ArticlePDF Available

Development and Characterization of Inhaled Ethanol as a Novel Pharmacological Strategy Currently Evaluated in a Phase II Clinical Trial for Early-Stage SARS-CoV-2 Infection

Authors:

Abstract and Figures

Inhaled administration of ethanol in the early stages of COVID‐19 would favor its location on the initial replication sites, being able to reduce the progression of the disease and improving its prognosis. Before evaluating the efficacy and safety of this novel therapeutic strategy in humans, its characterization is required. The developed 65° ethanol formulation is stable at room temperature and protected from light for 15 days, maintaining its physicochemical and microbiological properties. Two oxygen flows have been tested for its administration (2 and 3 L/min) using an automated headspace gas chromatographic analysis technique (HS‐GC‐MS), with that of 2 L/min being the most appropriate one, ensuring the inhalation of an ethanol daily dose of 33.6 ± 3.6 mg/min and achieving more stable concentrations during the entire treatment (45 min). Under these conditions of administration, the formulation has proven to be safe, based on histological studies of the respiratory tracts and lungs of rats. On the other hand, these results are accompanied by the first preclinical molecular imaging study with radiolabeled ethanol administered by this route. The current ethanol formulation has received approval from the Spanish Agency of Medicines and Medical Devices for a phase II clinical trial for early‐stage COVID‐19 patients, which is currently in the recruitment phase (ALCOVID‐19; EudraCT number: 2020‐001760‐29).
Content may be subject to copyright.
Pharmaceutics2021,13,342.https://doi.org/10.3390/pharmaceutics13030342www.mdpi.com/journal/pharmaceutics
Article
DevelopmentandCharacterizationofInhaledEthanolasa
NovelPharmacologicalStrategyCurrentlyEvaluatedinaPhase
IIClinicalTrialforEarlyStageSARSCoV2Infection
AnaCastroBalado
1,2,3,†
,CristinaMondeloGarcía
1,2,†
,LetriciaBarbosaPereira
4,†
,IriaVarelaRey
1,2,3
,
IgnacioNovoVeleiro
5
,NéstorVázquezAgra
5
,JoséRamónAntúnezLópez
6
,EnriqueJoséBandínVilar
1,2
,
RaquelSendónGarcía
4
,ManuelBustoIglesias
1,2
,AnaRodríguezBernaldodeQuirós
4
,
LauraGarcíaQuintanilla
1,2,3
,MiguelGonzálezBarcia
1,2
,IreneZarraFerro
1,2
,FranciscoJ.OteroEspinar
3
,
DavidReyBretal
7
,JoséRamónLagoQuinteiro
8
,LuisValdésCuadrado
8
,CarlosRábadeCastedo
8
,
MaríaCarmendelRíoGarma
9
,CarlosCrespoDiz
10
,OlgaDelgadoSánchez
11
,PabloAguiar
7
,
GemaBarbeitoCastiñeiras
12
,MaríaLuisaPérezdelMolinoBernal
12
,RocíoTrastoyPena
12
,
RossanaPassannante
13
,JordiLlop
13,
*,AntonioPoseReino
5,
*andAnxoFernándezFerreiro
1,2,
*
1
PharmacyDepartment,UniversityClinicalHospitalofSantiagodeCompostela(SERGAS),
15706SantiagodeCompostela,Spain;ana.castro.balado@gmail.com(A.C.B.);
crismondelo1@gmail.com(C.M.G.);iria.varela.rey@sergas.es(I.V.R.);
enrique.jose.bandin.vilar@sergas.es(E.J.B.V.);manuel.busto.iglesias@sergas.es(M.B.I.);
laura.garcia.quintanilla@sergas.es(L.G.Q.);miguel.gonzalez.barcia@sergas.es(M.G.B.);
irene.zarra.ferro@sergas.es(I.Z.F.)
2
ClinicalPharmacologyGroup,HealthResearchInstituteofSantiagodeCompostela(IDIS),
15706SantiagodeCompostela,Spain
3
DepartmentofPharmacyPharmaceuticalTechnology,FacultyofPharmacy,UniversityofSantiagode
Compostela,15782SantiagodeCompostela,Spain;francisco.otero@usc.es
4
DepartmentofAnalyticalChemistry,NutritionandFoodScience,FacultyofPharmacy,Universityof
SantiagodeCompostela,15782SantiagodeCompostela,Spain;letricia.barbosa.pereira@usc.es(L.B.P.);
raquel.sendon@usc.es(R.S.G.);ana.rodriguez.bernaldo@usc.es(A.R.B.d.Q)
5
InternalMedicineDepartment,UniversityClinicalHospitalofSantiagodeCompostela(SERGAS),
15706SantiagodeCompostela,Spain;ignacio.novo.veleiro@sergas.es(I.N.V.);
nestor.vazquez.agra@sergas.es(N.V.A.)
6
PathologicalAnatomyDepartment,UniversityClinicalHospitalofSantiagodeCompostela(SERGAS),
15706SantiagodeCompostela,Spain;jose.ramon.antunez.lopez@sergas.es
7
MolecularImageGroup,HealthResearchInstituteofSantiagodeCompostela(IDIS)(IDIS),
15706SantiagodeCompostela,Spain;davidrey.bretal@usc.es(D.R.B.);
pablo.aguiar.fernandez@sergas.es(P.A.)
8
PneumologyDepartment,UniversityClinicalHospitalofSantiagodeCompostela(SERGAS),
15706SantiagodeCompostela,Spain;jose.ramon.lago.quinteiro@sergas.es(J.R.L.Q.);
luis.valdes.cuadrado@sergas.es(L.V.C.);carlos.rabade.castedo@sergas.es(C.R.C.)
9
ClinicalAnalyticDepartment,UniversityClinicalHospitalofSantiagodeCompostela(SERGAS),
15706SantiagodeCompostela,Spain;maria.del.carmen.del.rio.garma@sergas.es
10
PharmacyDepartment,UniversityClinicalHospitalofPontevedra(SERGAS),36162Pontevedra,Spain;
carlos.crespo.diz@sergas.es
11
SociedadEspañoladeFarmaciaHospitalaria(SEFH),28001Madrid,Spain;olga.delgado@ssib.es
12
MicrobiologyDepartment,UniversityClinicalHospitalofSantiagodeCompostela(SERGAS),
15706SantiagodeCompostela,Spain;gema.barbeito.castineiras@sergas.es(G.B.C.);
maria.luisa.perez.del.molino.bernal@sergas.es(M.L.P.d.M.B.);rocio.trastoy.pena@sergas.es(R.T.P.)
13
RadiochemistryDepartment,CICbiomaGUNE,ParqueTecnológicodeSanSebastian,
20009SanSebastián,Spain;rpassannante@cicbiomagune.es
*Correspondence:jllop@cicbiomagune.es(J.L.);antonio.pose.reino@sergas.es(A.P.R.);
anxordes@gmail.com(A.F.F.);Tel.:+34981951423(A.F.F.)
Theauthorscontributedequally.
Abstract:InhaledadministrationofethanolintheearlystagesofCOVID19wouldfavoritslocation
ontheinitialreplicationsites,beingabletoreducetheprogressionofthediseaseandimprovingits
prognosis.Beforeevaluatingtheefficacyandsafetyofthisnoveltherapeuticstrategyinhumans,its
Citation:CastroBalado,A.;
MondeloGarcía,C.;
BarbosaPereira,L.;VarelaRey,I.;
NovoVeleiro,I.;VázquezAgra,N.;
AntúnezLópez,J.R.;BandínVilar,
E.J.;SendónGarcía,R.;
BustoIglesias,M.;etal.
DevelopmentandCharacterization
ofInhaledEthanolasaNovel
PharmacologicalStrategyCurrently
EvaluatedinaPhaseIIClinicalTrial
forEarlyStageSARSCoV2
Infection.Pharmaceutics2021,13,342.
https://doi.org/10.3390/
pharmaceutics13030342
AcademicEditor:CarstenEhrhardt
Received:30January2021
Accepted:2March2021
Published:5March2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti
tutionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Pharmaceutics2021,13,3422of18
characterizationisrequired.Thedeveloped65°ethanolformulationisstableatroomtemperature
andprotectedfromlightfor15days,maintainingitsphysicochemicalandmicrobiologicalproper
ties.Twooxygenflowshavebeentestedforitsadministration(2and3L/min)usinganautomated
headspacegaschromatographicanalysistechnique(HSGCMS),withthatof2L/minbeingthe
mostappropriateone,ensuringtheinhalationofanethanoldailydoseof33.6±3.6mg/minand
achievingmorestableconcentrationsduringtheentiretreatment(45min).Undertheseconditions
ofadministration,theformulationhasproventobesafe,basedonhistologicalstudiesoftherespir
atorytractsandlungsofrats.Ontheotherhand,theseresultsareaccompaniedbythefirstpreclin
icalmolecularimagingstudywithradiolabeledethanoladministeredbythisroute.Thecurrenteth
anolformulationhasreceivedapprovalfromtheSpanishAgencyofMedicinesandMedicalDevices
foraphaseIIclinicaltrialforearlystageCOVID19patients,whichiscurrentlyintherecruitment
phase(ALCOVID19;EudraCTnumber:202000176029).
Keywords:COVID19;SARSCoV2;inhaledethanol;molecularimaging;PET
1.Introduction
Coronaviruses(CoVs)aresinglestrandedRNAviruseswhichcaninfectanimalsand
humans,causingrespiratory,gastrointestinal,hepaticandneurologicdiseases[1].InDe
cember2019,severalhealthauthoritiesreportedpatientswithpneumoniaofanunknown
cause,whichwereepidemiologicallylinkedtoaseafoodmarketinWuhan,China.The
pathogen,anovelcoronavirus(SARSCoV2),wasidentifiedbylocalhospitalsandthe
infectionwascalledcoronavirusinfectiousdisease2019(COVID19)[2,3].InMarch2020,
theWorldHealthOrganization(WHO)classifiedCOVID19asapandemic,andinJanu
ary2021,ayearafteritseruption,therehavebeenmorethan93millionconfirmedcases
andtwomilliondeaths[4].
