface properties, and the shape of the marine VSF (Common methods for 

estimating the G(λ) functions include Gordon et al. (1988), where G1(λ) and G2(λ) are 

spectrally fixed as 0.0949 and 0.0794 (see Lee et al. (2002, 2011)).    and bb (both expressed 

in units of m
−1

) are the bulk absorption and backscattering coefficients, respectively, and are 

expressed as the sum of the contributions from each Optically Active Substances (OAC) as 

follows (Mobley, 1994), 
 

   ( )    ( ) 
   ( )     ( )

  ( )     ( )     ( )      ( )     ( )
      ( ) 

 
 

According to Morel, (2001), the Bio-optical model is classified in two categories; 

(1) Models for Individual Particle / Population of Particles: These models aim at deriving 

information about the bio-physical processes (optics of individual cells, or ultimately whole 

populations) in the water from relationships between remote sensing data and optically active 

constituents (Chl in case 1 water and organic sediments, CDOM, mineral, etc in case 2 water) 

and thus supports the second category of bio-optical models, (2) Modelling the Optical 

Properties of Ocean Waters in Relation to their Biological State based on IOP (absorption 

coefficient and scattering coefficient) and AOP (Downwelling irradiance & Irradiance 

reflectance). Bio-Optical models are primarily based on ocean color theories related with 

                  



concentration and distribution of Chl and phytoplankton. Based on the quantification of IOPs, 

these bio-optical models are usually referred as analytical models (Mobley, 2001). Although 

bio-optical models have been classified differently based on their formulation and goals 

(Odermatt et al., 2012), the major classification is into four general categories as Semi-

Empirical (SE), Semi-Analytical (SA) and Quasi Analytical (QA), and analytical methods 

(Ogashawara, 2015).  

3. INTRODUCTION TO SDB METHODS 

Wherein, both the Bio-optical model and Physio-optical model can be executed via SE and 

Analytical methods. SE methods are based on explicit assumption of RT of light and its 

attenuation in propagating medium and uses statistical calibration of transformed to field 

data. Analytical methods are referred to algorithms grounded in physics of RT of light within 

a water body purely on the basis of water constituents Bio-physio-optical properties. 

However, the analytical method has been considered as an acrimonious mathematical 

problem, complex to execute practically (Mouw et al., 2015; Werdell et al., 2018). These 

limitations and complexities related to analytical methods have been addressed by few 

theoretical assumptions, based on which Analytical methods were bifurcated into SA and QA 

Methods. SA methods have been pioneered by Lee et al., (1998;1999) who modified 

(Maritorena, Morel, & Gentili, 1994; Mobley, 1994) analytical RT equation to to derive 

water column optical properties, depth, and seafloor reflectance based on water’s absorption 

and backscatter properties of the light using spectral matching technique without any need of 

field data. Wherein, QA method was developed by Lee, Carder, & Arnone, (2002) to derive 

total absorption α (which can be further decomposed to absorption coefficients of 

phytoplankton αϕ and gelbstoff αg) and backscattering coefficients bb, based on relationships 

between remote sensing reflectance and IOPs of the water by applying radiative RT equation. 
 

3.1 Empirical SDB 

Empirical methods purely rely on the statistical estimators derived from in-situ data. The 

empirical algorithm is developed using a training dataset of in-situ observation and the 

reflectance of suitable bands from satellite imagery. Empirical method uses statistical 

techniques, like linear & non-linear regression, neural networks, maximum likelihood, least 

squares, etc. to estimate the highest degree of relationship between reflectance of selected 

band and parameter of interest without any concern for physio-optical properties (IOPs or 

AOPs). These algorithms provide the advantage of processing huge amounts of data, simply 

and rapidly. Matthews, (2011)  reviewed several empirical studies on remote sensing in 

coastal water and concluded that accepting a considerable degree of error, a great amount of 

valuable knowledge can be obtained using empirical methods. The assumption of optically 

homogeneous environments in a single scene makes empirical algorithms site-specific and 

time-dependent. However, empirical methods using ML and multi temporal data have helped 

overcome these limitations (Salameh et al., 2019). Important empirical method-based 

techniques in SDB studies are discussed below. 

 

3.1.1 Empirical SDB Techniques 

The empirical methods mostly employ regression tools for data analysis using spectral 

values of a single/multiple bands with in-situ data to calculate the regression coefficients. The 

                  



various techniques of regression applied in SDB studies includes; simple step-wise regression 

(Chen & Zhu, 2015; Doxani et al., 2012), MLR & nonlinear regression (Manessa et al., 

2017); Linear regression with principal components (Mishra et al., 2004); geographically-

weighted regression (Poliyapram et al., 2017) & second order polynomial regression 

(Hamylton, Hedley, & Beaman, 2015); least-square regression (Su, Liu, & Heyman, 2008); 

cluster-based regression (Geyman & Maloof, 2019), etc. Although regression techniques 

have been considered the most practical solution to huge data analysis, they may cause 

algorithms to fail in the area of varied seabed (Doxani et al. 2012). Gao, (2009) described that 

the regression coefficients deteriorate in mixed bottom types; hence a separate regression 

algorithm may be constructed for each different bottom type which includes nature of bottom 

and vegetation at the site.  

The classification techniques supervised/unsupervised are also used either alone to 

classify bathymetry and bottom in the satellite imagery or in combination with SE method 

prior to applying band ratio algorithms. Clark, Fay, & Walker, (1988) used clustered image 

by supervised statistical clustering and the maximum likelihood classifier before applying a 

band ratio algorithm. The core assumption in supervised classification is that bathymetry, or 

seabed, has spectral signatures to be differentiated within an image. The classified image is 

then calibrated according to statistical parameters related to bathymetry from training areas 

(Liceaga-Correa & Euan-Avila, 2002). The Unsupervised classification is classified in broad 

classes of relatively similar radiometric reflectance and then these classes are used to create 

regions, to be regressed against the bathymetric calibration data (Collet, Rostaing, & 

Bouthemyb, 2000; Liceaga-Correa & Euan-Avila, 2002; Mavraeidopoulos et al., 2019). 

Several unsupervised classification techniques like, K-Mean unsupervised classification 

(Geyman & Maloof, 2019; Halls & Costin, 2016); Iso Cluster Unsupervised Classification 

(Poursanidis et al., 2019) have been used in SDB studies concluding effectiveness of 

classification of pixels into subgroups prior applying SDB algorithm. 

The other techniques include PCA by adopting the first component using all three 

bands (transformed) that will correlate to water depth (Gholamalifard et al., 2013). Mohamed 

et al., (2016) used the PCA for detecting SDB, where principal components of the log 

transformed reflectance was linearly correlated with in-situ water depths, achieved better 

SDB estimation. The few studies also used Maximum Likelihood algorithms to determine 

SDB and seabed classification (Andrew et al., 1988; Liceaga-Correa & Euan-Avila, 2002; 

Zhou, 2011). Jay & Guillaume, (2014) have proposed a non-stationary maximum likelihood 

estimation technique for SDB and water quality from HS data for better results. 