SincetheoutbreakoftheCOVID19pandemic,ithasbeenseenthatcomplianceof
controlmeasuressuchasphysicaldistancing,theuseofmasks,handcleaning,tracing
contacts,testingofexposedorsymptomaticpersonsandisolationhaverestrictedtrans
missions[5].Evenso,theseactionshavenotbeenimplementeduniformly,andtheyhave
notshowntobeenoughtopreventthespreadofSARSCoV2.
VaccinesareneededtoproducegroupimmunityandreduceCOVID19morbidity
andmortality.Inthissense,severalvaccineplatformshavebeenimplicatedintherapid
developmentofcandidatevaccines[6–8],whichallowedthestartingofthevaccination
processworldwideinDecember2020.
AccordingtothepathologicalcharacteristicsofCOVID19,especiallyforpatients
withmoderatetosevereCOVID19,severaltreatmentstrategieshavebeendeveloped,
including,amongothers,antiviralagents,inflammationinhibitors/antirheumaticdrugs
andlowmolecularweightheparins[9,10].Concerningnewtherapies,itisnecessaryto
highlighttheadministrationofconvalescentplasmawithhighIgGtitersagainstSARS
CoV2,whichhaverevealedpromisingresults,althoughfurtherstudiesarerequired[11].
Inaddition,regardingantivirals,plitidepsinhasdemonstratedpotentpreclinicalefficacy
againstSARSCoV2bytargetingthehostproteineEF1A,anditisbeingtestedinaproof
ofconceptstudytoevaluateitssafetyprofile(NCT04382066)[12].Anotherpossiblealter
nativeistreatmentwithmonoclonalantibodies,suchasbamlanivimab,whichiscurrently
evaluatedinanexpandedaccessprogram(NCT04603651)[13],orthecocktailofmono
clonalantibodiesantispikeSARSCoV2,whichisbeingtestedin ambulatoryadultand
pediatricpatients(NCT04425629)[14].
Despitealltheabove,ithasbeenseenthat,intheearlystages,antiviraldrugscan
preventtheprogressionofthedisease,whiledexamethasone[15],immunomodulators
andantiviraldrugsseemtoimprovetheclinicaloutcomeofpatientswithsevereCOVID
Pharmaceutics2021,13,3423of18
19[9].However,treatmentremainselusiveinearlystages,inwhichtherearefewstrate
giesthatcanbringbenefits;somestrategieshavefailed,andothersareunderevaluation
[11].
Inpandemicsituationslikethis,asignificantnumberofpatientsfindthemselvesin
atherapeuticvacuum,withouteffectivedrugstoaddresstheirtreatment.Inthiscontext,
drugrepositioningisastrategytogenerateadditionalvaluefromanapproveddrug,us
ingitforadifferenttherapeuticpurposethanthatforwhichitwasoriginallyintended
[16].TheabsenceofevidencebasedtreatmentsforCOVID19hasledtothestartofalarge
numberofclinicaltrialsinordertoofferpatientsthemosteffectiveandsafesttherapeutic
options.Inthissense,thegeneticcharacteristicsofSARSCoVandMERSCoVsuggest
thatSARSCoV2maybesusceptibletodisinfectantssuchasethanol,withagraduation
between62–71°,withprovenactivityagainstenvelopedviruses[17,18].
Inearlystagesofthedisease,activevirusesarelocatedinthethroatandlungs.This
way,theadministrationofviricidalagentsintheinitialreplicationplacecoulddecrease
viremiainthefirststagesofthedisease,andconsequentlyreduceitsprogressionandim
provetheprognosisdrastically[19].Inhospitalpharmacydepartments,itiscommonto
elaborateethanolformulationsfortheiruseinnonusualroutesofadministration.Ethanol
wasusedincathetersealstopreventbacterialgrowth[20],asaneurolyticintheperipheral
orcentralnervousblockinterminallyillpatients[21],inesophagealvaricosesclerother
apy[22],hemorrhagecontrolinhepatocellularcarcinomasurgeries[23],debridementof
thecornealepithelium[24]orevenasanintravenousantidoteinthetreatmentofethylene
glycolormethanolpoisoning[25].
COVID19causesaparticularlysevereillnessinolderadults.Thepercentageofhos
pitalizedpatientswithinthisagegroupishigh[11],andover95%oftotaldeathcases
occurredinpeopleolderthan60years,withmorethan50%ofalldeathsbeingpeople
aged80yearsorolder[3,26,27].Inthissituation,withnoalternativesamongcommercial
medicines,itisnecessarytodevelopnewtherapeuticapproacheswhichcanbeanade
quateoptioninelderlypatients.Inthissense,thelocaladministrationofethanolcouldbe
effectiveagainstaviralenvelopewithnosystemicadverseeffects[28,29].
ThisstudypresentsanovelpharmacologicalstrategyagainstSARSCoV2within
haledethanolanditsgalenic,toxicologicalandpharmacokineticcharacterization.Thecur
rentethanolformulationhasreceivedapprovalfromtheSpanishAgencyofMedicines
andMedicalDevicestotestitsefficacysafetyinaphaseIIclinicaltrialinelderlypatients
withCOVID19,whichiscurrentlyintherecruitmentphase(ALCOVID19;EudraCT
number:202000176029)[30].
2.MaterialsandMethods
Thisworkincludesaninitialgaleniccharacterizationphase,inwhichthephysio
chemicalandmicrobiologicalstabilityoftheformulationinhumidifyingflaskswasde
termined,aswellastheconcentrationofvaporizedethanolthroughtwooxygenflows.
Subsequently,atwopartpreclinicalphasewascarriedout.Ontheonehand,aninvivo
studytoensurethesafetyoftheethanoladministeredbythisroutewasperformedin
SpragueDawleyrats.Ontheotherhand,evaporatedethanolwasradiolabeled,andits
pharmacokineticsinratswerestudiedusingmolecularimagingtechniqueswithpositron
emissiontomography/computedtomography(PET/TC).Lastly,apreliminaryclinical
studywascarriedoutinsixhealthyvolunteersdividedintotwogroups(1:1),whowere
subjectedtotheadministrationof15minutesofoxygentherapyat2L/minand3L/min
flowthroughaVentimask®(Flexicare,MountainAsh,UK)facemask.Thesedataarede
pictedinthesupplementarymaterial,includingFiguresS1andS2.

Pharmaceutics2021,13,3424of18
2.1.Preparationofthe65°EthanolSolutionandStabilityDeterminationinDisposable
HumidifyingBottles
Avolumeof250mLof65°ethanolsolutionwaspackagedindisposablehumidifier
bottles(INTLCE0482.Ref.3230,generouslydonatedbyOximesaNipponGases,Madrid,
Spain).Toprepare,thestartingpointwas163mLof99.5°ethanolwithPhEurindication
onitslabel(PanReacAppliChem®,Darmstadt,Germany),whichwasmeasuredusinga
graduatedcylinder,andcompletedwithsterilewater(FresniusKabi®,Barcelona,Spain)
upto250mL.Afterhomogenization,itwasnecessarytowaituntilitreachedroomtem
peraturetomeasureethanolgraduationwitha60–70°GayLussacalcoholmeter(Boeco®,
Hamburg,Germany).Sterilizingvacuumfiltrationthrougha0.22micronfilterwasper
formedinahorizontallaminarflowcabinet.
Inordertodeterminethestabilityofethanolover15daysinadisposablehumidify
ingbottle,aninitialethanolgraduationmeasurementwascarriedout,andthenonce
weeklyusingthe60–70°GayLussacalcoholmeter.Duringthisperiod,theethanolsolu
tionwaskeptinafullysealedhumidifierbottleatroomtemperature,andprotectedfrom
light.Paralleltothis,amicrobiologicalstudywascarriedoutbyextractionofthree3mL
samples:onesamplebeforesterilizingfiltrationandanotherafterthisprocessonday0;
andthelastoneafter15daysofstorageatroomtemperatureandprotectedfromlight.
Thesesampleswerecultivatedinathioglycollatebroth(Merck®,Darmstadt,Germany),
Columbiabloodagar(Merck®,Darmstadt,Germany)andSabouraud(Merck®,Darmstadt,
Germany).Allmediumswereincubatedaerobicallyat37°C;thioglycollatefor10days;
andbloodandSabouraudagarplatesfor48hours.Sabouraudagarplatesweresubse
quentlyincubatedfor13daysinaerobiosisatroomtemperature.
2.2.DeterminationofEthanolintheAdministeredOxygenFlow
Aflowofoxygenwasmadetopassthroughahumidifiercontainingthe65°ethanol
solution.Theeffectoftwooxygenflowswascompared:2and3L/min.Theseflowscause
theevaporationoftheethanolinthehumidifier.Thisdeterminationofevaporatedethanol
willallowchoosingtheoptimaloxygenflowthatcausestheevaporationwithoutgener
atingaerosols,withthisbeingbestsuitedtoitsuselaterintheclinicaltrial.