            Besides, there are several other statistical and image based techniques like object-

based image analysis (OBIA) used in SDB (Eugenio, Marcello, & Martin, 2015; Hedley et 

al., 2018). Few of the empirical SDB studies, satellite data used, depth range in the area, and 

results are shown in figure 2 below. 
 

                  



 
Figure 2: Empirical SDB Studies 

The few empirical studies have considered the effect of a few confounding factors in 

SDB retrieval. Tripathi & Rao, (2002) studied influence of turbidity on bathymetry using 

IRS-1D LISS-III Band 1 (0.52–0.59 nm) and suggested a correcting factor Turbidity 

Influence Factor (TIF) to minimise the error. Author applied Least Squares Regression 

technique between band 1 reflectance and bathymetry up to 25 m resulting in a very high R
2
 

0.97 when TIF was utilized but RMSE of predicted SDB was substantially high. Mishra et 

al., (2004) studied bathymetry in different but uniform bottom types (seagrass, coral, and 

sand) in Honduras for depth of 7 m using PCA on IKONOS data achieving R
2
 = 0.90 and 

standard error of 0.64 m.  

The few studies have compared techniques to determine the best suited algorithm 

established till date of study for their study site. The four empirical methods; a linear 

regression model using the first principal component, a MLR, a two-step non-supervised 

classification with MLR, and  a supervised classification has been compared using Landsat 

TM data in Alacranes Reef of Gulf of Mexico for depth of 20 m and the RMSE were 

estimated 4.14 m, 3.84 m, 3.83 m and 4.49 m respectively, concluding two step non 

supervised method produced the lowest overall RMSE (Liceaga-Correa & Euan-Avila, 2002). 

Chen & Zhu, (2015) has also compared three empirical methods primary component analysis, 

independent component analysis, and Log ratio transform to retrieve SDB at Pratas Island 

using Landsat 8, where result shown regression was not robust due to vast outliers. 

Overall, it can be concluded from the empirical studies that SDB derived by various 

researchers have shown more than 60% of the validation points have a RMSE lower than 1 m 

but other predicted data have large errors and few of them are having RMSE up to the depth 

range of the area. This has been a definite reason that empirical methods have been used 

limitedly to derive SDB. Moreover, based on studies in the turbid region, it is suggested that 

the empirical methods may be used very cautiously in coastal turbid water as it results in 

higher errors. 
 

3.1.2    Machine Learning SDB 

ML is becoming a widely accepted research tool for researchers in GIS and remote sensing 

studies offering a greater flexibility in techniques to process huge amounts of data. ML has 

                  



gained wide acceptance in remote sensing studies especially processing longitudinal high-

resolution satellite data and or with high resolution in-situ data. The Ceyhun & Yalçın, (2010) 

was pioneer study in applying ML to SDB, used ANN algorithm to Aster and Quickbird 

satellite data in Foca, Izmir Turkey for the depth of 45 m and has derived fairly accurate SDB 

estimates having determination coefficient 0.80. Eugenio et al., (2015) used the SVM 

algorithm on World-View 2 data at Canary Islands coastal areas for depth of 0-30 m, and 

achieved a result of R
2 

between 0.93 and 0.94  and RMSE between 1.20 and 1.94 m. Kibele 

& Shears, (2016) used a non-parametric nearest neighbor regression for WorldView- 2 and 

World-View-3 imagery in Cape Rodney, New Zealand and compared result with Lyzenga 

Depth Estimation and proved KNN method has outperform the Lyzenga’s algorithm. An 

ANN algorithm was applied to IRS-P6 LISS-IV at turbid water of Bhopal City Lower Lake 

for a depth of 0-12 m achieving R
2
 of 0.9514 and RMSE 1.618 m, proved ANN techniques 

possibly, can be used without refining for environmental factors like bottom material and 

vegetation (Patel, Katiyar, & Prasad, 2016). The few of the studies on SDB using ML 

algorithms have been shown below with details of algorithm and accuracy achieved. 

 

 
Figure 3: SDB using ML algorithms 

 Hassan et al., (2017) has compared SDB derived from five ML algorithms; ensemble 

regression tree-fitting algorithm using bagging (BAG), ensemble regression tree-fitting 

algorithm of least squares boosting (LSB), and support vector regression (SVR) the neural 

network (NN) and the Lyzenga generalised linear model (GLM) using Landsat 8 and Spot-6 

data at three different sites for depth range 0-10.5 m (Alexandria port, Egypt), 0-6 m (Lake 

Nubia), and 0-14m (Ishigaki Island, Japan) and found BAG algorithm produced the most 

accurate result. Misra et al., (2018) used Nonlinear SVM in shallow water using Landsat 7 & 

8 at Maarten Is., Netherlands for depth 1– 15 m. The SVM provided better performance of R
2
 

0.73 in for shallow turbid water. The another note worthy study by Sagawa et al., (2019) who 

used Random Forest Method on multi-temporal Landsat data (135 scenes) in five test areas, 

for depth range of 0 to 20 m and found RMSE in the final derived SDB in the five test areas 

was about 1.41 m. However, SDB estimated was in the various shallow water regions under 

                  



highly transparent conditions. Dickens & Armstrong, (2019) employed RNN on Orbview-3 

multi-temporal images (376 images) at three different sites for depth range of 0- 25 m, and 

found R
2
 between 0.69 concluding even deep learning techniques derived SDB do not meet 

the IHO bathymetry standards. Moein et al., (2019) utilized RF Algorithm using Landsat 8 

data for depths 0 – 20 m, and explained that the best combination of bands for SDB was the 

band combination (1–2–3–4), with RMSE and MAE was 1.253 and 0.766, in depth of 0 to 5 

m. However, beyond 10 m onward, the measurement error increased exponentially.  

Thus, it can be concluded that ML algorithms have proven superiority over traditional 

empirical techniques. The most commonly used methods, SVM and RF produces SDB results 

for depth up to 10 m significantly, but hereinafter error increases exponentially. Besides, a 

very few have attempted SDB in turbid water. The ML is one of the emerging areas in SDB 

studies and has a vast potential to develop operational SDB models. 