Theethanolquantificationhasbeencarriedoutbyanautomatedheadspacegaschro
matographicmassspectrometryanalysis(HSGCMS)(Figure1).Itwasperformedusing
aFinniganTraceGCUltrachromatographcoupledwithaFinniganTraceDSQmassde
tector,equippedwithaThermoScientificHeadSpace(HS)TriPlusautosampler(Thermo
FisherScientific,SanJosé,CA,USA).Samplingwasperformedin21.5mLHSglassvials,
whichwerepreviouslysealed.Theseptumwasperforatedwithtwoneedlestoallowa
wayinandawayoutforthegas.Then,oxygenenrichedinethanolgeneratedinthehu
midifierwasflushedfor2minineachvialtoreplaceallofitsinternalair,andguarantee
thatthesamplewasrepresentative.Thesampleswerecollectedatseveralintervalsof
time,asfollows:0–2min;2–4min;6–8min;13–15min;28–30min;and43–45min,inorder
todeterminetheconcentrationofethanolat2,4,8,15,30and45minofadministration,
respectively.Allexperimentswereperformedintriplicateforthetwoflowratestested(2
L/minand3L/min).ThevialsweremaintainedandrefrigeratedbeforeHSGCMSanal
ysis.
Pharmaceutics2021,13,3425of18
Figure1.Diagramoftheoxygenflowsystemandhumidifierwith65°ethanolcoupledtoagas
chromatographymassspectrometry(GCMS)system.CreatedwithBioRender.com.
Sampleswereincubatedat45°Cfor4min,before0.2mLofheadspacegaswaswith
drawnbytheautosampler,usinga2.5mLsyringeheatedat50°C.Thegasvolumewas
injectedintotheinletoftheTraceGCsetat175°Cinaconstanttemperaturesplitmode,
atasplitratioof50:1andthesplitflowof50mL/min.TheanalyticalcolumnwasaRxi
624SilMS,30minlength,withaninternaldiameterof0.25mm(1.4μmfilmthickness)
fromRestek(Pennsylvania,USA).Heliumwasusedascarriergasataflowrateof1.0
mL/mininaconstantflowmode.Theoventemperaturewasinitiallysetat40°Cfor4
min,thenincreasedatarateof50°C/minuntil120°C,andheldat120°Cfor2.5min.The
totalruntimeofeachanalysiswas10min.ThetemperaturesoftheGCtransferlineand
theionsourceoftheMSweresetat220°Cand200°C,respectively.Themassspectrom
eterwasoperatedinanelectronimpactionization(EI+)mode,andthechromatograms
wereacquiredinfullscanmodeoverthem/zrangeof20–150,from2to10min,atascan
rateof3.55scans/s.Thechromatographicpeakofethanolwasidentifiedbycomparison
withreferencespectrafromtheNIST2011/Wiley9CombinedMassSpectralLibrary,us
ingNISTMassSpectralSearchProgram(version2.0),andconfirmedbycomparisonofits
retentiontime(3.4min),withthatobtainedbyanalysisofauthenticstandardunderthe
sameconditions.Theinstrumentcontrolanddataacquisitionandprocessingwereper
formedwithXcalibur2.0.7software(ThermoFisherScientificInc.,Waltham,MA,USA).
Thecalibrationcurveofethanolwaspreparedin21.5mLHSglassvials,whichwere
previouslysealedwithTeflonseptumcaps,byaddingdifferentvolumesof99.5%(0.5–2
μL)ethanoltoreachtheheadspace(vaporphase)concentrationsintherangeof20–100
mg/L.Theequationanddeterminationcoefficientobtainedfromthreereplicateswerey=
82.285x+9.8808andR
2
=0.9993,respectively.
2.3.PreclinicalStudies
2.3.1.EthanolExposureToxicologicalStudiesandImmunohistochemicalAnalysis
ThesestudieswerecarriedoutonsixfemaleSpragueDawleyrats(fourreceiving
inhaledethanolandtwocontrolrats).Theyweresuppliedbytheanimalfacilitiesatthe
UniversityofSantiagodeCompostela,andtheaverageweightwas250±25g.Duringthe
experiments,animalswerekeptinindividualcagesunderacontrolledtemperature(22±
1°C)andhumidity(60±5%)conditions,withdaynightcyclesregulatedbyartificiallight
(12/12hours)andfedadlibitum.AllanimalexperimentscompliedwiththeARRIVE
guidelines[31]andwerecarriedoutinaccordancewiththeEUDirective2010/63/EUfor
animalexperiments,beingapprovedbytheGalicianNetworkCommitteeforEthicsRe
search.Allexperimentalprocedureswereapprovedbytheethicalcommitteeandthelocal
authoritiesbeforeconductingexperimentalwork.
Fortheadministration,65°ethanolwasplacedinadisposablehumidifierandvapor
izedbypassinganoxygenflowof2L/min.Thegeneratedethanolvaporswentthrougha
Pharmaceutics2021,13,3426of18
tubetoaninhalationchamberof20×20×25cm(Bioseb,FL,USA)(Figure2).Forexposure
totheethanolvapours,eachratwasplacedinthechamberfor15minevery8hours(three
timesaday)forfiveconsecutivedays.Followingtheexposuretime,eachratwasremoved
fromtheinhalationchamberandreturnedtoitsindividualcage.
Figure2.Oxygenflowsystemandhumidifierwith65°ethanolcoupledtotheinhalationchamber,
wheretheratsareexposedtoethanolvaporforinhalation.CreatedwithBioRender.com.
Theanimalsweresacrificedbyanintracardiacinjectionof5mLofpotassiumchlo
ride(1mEq/mL;B.BraunMedical,S.A,Barcelona,Spain)atday+6oftheinitiationassay.
Upperrespiratorytractswereremovedandindividuallyfixedin10%formalin,dehy
drated,paraffinembedded,sectionedinsliceswith4μmthickness,andstainedwithH&E
(haematoxylinandeosin).Thesampleswereblindlyevaluatedbyalungpathologistspe
cialistusingamicroscope(Zeiss,Oberkochen,Germany).Sectionswereexaminedusing
lightmicroscopy,anddigitalimageswereacquiredusingLeica
®
software(LeicaMi
crosystems,Wetzlar,Alemania).Analyseswereperformedatafinalmagnificationof
×1000.Fivenonoverlappingfieldsofviewpersectionfromtwotothreesections(from
differentregionsofthelung,esophagusandtrachea)peranimalwereanalyzed.
2.3.2.PreclinicalPharmacokinetics
Thepreclinicalpharmacokineticstudieswerecarriedoutwithpositronemissionto
mography/computedtomography(PET/TC)methodologyusingradiolabeledethanol.
Theuseofmolecularimaging,particularlyPET/TC,providesanoninvasiveimaging
techniquethatvisualizesthedistributionofdifferentradiotracersovertimeinanimal
models[32].Inthisstudy,1
11
Cethanolhasbeensynthetizedinordertoknowthedistri
butionofethanoladministeredintotherespiratorytractinratsalongtime,inorderto
assessthetoleranceandsafetyoftheadministrationofvaporizedethanolthreetimesa
dayforfivedaysinSpragueDawleyrats.
Synthesisof1
11
CEthanol
Thesynthesisof1
11
CethanolwascarriedoutusingaTRACERlabFXCProsynthesis
module(GEHealthcare,Chicago,IL,USA).[
11
C]CO
2
wasgeneratedinanIBACyclone
18/9cyclotron(IBARadioPharmaSolutionsHeadquarter,LouvainlaNeuve,Belgium)by
protonirradiation(targetcurrent=22μA,integratedcurrent=2μAh)ofagasN
2
/O
2
mix
ture(99/1,startingpressure=20bar)withhighenergy(18MeV)protons.Theradioactive
gaswasfirsttrappedinamolecularsieveovenatroomtemperatureandthenreleasedby
heatingat180°Cundernitrogenflow(20mL/min).Thereleased[
11
C]CO
2
wasbubbledin
areactionvialcontainingCH
3
MgBr(1MsolutioninTHF,250μl,Merck
®
,Darmstadt,Ger
many).Aftercompletetrapping,LiAlH
4
(1MsolutioninTHF,500μl,Merck
®
,Darmstadt,
Germany)wasadded,andtheresultingmixturewasstirredat80°Cfor5minutes.The
solventwasthenevaporatedunderheliumflow(5min,60°C;then1min,80°C).There
Pharmaceutics2021,13,3427of18
actorwascooledto40°CandaqueousHCl(4M,1mL)wasimmediatelyadded.Theso
lutionwasstirredfor30s,filteredusinga0.2μmfilter,andpurifiedbyhighperformance
liquidchromatography(HPLC)usingaMediterraneaSEA18(250×10mm,5μmparticle
size)(TeknokromaAnalítica,Barcelona,Spain)columnasastationaryphaseandul
trapurewaterasthemobilephase(flowrate=5mL/min).Thepurifiedproduct(retention
time=7.7min;totalcollectedvolumeofca.2mL)wascollectedinavialanddiluted1:1
withaphysiologicsalinesolution.Theamountofradioactivityofthefinalradiotracerwas
measuredinadosecalibrator(PETDOSEHC,Comecer,CastelBologneseRA,Italy).Ra
diochemicalpuritywasdeterminedbyHPLC,usinganAgilent1200SeriesHPLCsystem
(AgilentTechnologies,SantaClara,California,USA)withamultiplewavelengthUVde
tector(λ=254nm)andaradiometricdetector(Raytest,ElysiaraytestGmbH,Strauben
hardt,Germany).ATracerExcel120C8(250x4.6mm,5μmparticlesize)(Teknokroma
Analítica,Barcelona,Spain)wasusedasstationaryphaseandpurifiedwaterasmobile
phase(flowrate=1mL/min;retentiontime=3.95min).