 

3.2 Semi-Empirical SDB 

The various researchers have attempted to explore analytic solutions to SDB, however their 

efforts till earlier part of 1990’s was to correlate image pixel values with simultaneously 

collected in-situ bathymetric data without much deliberation on other atmospheric, water 

column and environmental parameters. The underlying assumption of band ratio (especially 

blue and green bands) as substitute to attenuation coefficients helped to retrieve SDB to the 

accuracy level of about 70 percent without much ground data (Polcyn, 1969 and colleagues; 

Benny & Dawson, 1983; Paredes & Spero, 1983). Parallelly, few other researchers suggested 

that, even only single band can account for exponential decay of light in the water if used log 

linear transformation of difference between actual radiance value of pixel to the deep-water 

radiance of pixel in the same image (Lyzenga, 1978; Warne, 1978). Log linear transformation 

was further extended to dual-band ((Clark et al., 1987; Lyzenga, 1985) and multiband 

(Lyzenga et al., 2006) channels for better accuracy of SDB. The modified log ratio 

transformation for dual-band was suggested by (Stumpf, Holderied, & Sinclair, 2003), further 

modified to use with a combination of several other bands (Kabiri, 2017). The RT approach 

enhanced the potential to use MS data for SDB estimation by its explicit assumption 

(wherein, in empirical methods assumption is implicit) in the equation where either Band 

Ratio techniques or Linear Regression Techniques was utilized for addressing the exponential 

attenuation of light in the water and thus reduced the number of unknown parameters.  

 

 

3.2.1 Band Ratio SDB 

 According to Lambert-Beer law Transmittance T of absorbing medium is expressed 

as T = exp (- αz). A collimated beam propagating vertically downwards with negligible 

scattering at depth z can be expressed as, 

     ( )  

     ( )
          ( ) 

where E0(z) is scalar irradiance and given as,  
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Where, z-depth, θ - Zenith angle, ϕ -Azimuthal angle, dw- differential solid angle and E0(0) is 

E0(z) at surface of water z = 0. The pioneer study on SDB by (Polcyn & Rollin, 1969) was 

based on exponential attenuation theory of light which explains radiant intensities are 

scattered and absorbed by water according to Beer's Law and is given by, 

  

       
   …………. (7) 

where Iz = intensity after: traveling a distance z; Io = intensity at the surface; z = distance 

traversed in the water; α = total attenuation coefficient, or extinction coefficient, with units of 

reciprocal length and α = αs + αα  (where αs = scattering coefficient of the medium and its 

suspended particles αα = absorption coefficient α); Both the scattering and the absorption 

coefficient are wavelength dependent. Polcyn & Rollin, (1969) derived electrical signal V 

received at a satellite sensor for power P areas where bottom type and water clarity are 

uniform is given as,  

          (                  )  ………. (8) 

Where,  V = signal in channel of bandwidth    λ; ρ = reflectance of bottom material in that 

wavelength interval; H = irradiance of the sun at the water surface; α = water extinction 

coefficient; z = depth of the water; θ = known angle of incidence; ϕ = viewer observation 

angle; K = function of other known quantities, i.e., of receiver size, FoV (field of view), 

responsivities, transmission (atmosphere), and optics. 

Based on assumption that one band is decayed in water more rapidly than other and total 

attenuation coefficient derived from ratio of two attenuating signals, the depth z has been 

inverted from equation (3) as follows. 
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            ( ) 

 

The Band Ratio Technique has been used for almost a decade to derive unknown attenuation 

coefficient based on ratio of two bands, being all other parameters known from satellite data 

to estimate depth. This technique helped determine bands useful in SDB and maximum 

derivable depth up to 5 m with low accuracy. However, ratio technique was enhanced by 

(Stumpf et al., 2003) who suggested ratio of  the attenuation of two bands (than using albedo) 

as different spectral bands attenuate at different rates. The algorithms derived is as given by, 
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  (   (  ))
          (  ) 

 

where, Z - depth, n - constant to ensure the ratio remains positive under all values, Rw is 

observed reflectance in band, and m0 is the offset and m1 is a gain. Stumpf et al., (2003) is 

one of the most utilized algorithms in SDB applied studies.  

The SDB Algorithms based on Band Ratio techniques initiated by Polcyn, & Rollin, 

(1969) using 18 band MS data collected by airborne sensor at Gulf of Maine achieved depth 

of 13 ft or less which improved to 20 ft by Polcyn et al., (1970) using MS Scanner in Caesar 

Creek, Florida. Polcyn & Lyzenga, (1973) used Band 4 and 5 of ERTS-1 MSS data taken on 

                  



October 10, 1972 for developing a mathematical method for SDB showing correlation of 

depth measurements to 5 meters in Little Bahama Bank. This study proved that Band 4 (.5-.6) 

clearly shows underwater features, and band 5 (.6-.7) shows some of the shallower areas, 

wherein band 6 and 7 of ERTS-I satellite data show no underwater features. Paredes & Spero, 

(1983) extended generalized ratio assumption to the multiband on the tacit assumption that 

attenuation is constant over the scene. Stumpf et al., (2003) developed a semi empirical 

solution using a ratio of reflectance with only two parameters and can also be applied to low-

albedo features. This ratio transform technique of SDB has proven more robust, can retrieve 

depths to 25 & shows stability and has normalized rms error up to 30% up to 25 m depth. 

However, technique is effective only in clear and transparent water. This technique has been 

further extended to include the effect of turbidity and chlorophyll on SDB estimation 

(Caballero, Stumpf, & Meredith, 2019). 

3.2.2 Linear Band SDB 

Lyzenga (1978) modified the ratio technique to develop a more generic set of Shallow 

Water Radiance data and developed algorithms for water depth and bottom features from 

single band exponential depth dependence using the log linear transformation. This technique 

has an explanation for unpredictability in bottom type by using multiple spectral bands. A 

variable, Xj, has been defined for each of the N bands (for details, refer Lyzenga, 1978, p. 

383) 

 

      ∑    

 

   
   ……….. (11) 

 

Where,      (   –     ); Lsi - deep-water radiance and   - above-surface reflectance;     

and     Derived from regression of radiance and in-situ data. Deep-water reflectance was 

assumed to account for reflection from sea surface, volume scattering in the water column 

and sun-glint effects, and atmospheric scattering. This led the development of  Linear Band 

technique (Lyzenga, 1978) which is one of the most widely utilized techniques in SDB 

studies, as it only needs in-situ data for calibration of technique. The various other algorithms 

were developed concurrently using linear transformation technique (Benny & Dawson, 1983; 

Warne, 1978; Jupp, 1989).  

 Warne, (1978) used single band linear technique using Landsat data in Australia for 

the depth of 0-30 m, proved Landsat may derive SDB up to 20 metres with an accuracy of 10 

% . Lyzenga, (1981) assuming the water optical properties to be uniform over a given scene 

used Landsat and Airborne MS data at North Cat Cay in the Bahamas and found this 

technique gives accurate results to a depth of 15 m in clear water. Lyzenga, (1985) used 

hybrid airborne sensor which incorporates both a lidar system and a passive MS to derive 

SDB in 2 sites Bahama Islands for depth 0-10 m and found RMSE 0.928 m for depth 8-10 m. 

Lyzenga continued his efforts in improving SDB and proposed multi band linear technique  

(Lyzenga et al., 2006). The algorithm based on this technique corrects variations in both 

attenuation and bottom using a linear combination of the log-transformed radiances mostly in 

the blue & green bands. This model is applicable to areas of uniform water optical properties 

                  



and bottom reflectance. It also accounts for the sun glint, gives operational flexibility, better 

discrimination of bottom, improved performance through the use more than two bands. 

3.3 Analytical SDB 

Analytical methods are grounded on physics of RT of light within a water body purely on the 

basis of physical properties of water constituents such as attenuation, backscattering, & 

absorption. According to Gordon & Morel, (1983), the analytical methods directly utilizes the 

RT theory, and describes the absorption and backscattering coefficients as the constituents of 

the water. Gordon, (1973) formulated theory find an analytic expression of reflectance in 

oceanic water using RT, as a function where wo is the ratio of the scattering coefficient b to c, 

and the scattering phase function by using  a Monte Carlo simulation that included all orders 

of multiple scattering and interface reflection. Gordon & Mccluney, (1975) expressed the 

radiance   ( 
 ) as, 

  ( 
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where n - refractive index of water;  (    ) - Fresnel transmittance;  (  ) - phase function 

for scattering;        (     ) – Snell’s law. Author concluded that spectral radiance 

Lt(λ) received at the sensor can be appraised by RT equation which will provide optical 

properties and therefore the constituent concentrations (with few simplifying assumptions) by 

solving the inverse problem (Gordon & Morel, 1983). This RT equation has been modified 

by several others for deriving solutions to light and water problems (Mobley, 1994; Mobley 

et al., 1993). Albert & Mobley, (2003) has further improved the method by derivation of total 

Analytical solution for the irradiance reflectance and remote sensing reflectance for deep and 

shallow water applications. The remote sensing reflectance Rrs has been expressed with a 

similar approximation as the irradiance reflectance, but with an additional dependence on the 

subsurface viewing angle θv. 
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The analytical methods give highly accurate results, but are very complex to execute 

as it needs the input of several in-situ parameters related to the optical properties of water 

column and the seabed (Albert & Mobley, 2003; Jawak, Vadlamani, & Luis, 2015; Liu, 

Islam, & Gao, 2003). The measured optical properties and constituent concentrations in water 

are physically related to the reflectance spectra applying RT models which are then inverted 

through regression, curve fitting, neural networks, or matrix inversion, etc. The analytical 

implementation is more accurate, and can yield highly accurate bathymetric information. 

Methods retrieve water depth and bottom type simultaneously (Bramante et al., 2013; 

Hamylton, Hedley, & Beaman, 2015; Hedley et al., 2018; Olayinka & Knudby, 2019). 

The implementation of analytical methods also needs a precise input of a set of 

parameters related to atmospheric effect. Even the small errors in atmospheric correction 

induces larger errors in retrieval, as the water leaving radiance only amounts to 10 percent of 

                  



total signal and remaining 90 percent accounts for atmospheric effects (Caballero et al., 

2019). Another limitation of analytic approach is simultaneous collection of field data to 

image acquisition (satellite pass) for modelling accurate water constituents in coastal 

dynamic water. Analytical methods are computationally complex and execution is difficult as 

there are no atmospheric correction methods that provide accurate water reflectance for 

shallow and/or optically complex coastal waters.  

In analytical method, RT equation is principally solved using three techniques, first 

forward modelling, inverse modelling techniques or look-up tables (LUT) based on forward 

& Inverse modelling techniques or combination of any of three (Hodúl, Bird, Knudby, & 

Chénier, 2018). An analytical method forward-model a range of probable Rrs as a function of 

constituents of water, bathymetry, and seabed reflectance which is then inverted to derive 

water constituents and bathymetry by recognizing the modelled Rrs which resembles most 

closely to the observed Rrs in each pixel (Hedley et al., 2009). 

 

3.3.1 Forward & Inversion Modelled SDB 

Analytical method Forward modelling techniques are used majorly to serve three functions; 

explain, predict or model inversion of problem in consideration. Models explain relationships 

between physical parameters and remote sensing parameters or derived parameters like 

AOPs/IOPs. Model simulations are used to explain certain phenomena from actual satellite 

images. Certain phenomena observed in the actual data but can’t be explained through the 

model, provides the prospect to modify the model to predict the phenomena more precisely 

(Verhoef, 1998). However, retrieval of any constituent parameter needs inversion of the 

forward model.  

In Analytical methods, Inversion Modelling to RTE is applied to estimate input 

parameters used in the model using detected remote sensing data. However, its 

implementation is subject to a number of known & unknown parameters and available bands 

in remote sensing data. Moreover, execution of model inversion needs extensive 

computational efforts, and several iterations on the forward model to arrive at a solution 

(Verhoef, 1998). Inversion techniques mostly simulate spectral signatures, and a set of 

constant as well as variable model parameters related to IOPs and AOPs.  The variable 

parameters are revised iteratively till the variance between modelled and actual image 

spectral signatures reach to a lowest. The result of inverse modelling provides data retrieval 

of water constituents, bathymetry, and seabed substrates. Inversion techniques have grown 

rapidly for water constituent’s retrieval in marine remote sensing (Hedley et al., 2009). The 

inversion techniques have been applied varyingly in SDB literature, e.g. linear inversion, 

non-linear inversion, adaptive inversion, log-linear inversion, log-ratio inversion, etc. 

 

 3.3.2 Look-Up Tables (LUT) SDB 

LUT technique refers to a large database containing spectral signatures, known 

constituent concentrations’ water leaving radiance, IOPs, bathymetry, and seabed properties. 

The spectral signatures of satellite image and LUT database are assessed to find the nearest 

match for all the parameters under consideration (Dekker et al., 2011). The analytical method 

applied to RTE by Mobley, (1994) resulted in the first LUT technique ‘Hydrolight’ using 

forward modelling of remote sensing reflectance (Mobley et al., 2005). The spectral matching 

                  



LUT algorithm of Mobley et al. (2005) is also referred as Comprehensive Reflectance 

Inversion based on Spectrum matching and Table Look up (CRISTAL) developed for 

concurrent retrieval of bathymetry, benthic substrate, and IOPs (Dekker et al. 2011). The 

other technique ALUT has been developed by (Hedley, Roelfsema, & Phinn, 2009). SDB 

studies based on LUT techniques show SDB has been derived up to the depth of 30 m 

significantly.  

            Hedley, Roelfsema, & Phinn, (2009) presented an Adaptive Look-Up Tree (ALUT) 

that evenly distributes the discretization error of tabulated reflectance in the spectral space as 

a function representing the shape of the spectral reflectance using 17-Band CASI HS image  

(430 –710 nm) in Heron Reef, Australia for depth 0-20 m with R
2  

0.91. Bramante, Raju, & 

Sin, (2013) compared conventional SDB and LUT techniques using MS data of Worldview-2 

in Singapore’s turbid shallow coastal waters for depth 0-4 m. LUT classification provided a 

precision of 0.64 m, but was limited by a training set that did not fully represent variance in 

water column and benthic properties. Hedley et al., (2018) used Sentinel-2 and Landsat 8 in 

Australia for depth up to 30 m and found depths were well estimated to around 15 m with R
2
 

value of 0.89, showing with accurate atmospheric correction, SDB can be estimated up to 15 

m, where optical conditions are favourable. LUT techniques have been effectively used for 

SDB estimation and water constituent determination, however the result of derivation 

depends on precision of LUT database, whether it contains IOP/AOP, benthic substrate 

spectral signature and bathymetry as in the geographical area of the imagery. Maritorena, 

Morel, & Gentili, (1994) suggested that the safe use of analytical algorithms demands 

validation of the underlying approximations and quantification of their impact. The authors 

used a dual method of comparison; first, the analytical solution compared with precise 

solution derived via Monte Carlo simulations of the RT and the second spectral reflectance 

(in variable depth and bottom) has been compared to field data.  