LungPETStudies
ThreehealthyfemaleSpragueDawleyrats(n=3)weighting350±10gwereusedin
thisstudy.ForPETstudies,anesthesiawasinducedwith5%isofluraneandmaintained
by1.5to2%ofisofluranein100%O2.Thelabelledcompound(ca.7MBq,100μL)was
administeredthroughendotrachealinsufflationsusingthePennCenturyMicroSprayer®
Aerosolizer(FMJ250HighPressureSyringeModel,PennCentury.Inc.Wyndmoor,USA)
andasmallanimallaryngoscope(PennCentury,ModelLS2)(PennCentury.Inc.Wynd
moor,USA)forthecorrectvisualizationoftheepiglottis.Afteradministration,theanimal
wasquicklymovedintothePETcamera,andthePETacquisitionbegan.Thetimegap
betweenadministrationofthedoseandstartofimageacquisitionwas1min.Duringim
aging,ratswerekeptnormothermicusingaheatingblanket(HomeothermicBlanketCon
trolUnit;Bruker,MA,USA).PETImagingwasperformedusinganeXploreVistaCTsmall
animalPETCTsystem(GEHealthcare,Chicago,IL,USA).Wholebodydynamicimages
wereacquiredinfourbedpositions(20frames:4×5s,4×15s,4×30s,4×60s,4×120s;
totalacquisitiontime=61.33min)inthe400–700keVenergeticwindow.AftereachPET
acquisition,aCTscan(Xrayenergy:40kV,intensity:140μA)wasperformedforalater
attenuationcorrectionintheimagereconstruction,aswellasfortheunequivocallocali
zationoftheradioactivity.Randomandscattercorrectionswerealsoappliedtotherecon
structedimage.PETCTimagesofthesameanimalwerecoregisteredandanalyzedusing
thePMODimageprocessingtool(PMODTechnologiesLtd,Zürich,Switzerland).Vol
umesofinterest(VOIs)wereplacedonmajororgans(lungs,liver,kidneys,heartand
brain),andtime–activitycurves(decaycorrected)wereobtainedascps/cm3ineachorgan.
Curvesweretransformedintorealactivity(Bq/cm3)curvesbyusingacalibrationfactor,
obtainedfrompreviousscansperformedonaphantom(microdeluxe,Dataspectrum
Corp.,NC,USA)underthesameexperimentalconditions(isotope,reconstructionalgo
rithmandenergeticwindow).
3.Results
3.1.Stabilityofthe65°EthanolPharmaceuticalCompoundingandFlowOxygenEffect
Thegraduationofthehumidifyingbottlewiththehydroalcoholicsolutionunder
storageconditions(withoutuse)remainedstablefor15days,withnomicrobiological
growthobservedattheendofsaidperiod.
Theformulationmaintainsoptimalconcentrations(decreaseslessthan5%ofthein
itialconcentration)attheendofthethreedailyapplications,withbothflowstested(2and
3L/min).Withtheflowof2L/min,asolutiongraduationof64.1°wasmaintained(98.2%
oftheoriginalconcentrationofthehydroalcoholicmixture),whileattheflowof3L/min,
thegraduationobtainedwas63.3°(97.8%).Theethanolcontentoftheinitialsolution,in
thehumidifierbottle,decreased4.63gat2L/minand5.38gat3L/min,after45minof
Pharmaceutics2021,13,3428of18
administration.Thedifferencebetweenflowrateswas0.75gofethanolemittedperday,
higherforaflowof3L/min,whichrepresents16%morethanthetotalamountachieved
withtheflowof2L/min,asshowninFigure3a.
Consideringtheminuteventilationof5L/minforhumanadultsrecommendedfor
shorttermexposure[33],andtheinhalation:exhalation(I:E)ratioof1:2,thetotalamount
ofethanolinhaledafterthethreedailyadministrationsat2L/minand3L/minwas1.51g
and1.79g,respectively(Figure3b).Thedifferenceinthetotalamountoftheinhaledeth
anolbetweenflowrateswas0.28ghigherforthehighestflowrateused.
(a)
(b)
Figure3.(a)Thetotalamountofethanolevaporatedfromtheinitialsolution,accordingtoGCMSdatadeterminedby
calculationoftheareasunderconcentrationtimecurves(AUC),and(b)theestimatedtotalamountofethanolinhaledby
humanadultstakingintoaccounttherecommendedshorttermexposurevaluesforinhalation,insedentaryorpassive
activity(b),afterthe45minoftreatmentat2L/minand3L/min.
1.81 2.23
1.53
1.73
1.30
1.42
0.00
1.00
2.00
3.00
4.00
5.00
6.00
2L/min 3L/min
gofethanol
Totalamountofemittedethanol/day
1stadministration 2ndadministration 3rdadministration
0.60 0.74
0.50
0.58
0.41
0.47
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2L/min 3L/min
gofethanol
Totalamountofinhaledethanol/day
1stadministration 2ndadministration 3rdadministration
Pharmaceutics2021,13,3429of18
Kineticparametersoftheethanolvaporizationintheoxygenstream,forbothflow
ratestested,areshowninFigure4.Seconddegreepolynomialequationsweredeveloped
fromtheexperimentaldata,andareasundertheconcentrationtimecurves(AUC)were
calculatedtodeterminetheamountofethanolemittedduringthetreatments.Attheflow
rateof2L/min,theaverageconcentrationsofethanolyielded(51.5±4.5mg/Lofoxygen
(8.7%CV))werehigherthanthatobservedat3L/min(39.9±5.7mg/Lofoxygen(14.4%
CV))duringthe45minoftreatment.Theconcentrationofethanoldecreasedslightlydur
ingthetimeforbothflowratestested.Inthefirst15min,theaverageconcentrationsof
ethanoldeterminedataflowrateof2L/minand3L/minwere56.6±1.9(3.4%CV)and
46.6±3.1mg/L(6.6%CV),respectively.Inthesecondperiod(15–30min)oftheexperi
ment,theaverageconcentrationswere51.0±1.6(3.2%CV)and38.6±2.0mg/L(5.2%CV),
andfinally,inthelastperiodof15min,theconcentrationsofethanolwere46.5±1.46
(2.9%CV)and34.0±1.0mg/L(3.0%CV),for2L/minand3L/min,respectively.
Figure4.Ethanolconcentration(mg/L)inthevaporphaseofoxygengeneratedinthehumidifier,
duringthe45minutesoftreatment,at2L/minand3L/min.
FollowingthepreviousconsiderationfortheI:Eratio,theaverageconcentrationsof
inhaledethanolatflowratesof2L/minand3L/minwere6.70±0.75mg/L/min(11.2%
CV)and7.99±1.12mg/L/min(14.7%CV),respectively.Theconcentrationswereslightly
higherforthehighestflowrate,sincethedilutionwiththeassistantairwaslower.Specif
ically,theinhaledconcentrations(mg/L/min)atthedifferentadministrationswere:7.55±
0.27(0–15min),6.70±0.27(15–30min)and5.58±0.26(30–45min)attheflowrateof2
L/min;and9.37±0.62(0–15min),7.76±0.41(15–30min),6.81±0.19(30–45min)atthe
flowrateof3L/min.
Takingintoaccountthetotalamountofethanolemittedperminuteoftreatment
(mg/min),thevalueswerelowerfortheflowrateof2L/min(100.1±11.5mg/min(11.5%
CV))thanthe3L/min(averageof119.7±17.1mg/min(14.3%CV)),asshowninFigure5.
Thesedifferenceswerehigherinthefirstminutesofethanolenrichedoxygenadministra
tion,withtotalamountsofethanolof112.7±4.1(3.7%CV)for2L/minflowrateand139.7
±9.2(6.6%CV)for3L/min,anddecreasedduringthetimeofaround23%and27%,re
spectively.Forthesecondandthirdadministrationsat2L/minflowrate,theamountsof
ethanolwere99.7±4.2(4.2%CV)and87.4±4.2(4.2%CV),respectively,whereasataflow
rateof3L/min,thevaluesobservedwere115.8±6.0(5.2%CV)and102.6±3.0(2.9%CV).
y=‐0.0002x20.4307x+59.832
=0.9178
y=0.0075x20.7646x+52.023
=0.9689
0
10
20
30
40
50
60
70
0 10203040
Ethanol(mg/L)
Time(min)
Evaporatedethanol(mg/L/min)
2L/min
3L/min
Pharmaceutics2021,13,34210of18
Therefore,basedonpreviousconsiderations,theestimatedfinalaverageamountsof
inhaledethanol(mg/min)were33.6±3.6(10.7%CV)and40.0±5.7(14.2%CV)attheflow
rateof2L/minand3L/min,respectively.Attheflowrateof2L/min,analysisofvariance
(ANOVA)showednosignificantdifferences(p>0.05)amongthedosesofinhaledethanol
duringthethreeadministrations:37.60±2.04(0–15min);33.36±1.34(15–30min);and
29.31±1.32(30–45min).Onthecontrary,significantdifferences(p<0.001)wereobserved
attheflowrateof3L/min:46.55±1.02(0–15min);38.57±2.00(15–30min);and34.04±
1.01(30–45min).
Figure5.Amountofethanol(mg)inthevaporphaseofoxygengeneratedinthehumidifier,dur
ingthe45minutesoftreatment,attheflowratesof2L/minand3L/min.
3.2.PreclinicalStudies
3.2.1.EthanolExposureToxicologicalStudiesandImmunohistochemicalAnalysis
Tissueandairspacefractions(atelectasis),oedemaandcongestionwereevaluated
intheparaffinembeddedsectionsoflungtissuestainedwithhematoxylinandeosin.
Therewerenotypicalpatternsofpulmonarytoxicitiesalongtherespiratorytract,ascan
beseeninFigure6(a.lung;b.andc.tracheaandd.ande.esophagus).

y=‐0.0003x20.8613x+119.66
=0.9178
y=0.0226x22.2939x+156.07
=0.9689
0
20
40
60
80
100
120
140
160
180
0 5 10 15 20 25 30 35 40 45
Ethanol(mg)
Time(min)
Evaporatedethanol(mg/min)
2L/min
3L/min
Pharmaceutics2021,13,34211of18
(a)
(b)(c)

(d)(e)
Figure6.Upperrespiratorytractsfixedin10%formalin,dehydrated,paraffinembedded,sectionedinsliceswith4μm
thicknessandstainedwithH&E:(a)Lung(200×)withdescriptionofabsencedamage;(b,c)Trachea(10×,40×)withde
scriptionofabsencedamage;and(d,e)Esophagus(40×,100×)withdescriptionofabsencedamage.
3.2.2.Pharmacokinetics
Synthesisof111CEthanol
Thesynthesisof111Cethanolhasbeenpreviouslyreported[34,35].Intheseprevious
works,thefinalpurificationofthelabeledcompoundwasachievedbyfractionaldistilla
tion.Inourhands,thissyntheticapproachresultedinthepresenceofradioactiveimpuri
Pharmaceutics2021,13,34212of18
tiesinthefinalsolution.Theundesiredbyproductswerecoelutedwithmethanol(reten
tiontime=3.5min)andisopropanol(retentiontime=4.7min)underouranalyticalHPLC
conditions(Figure7a)andaccountedforca.20%oftotalradioactivity.Takingintoaccount
thatouraimwastoobtainradiochemicallypure111Cethanol,andthattheoverallyield
wasnotacriticalaspect,wedecidedtoassayapurificationmethodbasedonHPLC.After
afiltrationsteptoremoveanyeventualprecipitateduetoincompletedissolutionofthe
solidresidueaftertheadditionofhydrochloricacid,agoodseparationofthedifferent
peakscouldbeachievedwhenwaterwasusedasthemobilephase.
Undertheseconditions,approximately600MBqofpure111Cethanol(radiochemical
purity>99%;Figure7b)couldbeobtainedinaverageproductiontimeof30min(decay
correctedradiochemicalyieldofaround7%).Thisamountofradioactivity,whichwas
readyforadministrationaftersimpledilutionwithphysiologicsalinesolution,wassuffi
cienttotacklesubsequentinvivostudiesinrodents(seebelow).
Figure7.(a)Chromatograms(radioactivitydetector)obtainedafteranalysisofthereactioncrude;
(b)chromatograms(radioactivitydetector)obtainedinqualitycontrolanalysisofthepurified1
11Cethanol.
LungPETStudies
PETstudieswerecarriedouttodeterminethebiodistributionof111Cethanolinrats
afterintratrachealinsufflation.AdministrationwascarriedoutusingthePennCentury
MicroSprayer®Aerosolizer,whichisreportedtoprovidearounda20μmdropletsize[36].
Accordingtoourpreviousresults,thisisaveryappropriatesystemforthequantitative
administrationofaerosolsintheratlung[36].Duetotheadministrationprocess,dynamic
imagescouldbestartedaroundoneminuteafteradministration,andhenceinitialdistri
butiondata(0.1minafteradministration)waslost.DynamicPETimages(Figure8)show
averyfastlungclearance(t1/2=1.43min),withmostoftheradioactivityalreadycleared
fromthelungsatt=1min.
Thepresenceofradioactivitydelocalizedoverthewholeanimalatearlytimepoints
suggesttranslocationtotheblood,followedbyprogressiveaccumulationintheliver(Fig
ure8),suggestingmetabolicoxidationtoacetaldehydebyalcoholdehydrogenaseandcy
tochromeP450,whichareextensivelypresentinthisorgan.
BKG1
Reg #1
Reg #2
Reg
#
Reg #4
Cnt
ADHV 1
CPS
1000
123456789100
Time(min)
Radioactivity(arbitraryunits)
[
11
C]methanol
[
11
C]isopropanol
[
11
C]ethanol
a
b
Pharmaceutics2021,13,34213of18
Figure8.(a)Positronemissiontomography(PET)images(maximumintensityprojections,coronal
views)obtainedatdifferenttimepointsafterintratrachealadministrationof1
11
Cethanol.Images
havebeencoregisteredwith3Drenderedcomputedtomography(CT)imagesforanatomicallocal
izationoftheradioactivesignal;(b)PETimages(coronalprojections)correspondingtotheseg
mentedlungsatdifferenttimespointsafteradministration;imageshavebeencoregisteredwith
representativeCTslices;(c)timeactivitycurvesobtainedafterquantificationofvolumesofinterest
drawnindifferentorgans.Valuesareexpressedasstandarduptakevalues(SUV),mean±standard
errormean,n=3.
4.Discussion
TheemergencyperiodoftheCOVID19outbreakhasforcedthescientificcommunity
togenerateevidenceagainsttheclock[37].Despitetherecentdevelopmentofvaccinesto
preventthedisease,newtherapeuticalternativestotreattheestablisheddiseaseshould
bestudied[38,39].AccordingtothepathologicalcharacteristicsofCOVID19anddiffer
entclinicalstages,especiallyforpatientswithmoderatetoseveredisease,antiviralagents,
inflammationinhibitors/antirheumaticdrugs,lowmolecularweightheparinsandconva
lescentplasmawithhighIgGtitersagainstSARSCoV2havebeenusedandtested[9–
11].Intheearlystagesofthedisease,thetreatmentofCOVID19remainselusive.There
arefewstrategiesthatcanbringbenefits,somestrategieshavefailed,andothersareunder
evaluation[11,40–43].
Facedwiththerapeuticgapssuchasthese,cliniciansareforcedtoresorttotherapeu
ticalternativessuchasdrugrepositioningandpharmaceuticalcompounding.Thegenetic
characteristicsofSARSCoVandMERSCoVsuggestthatSARSCoV2maybesusceptible
todisinfectantswithprovenactivityagainstenvelopedviruses[17,18].Ethanolexertsits
Pharmaceutics2021,13,34214of18
actionagainstaviralenvelope;alipidbilayertakenfromthehostcellsintheassemblyor
buddingstageoftheviralcycle,causingvirallysiswiththeconsequentreleaseanddeg
radationofitscontent[19].Activevirusesinthroatandlungswereisolatedinpatients
withamildconditiononlyuptoday8aftertheonsetofsymptoms,reachingthepeakof
theviralloadbeforeday5.Thisway,theadministrationofviricidalagentsintheplaceof
initialreplicationcoulddecreaseviremiainthefirststagesofthedisease,andconse
quentlyreducetheprogressionofthediseaseandimproveitsprognosis[29,44].Forthis
reason,theadministrationofinhaledethanolcouldbepresentedasanewtherapeutic
strategytopreventtheprogressionofCOVID19infections[45].Ourhypothesisoftreat
mentwithinhaledethanolfocusesonitsuseininstitutionalizedelderlypatients,since
certaintherapiesusedtodatewerecontraindicatedordiscouragedinthisagegroup,
whereCOVID19hassevereoutcomeswithahighmortalityrate[46].Priortothestartof
aphaseIIclinicaltrialforearlystageCOVID19olderadultpatients,alreadyapproved
bytheSpanishAgencyofMedicinesandMedicalDevices(ALCOVID19;EudraCTnum
ber202000176029),galenic,toxicologicalandpharmacokineticcharacterizationofthein
haledethanolcompoundedformulationhasbeennecessary.
Afterthevaporizationof65°ethanolfor45minutesinthreeadministrations,thereis
adecreaseinthealcoholcontentofthehydroalcoholicmixturecontainedinthedisposa
blehumidifierscomparedtotheinitialvalues.Throughbubblingoxygenatdifferent
flowsthroughthe65°ethanolsolution,evaporationofthemixtureisfavored.Thevapor
pressureofethanolismuchhigherthanthevaporpressureofwater,sinceethanolhasa
boilingpoint(78.4°C)considerablylowerthanwater(100°C)[47].Forthisreason,thegas
producedafterbubblingoxygenthroughthe65°ethanolsolutionwillhaveahighereth
anolconcentrationthanthestartingmixture.
Consideringtheminuteventilationof5L/minforhumanadultsrecommendedfor
shorttermexposure[33],andtheI:Eratioof1:2,theaverageconcentrationsofinhaled
ethanolinthethreeadministrationsofethanolwere6.70mg/L/minand7.99mg/L/minfor
theflowratesof2L/minand3L/min,respectively,whichcorrespondtothetotalamounts
ofethanolperminuteof33.52mg/minand39.88mg/min.Theseamountswerelowerthan
thoseobservedbyBessonneauandThomas[48]inastudyrelatedtotheexposureafter
handdisinfection,wherethetotalinhaleddoseofethanolrangedbetween150.8and
219.26mg/min.Thetotalamountofalcoholvaporizedduringtheflushingofoxygen
throughtheformulationincreasedwiththeflowrateofoxygen,asobservedbyother
studiesdescribedintheliterature[49].Theconcentrationsofethanolpermin(mg/L/min)
emittedinthehumidifierwerelowerattheflowrateof3L/min(seeFigure4),asthe
higherflowrateofoxygencouldnotreachtheequilibriumwithethanolatthesametime
andcarriedlessethanolvaporperliter(mg/L).Theadministrationduringthetimeof
treatmentwasmorestableattheflowrateof2L/minthan3L/min(seeFigure4).
Thetotalamountofethanolevaporated(mg/min)wasslightlyhigheratthehigher
flowrate(3L/min),astherewasmoreoxygenavailabletocarryethanol(seeFigure5).