Although substantial efforts have been placed on the development of analytical 

methods for deriving marine IOPs from the sensor radiance, these methods cannot be exactly 

reduced to an analytical equation. The similar view was expressed by (Mouw et al., 2015) 

referring analytical methods as basically an acrimonious mathematical problem which needs 

continual development to translate from laboratory-based practice to in field methods. These 

limitations and complexities related to analytical methods have been addressed by few 

theoretical assumptions, based on which Analytical methods were bifurcated into SA and QA 

Methods.  

 

3.4 Semi Analytical SDB 

Most of the literature on SDB prior to 1998 refers to SE methods as SA methods. However, 

SA methods have been pioneered by Lee et al., (1998;1999) who modified (Maritorena et al., 

1994; Mobley, 1994) analytical RT equation to derive water column optical properties, depth, 

and seafloor reflectance. This method is developed based on water’s absorption and 

backscatter properties of the light using spectral matching Levenberg-Marquardt optimization 

algorithm. It needs the HS data, to optimize water parameters to match the spectral signatures 

in the HS dataset. This method does not require field data for calibration (Lee, Carder, & 

Arnone, 2002) and derived algorithms can be applied to different waters with better 

predictive accuracy than empirical algorithms (Sathyendranath, 2000). The semi analytic 

                  



method gained wide popularity in various marine studies which includes water column 

properties & bathymetry. This method was originally developed for HS data, however, it can 

even be applied to MS data with substantial results (Dekker et al., 2011). The more specific 

derivation for SDB in shallow water was established by Lee et al., (1999), using HS remote 

sensing data using by optimization technique for nadir-viewing Rrs is expressed as, 
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Where,   (λ)is the bottom albedo; H is the bottom depth; θw is the subsurface solar zenith 

angle; θ is the subsurface viewing angle from nadir;       subsurface remote-sensing 

reflectance;     
  

  remote-sensing reflectance for optically deep water    
  

 (      

      ) ; optical path-elongation factors for scattered photons from the water column 

  
      (      )    and  bottom   

       (      )   ;   u = bb / (α+ bb);  k = α+ bb ;  

(bb = bbw + bbp ) & (α = αw + αϕ + αg). This equation was modified as explicit functions of P, G, 

X, B, and H (i.e. 5 unknowns in via spectral optimization, derived from modelled and 

measured Rrs without any field data) and their values that fits the modelled     are 

considered as the solutions as below; 
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Where, where P, G, X, and H respectively represent the water column phytoplankton, 

coloured dissolved organic matter (CDOM), particulate backscatter and depth. 

The inversion of the above equation was used to derive SDB with computer simulated 

data with accuracy of 5% for a range of 2 – 20 m, and for field data, it was accurate to within 

11% for a depth range of 0.8–25 m. The semi-analytic method proposed by Lee et al., 1999 

was used widely in marine remote sensing studies especially for constituent’s retrieval 

(Bramante et al., 2013). Most of these SDB studies have emphasized the advantages of HS 

data in coastal shallow water (Gould, Arnone, & Sydor, 2001; Lee & Carder, 2002; Wettle & 

Brando, 2006).  

 McKinna et al., (2015) elaborated that a typical SA method to retrieve IOP from 

remote sensing reflectance based on spectral matching follows three steps; (1) The forward 

modelling is used to analytically approximate the modelled remote sensing reflectance, to the 

observed one, (2) spectral shapes of unknown parameters are modelled using exponential or 

power law functions, and (3) The spectral IOPs magnitude in the forward model are then 

iteratively adjusted by an inverse solution. Werdell et al., (2018) suggested that the  solution 

techniques based on SA can be categorized in four broad groups; (i) Nonlinear Spectral 

Optimization e.g. Levenberg Marquardt technique (Maritorena et al., 2002; McKinna et al., 

2015) , (ii) Direct Linear Inversion e.g. Linear matrix inversion, (iii) spectral deconvolution 

                  



in which spectral shapes are assigned Step-wise algebraically and (iv) bulk inversion which 

determine IOPs at each wavelength independently. 

The few of the techniques used to derive SDB based on SA includes; (Lee, et al., 

1999) as HS Optimization Process Exemplar (HOPE); SA Model for Unmixing and 

Concentration Assessment (SAMBUCA) is a extension of the work of Lee et al. (1999) by 

including a more than one substrates type (Brando et al., 2009); Bottom reflectance un-

mixing computation of the environment model (BRUCE) based on  Lee et al. (1999) with a 

modification to the bottom reflectance parameterization by (Klonowski et al. 2007); Shallow 

Water Inversion Model by  (McKinna et al., 2015), SWAM (Shallow Water SA Model) 

ESA’s SNAP toolbox (Hedley et al., 2018) and many such other techniques discussion of 

which is beyond purview of this review. The SDB studies based on SA based algorithms is 

shown below with details of data used, depth range in the area and result derived. 

 

 
Figure 4: SDB Studies based on SA based Techniques 

 Lee & Carder, (2000) suggested that their SA model may retrieve SDB with accuracy 

R2 = 0.96, (for n = 37), however, the discrepancies are increased with turbidity. Brando et al., 

(2009) developed SA technique called SAMBUCA based on optimization of Lee et al. 

(1999), was applied to airborne HS data CASI-2 in Moreton Bay, Australia for depth 0-10 m. 

The results indicated better output in shallow clear water (RMSE 0.67 m) than optically deep 

water (RMSE 1.35 m). Dekker et al., (2011) compared five SA algorithms namely; HOPE, 

BRUCE, SAMBUCA, CRISTAL, and ALLUT using Airborne HS Data of CASI-2 at Lee 

Stocking Is. in the Bahamas and Moreton Bay in eastern Australia for depth range of 0-13 m. 

The retrieval of RMS error was lowest for BRUCE method, although all techniques estimate 

SDB and benthic substrate types. Liew, Chang, & Kwoh, (2012) investigated the sensitivity 

and limitations of WorldView-2 data for SDB retrieval in turbid coastal waters using SA at 

Singapore Strait. The study concluded the utility of Red and Yellow bands for SDB in turbid 

water, however the maximum depth of SDB was low to about 2.4 m.        

The various SDB studies cited above have suggested that depth can be retrieved up to 

15 to 20 m using SA algorithms. Few studies elaborated SDB retrieval even without any field 

data. This advantage may be helpful in ensuring data production at any site and over a 

longitudinal period.  

  

3.5 Quasi Analytical (QA) SDB 

                  



            Lee, Carder, & Arnone, (2002) developed a multiband QA method to derive total 

absorption α (which can be further decomposed to absorption coefficients of phytoplankton 

αϕ and gelbstoff αg) and backscattering coefficients bb, based on relationships between remote 

sensing reflectance and IOPs of the water by applying radiative RT equation. QA method is 

near-analytical in nature and can be applied to both HS and MS data. The study also 

advocated that QA methods retrieval have its accuracy comparable to that of optimization 

with calculation efficiency like empirical methods. In QA methods, bb(λ) is computed based 

on the RT expression of (Gordon and Morel, 1983) using remote sensing Reflectance with 

555 nm as the Reference Wavelength. The QA Method based techniques were used in SDB 

by (Zhou, 2011) using EO-1 HS data; estimate bathymetry and benthic habitats using MS 

imagery (Eugenio et al., 2015; Huang et al., 2017); comparison with SA method in SDB 

derivation (McKinna et al., 2015); without any field data (Chen, Yang, Xu, & Huang, 2019).  

4. DISCUSSIONS AND ANALYSIS 

The importance of remote sensing data in the SDB studies have been brought by growing 

interest of industries as well as academia in various forums, Technical Working Groups and 

regional Hydrographic commissions meetings of IHO. Besides, there is also a surge in remote 

sensing studies related to Hydrographic Surveying like coastal processes like erosion, 

accretion & coastline changes along with SDB. The main hurdle in synthesizing the existing 

knowledge on SDB is found to be congested by interchanging and variably used concepts 

related to execution of methodology to derive SDB. Therefore, at foremost an attempt has 

been made to propose a classification scheme rooted in philosophy of research and a suitable 

classification as provided in Figure 1 has been attempted based on literature.         

This study has analysed more than 150 papers exclusively on SDB with the ultimate 

purpose of classifying the literature in systematic classification, so that the future studies will 

have clarity of concepts and terms used in SDB. While classifying the SDB studies, this study 

also aimed at identifying the gap areas and challenges in each sub domain of classification. 

Based on proposed classification, existing SDB studies have been categorized in relevant 

sections and discussed the notable studies, data used, study site & depth range in the area and 

result achieved. The four themes emerged from literature segregated with respect to 

chronological improvement in Sensors, Algorithms, Hybridization, and Accuracy achieved in 

SDB for the purpose of analysis. 

  

4.1   Improvements in Sensors 

SDB started with aircraft based multispectral instruments that had 18 channels of spectral 

range 0.3 and 15 μ of which 12 channels were in visible spectrum. This study founds best 

spectral bandwidth for shallow water observation ranges from 0.55 to 0.58 μ green-region, 

wherein 0.62 to 0.66 μ red-region for shallowest depths, although blue region 0.40 to 0.44 μ 

has lower scattering of light than other bands. Moving further, Polcyn et al., (1970) 

developed an algorithm based on a ratio of reflectance in two spectral bands in the visible 

spectrum, to determine shallow water depth. However, the accuracy of technique was true for 

only the depth is about 4 ft (actual depths in the site 17—20 feet). Again, Polcyn & Lyzenga, 

(1973) demonstrated the ERTS-I bands 4, 5, and 6 data can be used for bathymetry 

estimation improving results for SDB up to 05 meters. The contemporary researchers used 

                  



ERTS-I and SKYLAB imagery for classifying coastal zones into deep and sediment laden 

shallow water (Klemas, Bartlett, & Rogers, 1975). This decade established the demand of 

remote sensing data in SDB and marine studies which drove the enhancement in sensors and 

instruments onboard satellites to acquire MS and HS data. The MS data offers the advantage 

of being relatively low cost, easier processing, and spatially synoptic.  Along with Open-

source Landsat series and Sentinel-2, other commercial satellites like GeoEye, Quickbird, 

Ikonos, World View, Pleiades, Spot- 6, RapidEye, Planet Dove, etc. offers very high spatial 

resolution data to derive SDB. In the last few decades, a number of studies have also used HS 

data in SDB. The figure below shows the number of papers included in this review for the 

last five decades and satellite data available for SDB. 

 

 
Figure 5: Graph of year-wise studies on SDB with satellite data 

Minghelli-Roman et al., (2009) compared MS data derived from QUICKBIRD, & Landsat 

and HS data of CASI, CHRIS-PROBA, HYPERION & MERIS using single SDB technique 

in single geographical site to identify best set of satellite image parameters to estimate SDB. 

Author elaborated on features like; available spectral resolution, spatial resolution, S/N ratio, 

and image quantization) and concluded that no sensor seems perfect to SDB. 

The open source data of Landsat and Sentinel-2 is widely used by SDB researchers. 

The Sentinel-2 MSI data is acquired 12 bit and level 2 products (refers to ortho-image 

Bottom of Atmosphere corrected reflectance imagery) are processed to 16 bits, having SNR 

ranging from 154 to 174 for 10 m spatial resolution bands.  The legacy data of Landsat 

mission is 8-bit, wherein the Landsat-8 OLI is acquired 12 bit and processed to 16-bit for 

level 1 products (refers to Radiometrically calibrated and orthorectified imagery). However, 

the SNR for bands varies for range 145-361. Thus, Landsat is having more advantage in 

coastal regions for better SNR as in coastal areas low is the backscattering intensity, but its 

resolution is insufficient in creeks & estuaries. The higher SNR values of the sensor (more 

than 500) should be preferred for SDB. The more the SNR, the better the resolution, hence a 

high resolution should be preferred in shallow water whereas lower resolutions for deep 

water. In the last decade few of the satellites like GeoEye, worldview-3, CartoSat-3 and 

others have achieved resolution in decimetres, wherein for general SDB below a meter 

resolution is actually not required. The SNR can be improved by an increase in bandwidth 

and equally addressing the trade-off between bandwidth and error of estimation. The more 
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intervening variable in water demands radiance may be coded to the minimum 12-bit so as to 

have adequate radiometric levels in water. Besides, based on SDB studies it's worth 

advocating that HS data has an edge over MS data in SDB derivation, and has at par accuracy 

of optimized algorithms.  

The figure 6 and 7 below depict ML SDB and Empirical SDB for mentioned studies. 

The best results achieved by the researchers in the last few years with their accuracy and root 

mean squared errors for each satellite data are only used for depiction.  

 

 
Figure 6: Machine Learning SDB studies with Satellite, RMSE and R

2
 

 

 
Figure 7: Empirical SDB studies with Satellite, RMSE and R

2 
 

4.2 Improvements in SDB Algorithms 

The theory building of empirical method in SDB is mostly accredited group of researchers at 

the Environmental Research Institute, Michigan (Polcyn and colleagues) among these 

researchers, Lyzenga, (1975, 1978) who introduced the log-linear semi-empirical method on 

single band image for detecting SDB. Lyzenga’s research continued for three decades in 

improving his technique for multiband images by proposing log-linear correlation between 

multiband and water depth values (Lyzenga et al., 2006). Another Semi-empirical method 

which conceptualized (difference in attenuation of different bands in water can be used for 

SDB) on band ratios, developed by (Stumpf et al., 2003) is also used widely in SDB research. 