Thisphenomenonismanifestedintheresultsobtainedinthisstudy,wheretheconcen
trationsofthemixture,afterthethreebubblingcycles,havebeenreducedto98.2%and
97.8%,comparedtotheoriginalconcentrationwith2L/minand3L/minflows,respec
tively.Thetotalamountofethanolevaporatedafterthreeadministrationsinthe45min
oftreatmentwas4.64gatthe2L/minflowrate,and5.38gatthe3L/minflowrate(see
Figure3a).
AstudyperformedbyZhang[50]demonstratedthatdepositionofethanolinseveral
localsitesoftherespiratorytractusingahumanupperairwaymodeldependedonfluid
flowsanddiffusionparameters.Lowerflowratesallowedhigherpercentagesofethanol
depositionintherespiratorytractthanhigherflows.Instead,athigherflowrates,thecon
centrationgradientneartothewallincreasesalongsidethemasstransfercoefficient,and
consequentlytheabsorptionofethanol.Thisauthorconcludedthatiftheobjectiveisdep
ositionofethanolandnotitsabsorption,theuseoflowflowratesshouldberecom
mended,duetotheextendedvaporresidencetimesatlowflowrates.Thisisinlinewith
Pharmaceutics2021,13,34215of18
ourapproach,inwhichweseekethanoldepositionwithminimalsystemicabsorption,
whichcouldproducedruginteractionsoradversereactions.
Ontheotherhand,itisconvenienttohighlightthesafetyofthecurrentpharmaco
logicalstrategyproposed.Preclinicalstudiesinratsandmicethatinhaledethanolprovide
thegreatestevidenceavailabletodateforcharacterizingtherisksofinhalationofethanol
[51,52].Theobservedadverseeffectswereattributedtosystemicandchronicexposureto
ethanol,regardlessoftherouteofadministration[53].Choietal.analyzedtheefficacy
andsafetyoftheadministrationofproteinscarriedinabsoluteethanolinrats.Noallergic
orinflammatoryresponseswereshown,norwasdamagetothealveolarbarrier,orcell
lysisthatcouldindicateacutetoxiceffectsinthelungsorairways[54].Theseresultsare
inlinewithwhatwasobservedinthepresentstudyaftertheadministrationofethanolin
SpragueDawleyrats(females,250g(BW),withminuteventilationof130mL/min)every
8hoursforfivedays,withaninhalationperiodof15min.Bavisetal.describedthatrats
withthesamecharacteristicsasusedinourassayshaveaminuteventilation0.130L/min
[55].Takingthisintoaccount,inourexperimentsat2L/min,theratswereexposedtoa
totalestimatedamountofethanolof301.3mg/day,whichcorrespondstoadoseof1.2
g/kg/day.Atthesameflow,inourstudy,151gwereestimatedasinhaledbyhumanina
day.Consideringahumanbodyweightof60kg,thedoseadministratedwouldcorre
spondto0.025g/kg/day.Thus,inthepreclinicalstudy,theexposurelimitswereoveresti
matedupto40foldhigherthanthoseappliedinthehumanvolunteers.Nosignificant
differenceswereobservedthroughhistologicalstainingbyalungpathologistspecialist
betweentherodentsthatreceivedethanolcomparedtothosethatreceivedcontrol.Lung,
tracheaandesophagussamplesweredescribedasabsentofdamage.
Toourknowledge,nomolecularimagingstudieshavebeenpublishedtodateto
characterizethebiodistributionofradiolabeledethanoladministeredthroughtherespir
atorytract.Inordertoobtainafirstorientationofthepossibleresidencetimeofethanol
inthelung,aPET/CTstudyhasbeencarriedoutinrats,thereforebeingthefirstresearch
aboutpulmonarykineticsofethanoladministeredbythisroute.ThePET/CTimagesob
tainedaftertheadministrationof111Cethanolshowradioactivityatinitialtimesatthe
levelofrespiratorytractandlungs,followedbyafastanddelocalizeddistributionover
thewholeanimal.Thesefindingssuggestatranslocationofethanoltothecirculatorysys
tem,followedbyprogressiveaccumulationinitsmainorganofmetabolism,theliver.
TheseresultsareinlinewiththatpreviouslyobservedbyGiffordetal.,inwhich114C
ethanolwasadministeredintravenouslyinordertodeterminesitesofconcentrationof
ethanoloritsmetabolites,whichmaycontributetoitstoxicologicalandpharmacokinetic
properties[56].
Atthispoint,anewlineoffutureresearchopenssothatspecializedcenterscantest
itsvirucidalpotential.Nowadays,ourgrouparetestingtheclinicalefficacyandsafetyof
thisnewpharmacologicalstrategyin170earlystageCOVID19institutionalizedelderly
patients.Thisclinicaltrialwillallowustoknowifthestablishedethanolconcentrationis
effective,iftheexposuretimeisadequateandalsothetoxicityprofileofinhaledethanol.
ThismaybepossiblethankstotherecentapprovalofthephaseIIclinicaltrialauthorized
bytheSpanishAgencyofMedicinesandMedicalDevices(ALCOVID19;EudraCT:2020
00176029).
5.Conclusions
Thisresearchworkaimstoshowthedevelopmentandresultsofthegalenic,phar
macokineticandtoxicologicalcharacterizationofinhaledethanolasapotentialtherapy
againstSARSCoV2.Thedeveloped65°ethanolcompoundedformulationremainsstable
atroomtemperatureandprotectedfromlightfor15days.Themostconvenientflowrate
forethanoladministrationis2L/min,ensuringtheinhalationofanethanoldailydoseof
33.6±3.6mg/min,andachievingmorestableconcentrationsduringtheentiretreatment
(45min).Furthermore,ithasalsobeenfoundtoshowsatisfactorypharmacokineticand
Pharmaceutics2021,13,34216of18
toxicologicalcharacteristicsthroughPET/CTstudiesandhistologicalanalysisofrespira
torytractandlungtissueinrats.Clinicalsafetyandefficacyarecurrentlybeingstudied
inaphaseIIclinicaltrial(ALCOVID19;EudraCTnumber:202000176029)forearlystage
COVID19institutionalizedpatients.
SupplementaryMaterials:Thefollowingareavailableonlineatwww.mdpi.com/1999
4923/13/3/342/s1,FigureS1:Therapeuticapproachschemetotheuseofinhaledethanol.,FigureS2:
Physiologicalsafetyparametersmonitoredduringinhalation.
AuthorContributions:Conceptualization,I.N.V.,N.V.A.,J.R.A.L.,F.J.O.E.,A.F.F.andM.G.B.;
methodology,L.B.P.,R.S.G.,L.G.Q.,F.J.O.E.,J.R.L.Q.,L.V.C.,M.C.d.R.G.,C.C.D.,P.A.,
M.L.P.d.M.B.,R.T.P.,R.P.andA.R.B.d.Q.;formalanalysis,A.C.B.,C.M.G.,L.B.P.,I.V.R.,E.J.B.
V.,R.S.G.,A.R.B.d.Q.,L.G.Q.D.R.B.andP.A.;investigation,A.C.B.,C.M.G.,I.V.R.,J.R.A.L.,
D.R.B.,E.J.B.V.,M.B.I.,M.C.d.R.G.,I.N.V.,N.V.A.,A.R.B.d.Q.,L.V.C.,C.R.C.,G.B.C.,
M.L.P.M.B.,R.T.P.,R.P.andJ.L.;resources,I.Z.F.,F.J.O.E.andO.D.S.;datacuration,L.B.P.,I.V.
R.,I.N.V.,N.V.A.,M.B.I.,D.R.B.,C.R.C.,M.C.d.R.G.,G.B.C.andR.P.;writing—originaldraft
preparation,A.C.B.,C.M.G.,L.B.P.,R.S.G.,M.B.I.,I.Z.F.andJ.L.;writing—reviewandediting,
P.A.,M.G.B.andL.G.Q.;visualization,A.P.R.,G.B.C.,M.G.B.,L.V.C.,C.R.C.,R.T.P.,O.D.S.
andJ.R.L.Q.;supervision,J.R.A.L.,C.C.D.,M.L.P.d.M.B.,J.L.,A.P.R.andA.F.F.;projectadmin
istration,C.C.D.,J.L.,A.P.R.andA.F.F.;andfundingacquisition,O.D.andI.Z.F.,software,E.J.V.
V.andJ.R.L.Q.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisprojectwaspartiallysupportedbyACIS(SA304C)byProgramaTraslaciona
COVID19(CT850A4)andFundaciónEspañoladeFarmaciaHospitalaria.Wealsowantto
acknowledgeOximesaNipponGasesandtheInstitutodeInvestigaciónSanitariadeSantiagode
Compostelaforthefungiblematerialgivenforthestudydevelopment.AFF,CMG,EJBVandLGC
aregratefultoISCIIIfortheaidforfinancingtheJR18/00014,CM18/00090,CM20/00135and
CM20/00024personnelcontracts.L.B.P.isgratefultotheSpanishMinistryofScience,Innovation
andUniversitiesforherJuandelaCierva—IncorporaciónGrant(AgreementNo.IJCI201731665).
PAacknowledgesthe“RamónyCajal”researchfellowship(RYC‐2015/17430).
InstitutionalReviewBoardStatement:Thestudywasconductedaccordingtotheguidelinesofthe
DeclarationofHelsinki,andapprovedbytheInstitutionalReviewBoardofCICbiomaGUNE(pro
tocolcodePROAESS059).
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:WeappreciatethesupportoftheSpanishSocietyofHospitalPharmacy(SEFH)
thatwillfacilitatefutureclinicaltrialstodeterminethefeasibilityofthistherapyagainstSARSCoV
2.Finally,wealsowantedtothankSEFHfortheaward“MejorProyectoI+I”,grantedatthe65th
SEFHVirtualCongress2020.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Weiss,S.R.;Leibowitz,J.L.CoronavirusPathogenesis.Adv.VirusRes.2011,81,85–164,doi:10.1016/B9780123858856.000092.
2. Jin,Y.;Yang,H.;Ji,W.;Wu,W.;Chen,S.;Zhang,W.;Duan,G.Virology,Epidemiology,Pathogenesis,andControlofCOVID
19.Viruses2020,12,doi:10.3390/v12040372.
3. Rothan,H.A.;Byrareddy,S.N.TheEpidemiologyandPathogenesisofCoronavirusDisease(COVID19)Outbreak.J.Autoim
mun.2020,109,102433,doi:10.1016/j.jaut.2020.102433.
4. WHO.CoronavirusDisease(COVID19)Dashboard.Availableonline:https://covid19.who.int(accessedon16January2021).
5. Baker,M.G.;Kvalsvig,A.;Verrall,A.J.NewZealand’sCOVID19EliminationStrategy.Med.J.Aust.2020,
doi:10.5694/mja2.50735.
6. Baden,L.R.;Sahly,H.M.E.;Essink,B.;Kotloff,K.;Frey,S.;Novak,R.;Diemert,D.;Spector,S.A.;Rouphael,N.;Creech,C.B.;et
al.EfficacyandSafetyoftheMRNA1273SARSCoV2Vaccine.N.Engl.J.Med.2020,doi:10.1056/NEJMoa2035389.
7. Polack,F.P.;Thomas,S.J.;Kitchin,N.;Absalon,J.;Gurtman,A.;Lockhart,S.;Perez,J.L.;PérezMarc,G.;Moreira,E.D.;Zerbini,
C.;etal.SafetyandEfficacyoftheBNT162b2MRNACovid19Vaccine.N.Engl.J.Med.2020,383,2603–2615,
doi:10.1056/NEJMoa2034577.
8. Knoll,M.D.;Wonodi,C.OxfordAstraZenecaCOVID19VaccineEfficacy.Lancet2021,397,72–74,doi:10.1016/S0140
6736(20)326234.
Pharmaceutics2021,13,34217of18
9. Stasi,C.;Fallani,S.;Voller,F.;Silvestri,C.TreatmentforCOVID19:AnOverview.Eur.J.Pharmacol.2020,889,173644,
doi:10.1016/j.ejphar.2020.173644.
10. Li,Y.;Liu,S.;Zhang,S.;Ju,Q.;Zhang,S.;Yang,Y.;Wang,H.CurrentTreatmentApproachesforCOVID19andtheClinical
ValueofTransfusionRelatedTechnologies.Transfus.Apher.Sci.2020,59,102839,doi:10.1016/j.transci.2020.102839.
11. Libster,R.;PérezMarc,G.;Wappner,D.;Coviello,S.;Bianchi,A.;Braem,V.;Esteban,I.;Caballero,M.T.;Wood,C.;Berrueta,
M.;etal.EarlyHighTiterPlasmaTherapytoPreventSevereCovid19inOlderAdults.N.Engl.J.Med.2021,
doi:10.1056/NEJMoa2033700.
12. PharmaMarMulticenter.Randomized,ParallelandProofofConceptStudytoEvaluatetheSafetyProfileofThreeDosesof
PlitidepsininPatientsWithCOVID19RequiringHospitalization.2020.Availableonline:clinicaltrials.gov(accessedon25Jan
uaary2021).
13. EliLillyandCompany.ExpandedAccessInformationforPhysiciansforBamlanivimab(LY3819253)EmergencyInvestigational
NewDrug(EIND).2021.Availableonline:clinicaltrials.gov(accessedon25February2021).
14. RegeneronPharmaceuticals.AMasterProtocolAssessingtheSafety,Tolerability,andEfficacyofAntiSpike(S)SARSCoV2
MonoclonalAntibodiesfortheTreatmentofAmbulatoryPatientsWithCOVID19.2021.Availableonline:clinicaltrials.gov
(accessedon25February2021).
15. Group,T.R.C.DexamethasoneinHospitalizedPatientswithCovid19—PreliminaryReport.N.Engl.J.Med.2020,
doi:10.1056/NEJMoa2021436.
16. Andersen,P.I.;Ianevski,A.;Lysvand,H.;Vitkauskiene,A.;Oksenych,V.;Bjørås,M.;Telling,K.;Lutsar,I.;Dumpis,U.;Irie,Y.;
etal.DiscoveryandDevelopmentofSafeinManBroadSpectrumAntiviralAgents.Int.J.Infect.Dis.2020,93,268–276,
doi:10.1016/j.ijid.2020.02.018.
17. Kampf,G.;Todt,D.;Pfaender,S.;Steinmann,E.PersistenceofCoronavirusesonInanimateSurfacesandTheirInactivationwith
BiocidalAgents.J.Hosp.Infect.2020,104,246–251,doi:10.1016/j.jhin.2020.01.022.
18. LaboratoryBiosafetyGuidanceRelatedtoCoronavirusDisease(COVID19).Availableonline:https://www.who.int/publica
tionsdetailredirect/laboratorybiosafetyguidancerelatedtocoronavirusdisease(covid19)(accessedon21June2020).
19. Kratzel,A.;Todt,D.;V’kovski,P.;Steiner,S.;Gultom,M.;Thao,T.T.N.;Ebert,N.;Holwerda,M.;Steinmann,J.;Niemeyer,D.;
etal.InactivationofSevereAcuteRespiratorySyndromeCoronavirus2byWHORecommendedHandRubFormulationsand
Alcohols.EmergingInfect.Dis.2020,26,doi:10.3201/eid2607.200915.
20. Opilla,M.T.;Kirby,D.F.;Edmond,M.B.UseofEthanolLockTherapytoReducetheIncidenceofCatheterRelatedBloodstream
InfectionsinHomeParenteralNutritionPatients.JPENJ.Parenter.EnteralNutr.2007,31,302–305,
doi:10.1177/0148607107031004302.
21. Lipton,S.PainReliefinActivePatientswithCancer:TheEarlyUseofNerveBlocksImprovestheQualityofLife.BMJ1989,
298,37–38,doi:10.1136/bmj.298.6665.37.
22. Sarin,S.K.;Sachdeva,G.K.;Nanda,R.;Vij,J.C.;Anand,B.S.EndoscopicSclerotherapyUsingAbsoluteAlcohol.Gut1985,26,
120–124.
23. Chung,S.C.;Lee,T.W.;Kwok,S.P.;Li,A.K.InjectionofAlcoholtoControlBleedingfromRupturedHepatomas.BMJ1990,301,
421,doi:10.1136/bmj.301.6749.421.
24. Yuksel,E.;Novruzlu,S.;Ozmen,M.C.;Bilgihan,K.AStudyComparingStandardandTransepithelialCollagenCrossLinking
RiboflavinSolutions:EpithelialFindingsandPainScores.J.Ocul.Pharmacol.Ther.2015,31,296–302,doi:10.1089/jop.2014.0090.
25. Sepúlveda,R.A.;Selamé,E.;Roessler,E.;Tagle,R.;Valdivieso,A.IntoxicaciónPorEtilenglicol,FisiopatologíayEnfrentamiento
Clínico.Rev.Med.Chil.2019,147,1572–1578,doi:10.4067/S003498872019001201572.
26. Statement—OlderPeopleAreatHighestRiskfromCOVID19,butAllMustActtoPreventCommunitySpread.Available
online:http://www.euro.who.int/en/healthtopics/healthemergencies/coronaviruscovid19/statements/statementolderpeo
pleareathighestriskfromcovid19,butallmustacttopreventcommunityspread(accessedon8June2020).
27. Li,P.;Chen,L.;Liu,Z.;Pan,J.;Zhou,D.;Wang,H.;Gong,H.;Fu,Z.;Song,Q.;Min,Q.;etal.ClinicalFeaturesandShortTerm
OutcomesofElderlyPatientswithCOVID19.Int.J.Infect.Dis.2020,97,245–250,doi:10.1016/j.ijid.2020.05.107.
28. Kampf,G.EfficacyofEthanolagainstVirusesinHandDisinfection.J.Hosp.Infect.2018,98,331–338,
doi:10.1016/j.jhin.2017.08.025.
29. Yan,R.;Zhang,Y.;Li,Y.;Xia,L.;Guo,Y.;Zhou,Q.StructuralBasisfortheRecognitionofSARSCoV2byFullLengthHuman
ACE2.Science2020,367,1444–1448,doi:10.1126/science.abb2762.
30. EnsayoClínicoFaseIIParaEvaluarLaEficaciaySeguridaddeEtanolInhaladoEnElTratamientodeLaCOVID19EnEstadio
Inicial.Availableonline:https://reec.aemps.es/reec/estudio/202000176029(accessedon9January2021).
31. Kilkenny,C.;Browne,W.;Cuthill,I.C.;Emerson,M.;Altman,D.G.;NC3RsReportingGuidelinesWorkingGroupAnimalRe
search:ReportinginVivoExperiments:TheARRIVEGuidelines.Br.J.Pharmacol.2010,160,1577–1579,doi:10.1111/j.1476
5381.2010.00872.x.
32. SeoaneViaño,I.;GómezLado,N.;LázareIglesias,H.;BarreirodeAcosta,M.;SilvaRodríguez,J.;LuzardoÁlvarez,A.;He
rranz,M.;OteroEspinar,F.;AntúnezLópez,J.R.;Lamas,M.J.;etal.LongitudinalPET/CTEvaluationofTNBSInducedInflam
matoryBowelDiseaseRatModel.Int.J.Pharm.2018,549,335–342,doi:10.1016/j.ijpharm.2018.08.005.