The chronological order of development of dominant SDB algorithms commonly used are; 

Linear Band technique of Lyzenga (1978); Benny and Dawson (1983); Flow Radiative 

Transfer technique of Spitzer & Dirks, (1986); Depth of Penetration Zone Model of Jupp, 

(1988); Philpot, (1989) & Band Ratio technique of Stumpf et al. (2003).  

                  



These algorithms have been kept evolving for three decades along with improvements 

in sensor resolution. The enhanced spectral capabilities lead researchers to reflect about other 

intervening atmospheric and environmental variables confounding water leaving radiance. 

The advanced computing capabilities and vast data storage in acquisition devices gave a push 

to several RT based Atmospheric & water column corrections. Generally, the limitations in 

SDB retrieval were attributed to water turbidity and sub-bottom benthos or vegetation which 

impacts signal attenuation. The last decade has seen surge of studies focusing environmental 

variables like benthos and turbidity confounding in SDB retrieval (Bramante et al., 2013; 

Caballero & Stumpf, 2020; Caballero et al., 2019; Sánchez-Carneroab et al., 2014). 

The major change in paradigm of SDB has been noticed in the last five years research 

trends where the majority of studies were using ML algorithms. Several studies have 

advocated ML over tradition techniques providing better results of SDB (Li, 2019; Mohamed 

& Nadaoka, 2017). Sagawa et al., (2019) reported RMSE of 1.41 m for depths range 0 to 20 

m in highly clear water & transparent conditions using cloud-based ML implementation 

strategy using Google Earth Engine (cloud-based GIS) GEE and suggested Amazon Web 

Services (AWS) where huge amount of data may be processed without actually downloading 

that data may also be used. The several ML algorithms like SVM, CNN, RF, etc. are 

considered to be useful for SDB Estimation. The figure below shows recent different ML 

algorithms with depth, accuracy and RMS error applied to SDB. 
 

 
Figure 8: Methods-wise Depth, RMSE and R

2
 of Machine Learning SDB 

Therefore, it can be concluded that ML has provided advantage over conventional SDB 

algorithms by offering superior flexibility, and availability of suitable, & customized 

programmable algorithms to process large amounts of training data. However, none of the 

studies has declared that derived SDB meets the IHO criteria for charting (Dickens & 

Armstrong, 2019). Favoretto et al., (2017) & Kerr & Purkis, (2018) elaborated SDB retrieval 

even without any field data, which may be considered a breakthrough in SDB research if 

validated at several other sites. Favoretto et al., (2017) proposed ‘Self-calibrated Spectral 

Supervised Shallow-water Modeler’ technique to derive coastal bathymetry without any field 

data with Landsat-8 images and achieved accuracy of an average r
2
 =0.90, and a low RMSE 

= 1.47 m for SDB vs in-situ depths. Wherein, Kerr & Purkis, (2018) performed study in Case 

1 waters dominated by phytoplankton by applying forward modelling of band-ratios.  

 

4.3 Advantage of Hybrid Approach/ Model/ Method/Technique/data 

                  



The hybrid refers to the combination of any two or more approaches or models or method or 

techniques or fusion of any among them to derive SDB. The several hybrid approach in SDB 

derivation has been proposed, and validated. Mavraeidopoulos et al., (2019) proposed hybrid 

bio-optical transformation for SDB using both empirical method and SA method for Sentinel-

2 MS data. Chénier, Faucher, & Ahola, 2018) have used optical and Synthetic Aperture 

Radar data to derive SDB. Brando et al., (2009) utilized a hybrid technique that combines the 

spectral matching technique and the least squares relation. Dekker et al., (2011) used 

nonlinear spectrum matching and SA method and spectrum matching in precomputed 

database LUT to develop ALLUT (Adaptive Linearized Look-Up Trees). Jay & Guillaume, 

(2016) have developed a hybrid method based on Maximum Likelihood function based on a 

statistical approach and a RT approach-based model. Kerr & Purkis, (2018) used a hybrid of 

the RT and statistical approach to generate DTM from derived SDB. Danilo & Melgani, 

(2019) used a fusion of a physical wave model and statistical technique (Gaussian Process 

Regression) in an unsupervised learning to derive a novel SDB algorithm. Thus, it can be 

predicted that the next decade of SDB research will be primarily focused on such hybrid 

frameworks to estimate SDB with or without any field data for calibration. 
 

4.4 Improvement in Accuracy of SDB Retrieval 

The result from almost all the SDB studies in each section has provided accuracy of study 

either in terms of RMSE or coefficient of determination. The reported accuracy by various 

SDB studies has been found predisposed towards publishing better results either by hiding 

the depth range in which result was comparatively very low or using choice of error criterion 

least questionable. Majority of studies have used the criterion of reporting the accuracy in 

terms of RMSE or the validation with test data in terms of coefficient of determination. The 

depth ranges up to 5 m have categorically got a lower RMSE and value of R
2   

high enough to 

appreciate the result as they have achieved better results than Bathymetric surveying. The 

accuracy of SDB retrieval decreases as the depth increases beyond 5 m and thereafter the 

reliability of retrieved depth is beyond the confidence level to assure mariner of navigation 

safety. If vis-à-vis comparison is made between techniques, and methods; almost all the 

techniques have reported similar results that SDB retrieval is accurate up to 70 % depending 

on the site of study. The figure 9 below represents SDB accuracy comparison between 

empirical, ML and SA Algorithms and the figure 10 represents comparison of errors (RMSE) 

between Empirical, ML and SA method. The best results achieved by each study employing 

one of the three methods and worst RMSE results have been used as data to depict the figure 

9 and figure 10 below. 
 

                  



 
Figure 9: SDB Accuracy (R

2
) comparison between Empirical, ML and SA Algorithms  

The comparison of methods implies the better performance of ML up to the depth of 20 m, 

however, empirical methods have shown significantly better performance for depth of 20 m 

to 30 m (which performed fairly low below depth of 20 m), beyond 30 m the accuracy 

declines sharply
 

 
Figure 10: Comparison of Errors (RMSE) between Empirical, ML and SA 

 

The comparison of errors between the methods implies the better performance of SA and ML 

algorithms. The errors up to the depth of 15 m are almost similar for these two methods. 

However, empirical methods show higher errors in retrieval beyond depth of 25 m.  

 The major factors confounding factors in SDB estimation such as turbidity, benthos 

and its classification, have been studied since past few years. Still, few other factors which 

inhibit acoustic waves like salinity, temperature, etc. are yet to be considered in SDB. The 

most of the SDB studies have been carried in clear transparent water, however the regions 

having rich sediments laden creeks and channels are yet far away from scope of SDB studies. 

The future SDB research will have to discover solutions for sites having highly turbid areas, 

or variable bottom types using all contemporary available data and techniques. 

The table 2 provides a matrix for future researchers of SDB. This matrix provides 

information on required satellite resolution, in-situ data, methods & algorithms for SDB 

based on level of accuracy required.  The table 2 should be used in supplement to table 1 to 

select methods of SDB as per demand of study and resources available. The study sites have 

been categorized in shallow water clear and shallow water turbid up to depth of 30 m and 

shallow turbid estuarine water less than 15 m depth. The accuracy needs to be achieved, the 

spatial resolution of satellite data and in-situ bathymetric data has been categorized into three 

categories of Low (more than 300 m), medium (300-10 m) and High (less than 5 m) classes. 

The preferred methods and algorithms are denoted for required accuracy and available 

                  



resources along with studies that may be referred as ready reckoner for  further research. 

Caballero, Stumpf, & Meredith, (2019) have extended Stumpf et al., (2003) developed a ratio 

transform technique of SDB to include the effect of turbidity and chlorophyll on SDB 

estimation for depths range of  0–18 m in South Florida and reported very low errors. The 

IHO-IOC GEBCO Cookbook is ready to use SDB reconnaissance tool which provides quick 

steps to derive SDB using Landsat-8 data in ArcGIS. The Semi-Analytical studies of 

McKinna et al., (2015) and Lee et al., (1999) provide detailed description of all the 

parameters required to be studied in conjunction with SDB. The table 2 also denotes the open 

sources to bathymetric data for researchers using IHO Data Centre for Digital Bathymetry 

(DCDB) which provides crowd-source bathy data for most of the coastal regions. 

 

 

Table 2: Matrix of SDB Technique selection  
Depth 
region 

Accuracy 
required 

Satellite 
resolution 

In-situ 
resolution 

Preferred 
method 

Preferred 
Algorithms 

Refer Studies Data Resources 
Satellite BathyData 

 
 
Shallow 
Turbid 
< 30 m 

L L L ●Empirical 
Methods 
● Semi- 
Empirical 

● Regression,  
● Band Ratio 
● Classification 
● ML  

● (Caballero et al., 
2019; South Florida); 
● (Hernandez & 
Armstrong, 2016; 
Puerto Rico) 

 
Low:  
MODIS, 
MERIS 
SENTINEL 3 
 
 
 
 
Medium: 
LANDSAT 
SENTINEL 2 
SPOT, 
ASTER 
 
 
High: 
IKONOS 
QUICKBIRD 
WORLDVIEW 
RAPIDEYE 
CARTOSAT 

 
Low: 
SBES 
GEBCO 
DCDB

#
 

 
 
 
 
Medium 

LIDAR 
 
 
 
 
 
High: 
MBES 
SSS 
Depth- 
Profiler 

M M, H M, H 

H - -    - ● Not Achievable 

 
 
 
 
Shallow 
clear 
< 30 m 

L M M ●Empirical 
Methods 
 
● Semi- 
Empirical 

 
● QAA 
● SA* 

● Regression 
● Band Ratio 
● Band Diff. 
● ML  
● Forward/ inverse 
modelling 
● Optimization 

● IHO Cookbook 
(Pe’eri, Azuike, & 
Parrish, 2013; US, 
Nigeria, and Belize) 
● (Sagawa et al., 2019; 
Japan, USA, Puerto 
Rico, Japan, Vanuatu)  
● (Masita Dwi Manessa 
et al., 2017;Indonesia) 

M M H 

H H H* 

 
 
Shallow 
turbid, 
Creek & 
Estuaries 
< 15 m 

L M M ● 
Analytical 
Methods* 
 
● SA* 
 

 
● ML if High 
resolution in-situ 
data available 
ANN, Deep 
Learning 
● Forward/inverse 
modelling 

● SAA SWIM 
(McKinna et al., 2015, 
GBR, Australia) 
● SA Optimization (Lee 
et al., 1999, Florida) 
● (Dekker et al., 2011, 
Australia & Bahamas) 

M H 
H 
 

H H H* 

Shallow 
L M, H 

No In-situ 
data 

QAA 4SM Method by Favoretto et al., (2017), California; and Kerr & Purkis, 
(2018), 5 Sites in caribbean for depth up to 15 m, RMSE 2-5 m 

L:Low (>300m), M:Medium (300-10m), H:High (<5m) ; * indicates Water Quality Parameters -Required; GEBCO (General Bathymetric 
Chart of Ocean) & DCDB (Data Centre for Digital Bathymetry) are open source bathy database of IHO. # For Indian Coast data Refer 
Sindhu et al., (2007). 

 

 

5. CONCLUSION 

SDB has become very popular to the scientific community because of its synoptic coverage 

and getting information of inaccessible regions.  Passive sensors are most popular for SDB 

but late active sensors are also being used for SDB by various researchers. In this paper, we 

have discussed mainly the passive sensors. Comparative analysis of optical SDB within and 

between the methods for the last 5 decades has been done. Although, the comparison was 

constrained by parameters or site-specific environmental variables which were inconsistent. 

The variable depths in the study area, different resolution of sensors, and dynamics of coastal 

IOPs were few of the hindrances in comparative analysis. We have also emphasized the areas 

where challenges, and apparent knowledge gaps exist for further research in the SDB domain. 

The contemporary surge in SDB studies is especially focusing on shallow water depth 

                  



estimation where numerous challenges are posed due to the dynamic nature of confounding 

variables in developing operational models for coastal regions.  

The current studies on SDB are focused on efficacy to provide operational products 

wherein future lies in real-time operational use in ports, harbours, channels, creeks, etc. The 

present limitations of best-fit sensors for precise data acquisition in shallow waters of coastal 

regions is already under deliberation by some space agencies. Cloud based and web-based 

platforms are available to overcome challenges of high-end data processing capabilities to 

process huge amounts of data even without downloading it. The hybrid approach definitely 

provides an edge to think beyond the horizon of traditional algorithms. Few of the 

constraints, like turbidity, Chlorophyll, and other parameters in the dynamic nature of water 

column properties poses a major challenge, yet unresolved in SDB literature for the past so 

many years, and need a relook with advanced data and models. This provides wide 

opportunity to researchers in the field of SDB to explore the relationship of dynamic 

parameters in the water column with satellite bathymetry. 

We have provided a matrix of SDB method selection based on the review of existing 

knowledge in the field. This matrix may help future researchers to determine the way ahead 

for SDB study as per the requirement of study area. The matrix of prerequisite satellite data, 

in-situ data resolution, methods and algorithms of SDB for the level of accuracy needed, as 

per the context of research is ready reckoner for practitioners in the field. The future work of 

the authors is focused on SDB by utilizing a hybrid of statistical and RT based approach with 

huge in-situ data of water constituents by executing ML algorithms. 
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