33. U.S.EPA.ExposureFactorsHandbook2011Edition(FinalReport);EPA/600/R09/052F;U.S.EnvironmentalProtectionAgency:
Washington,DC,USA,2011.
Pharmaceutics2021,13,34218of18
34. Gulyás,B.;Vas,A.;Halldin,C.;Sóvágó,J.;Sandell,J.;Olsson,H.;Fredriksson,A.;StoneElander,S.;Farde,L.CerebralUptake
of(Ethyl11C)Vinpocetineand1(11C)EthanolinCynomolgousMonkeys:AComparativePreclinicalPETStudy.Nucl.Med.
Biol.2002,29,753–759,doi:10.1016/s09698051(02)003190.
35. DeGrazia,J.A.;Rodden,A.F.;Teresi,J.D.;Busick,D.D.;Walz,D.R.RadioscintigraphicStudiesof11CDistributioninCatsgiven
111CEthanol.J.Nucl.Med.1975,16,73–76.
36. Cossío,U.;GómezVallejo,V.;Flores,M.;GañánCalvo,B.;Jurado,G.;Llop,J.PreclinicalEvaluationofAerosolAdministration
SystemsUsingPositronEmissionTomography.Eur.J.Pharm.Biopharm.2018,130,59–65,doi:10.1016/j.ejpb.2018.05.037.
37. CastroBalado,A.;VarelaRey,I.;BandínVilar,E.J.;BustoIglesias,M.;GarcíaQuintanilla,L.;MondeloGarcía,C.;Fernández
Ferreiro,A.ClinicalResearchinHospitalPharmacyduringtheFightagainstCOVID19.Farm.Hosp.2020,44,66–70,
doi:10.7399/fh.11494.
38. Dai,L.;Gao,G.F.ViralTargetsforVaccinesagainstCOVID19.Nat.Rev.Immunol.2020,doi:10.1038/s41577020004800.
39. FernándezFerreiro,A.;GonzálezBarcia,M.TheHumanBeing,theOnlyAnimalThatNeedsaMastertoLive.OFILILAPHAR
2020,30,179–182.
40. Cao,B.;Wang,Y.;Wen,D.;Liu,W.;Wang,J.;Fan,G.;Ruan,L.;Song,B.;Cai,Y.;Wei,M.;etal.ATrialofLopinavir–Ritonavir
inAdultsHospitalizedwithSevereCovid19.N.Engl.J.Med.2020,2001282,doi:10.1056/NEJMoa2001282.
41. RECOVERYCollaborativeGroup;Horby,P.;Mafham,M.;Linsell,L.;Bell,J.L.;Staplin,N.;Emberson,J.R.;Wiselka,M.;Ustian
owski,A.;Elmahi,E.;etal.EffectofHydroxychloroquineinHospitalizedPatientswithCovid19.N.Engl.J.Med.2020,383,
2030–2040,doi:10.1056/NEJMoa2022926.
42. Stone,J.H.;Frigault,M.J.;SerlingBoyd,N.J.;Fernandes,A.D.;Harvey,L.;Foulkes,A.S.;Horick,N.K.;Healy,B.C.;Shah,R.;
Bensaci,A.M.;etal.EfficacyofTocilizumabinPatientsHospitalizedwithCovid19.N.Engl.J.Med.2020,383,2333–2344,
doi:10.1056/NEJMoa2028836.
43. Li,L.;Zhang,W.;Hu,Y.;Tong,X.;Zheng,S.;Yang,J.;Kong,Y.;Ren,L.;Wei,Q.;Mei,H.;etal.EffectofConvalescentPlasma
TherapyonTimetoClinicalImprovementinPatientswithSevereandLifeThreateningCOVID19:ARandomizedClinical
Trial.JAMA2020,324,460–470,doi:10.1001/jama.2020.10044.
44. Talavera,B.;GarcíaAzorín,D.;MartínezPías,E.;Trigo,J.;HernándezPérez,I.;VallePeñacoba,G.;SimónCampo,P.;deLera,
M.;ChavarríaMiranda,A.;LópezSanz,C.;etal.AnosmiaIsAssociatedwithLowerInHospitalMortalityinCOVID19.J.
Neurol.Sci.2020,419,117163,doi:10.1016/j.jns.2020.117163.
45. Shintake,T.PossibilityofDisinfectionofSARSCoV2(COVID19)inHumanRespiratoryTractbyControlledEthanolVapor
Inhalation.arXiv2020,arXiv:2003.12444.
46. Ly,T.D.A.;Zanini,D.;Laforge,V.;Arlotto,S.;Gentile,S.;Mendizabal,H.;Finaud,M.;Morel,D.;Quenette,O.;MalfusonClot
Faybesse,P.;etal.PatternofSARSCoV2InfectionamongDependantElderlyResidentsLivinginLongTermCareFacilities
inMarseille,France,March–June2020.Int.J.Antimicrob.Agents2020,56,106219,doi:10.1016/j.ijantimicag.2020.106219.
47. Durst,H.D.;Gokel,G.W.QuímicaOrgánicaExperimental;EditorialReverté:Barcelona,Spain,1985;ISBN9788429171556.
48. Bessonneau,V.;Thomas,O.AssessmentofExposuretoAlcoholVaporfromAlcoholBasedHandRubs.Int.J.Environ.Res.
PublicHealth2012,9,868–879,doi:10.3390/ijerph9030868.
49. Luisada,A.A.;Goldmann,M.A.;Weyl,R.AlcoholVaporbyInhalationintheTreatmentofAcutePulmonaryEdema.Circulation
1952,5,363–369,doi:10.1161/01.cir.5.3.363.
50. Zhang,Z.;Kleinstreuer,C.;Kim,C.S.TransportandUptakeofMTBEandEthanolVaporsinaHumanUpperAirwayModel.
Inhal.Toxicol.2006,18,169–184,doi:10.1080/08958370500434172.
51. Rogers,J.;Wiener,S.G.;Bloom,F.E.LongTermEthanolAdministrationMethodsforRats:AdvantagesofInhalationoverIntu
bationorLiquidDiets.Behav.NeuralBiol.1979,27,466–486,doi:10.1016/s01631047(79)920612.
52. MacLean,R.R.;Valentine,G.W.;Jatlow,P.I.;Sofuoglu,M.InhalationofAlcoholVapor:MeasurementandImplications.Alcohol.
Clin.Exp.Res.2017,41,238–250,doi:10.1111/acer.13291.
53. Gilpin,N.W.;Richardson,H.N.;Cole,M.;Koob,G.F.VaporInhalationofAlcoholinRats.Curr.Protoc.Neurosci.2008,
doi:10.1002/0471142301.ns0929s44.
54. Choi,W.S.;Murthy,G.G.K.;Edwards,D.A.;Langer,R.;Klibanov,A.M.InhalationDeliveryofProteinsfromEthanolSuspen
sions.Proc.Natl.Acad.Sci.USA2001,98,11103–11107,doi:10.1073/pnas.201413798.
55. Bavis,R.W.;Johnson,R.A.;Ording,K.M.;Otis,J.P.;Mitchell,G.S.RespiratoryPlasticityafterPerinatalHypercapniainRats.
Respir.Physiol.Neurobiol.2006,153,78–91,doi:10.1016/j.resp.2005.09.002.
56. Gifford,A.N.;Espaillat,M.P.;Gatley,S.J.BiodistributionofRadiolabeledEthanolinRodents.DrugMetab.Dispos.2008,36,1853–
1858,doi:10.1124/dmd.107.020271.
... Methanol poisoning [11], fat embolism [12], premature labor prevention [13], preeclampsia [14], and pulmonary edema [15] have all been treated with ethanol-specific treatments in the past. Castro-Balado et al. [16] have shown the histological safety of inhalation ethanol treatment on rats' lungs and respiratory systems. Ethanol was authorized by the Food and Drug Administration. ...
... A lot of concern has been expressed regarding the potential mucosal harm that breathed ethanol might cause. Castro-Balado et al. careful research [16] appears to have completely dispelled these concerns. It should be noted that spraying into the mask prolongs the action of the nebulized liquid and maintains its efficiency by reducing the dispersion and evaporation of the liquid. ...
Chapter
Full-text available
The goal of this study was to determine if nebulized ethanol (EtOH) is safe and effective in treating COVID-19. A randomized controlled trial was carried out on 99 symptomatic and RT-PCR-positive patients admitted to a hospital that were given Remdesivir and Dexamethasone. They were randomly given either a 35% EtOH spray (intervention group, IG) or distilled water spray (control group, CG). For a week, each group underwent three nebulizer puffs every 6 hours. Global Symptomatic Score (GSS) comparisons between the two groups at the initial visit and on days 3, 7, and 14. Secondary outcomes include the readmission rate and the Clinical Status Scale (CSS), a seven-point ordinal scale that ranges from death to full recovery. The intervention and control groups, respectively included 44 and 55 patients. The GSS and CSS considerably improved in the IG, despite the fact that there was no difference at admission (p = 0.016 and p = 0.001, respectively) (Zero vs. 10.9%; P = 0.02). The IG readmission rate was much reduced. Inhaled-nebulized EtOH responds well in quickly improving the clinical status and limiting the need for further therapy. Further investigation into the therapeutic and preventative properties of EtOH is advised due to its affordability, availability, and lack of/tolerable side effects.
... Ethanol administration has previously been reported to treat methanol poisoning [11], fat embolism [12], prevention of preterm labor [13], preeclampsia [14], and pulmonary edema [15]. The histological safety of inhalation ethanol therapy in the lungs and respiratory tracts of rodents has been demonstrated by Castro-Balado et al. [16]. The Food and Drug Administration approved ethanol. ...
... Concerns about the mucosal damage that inhaled ethanol could induce locally have been frequently and strongly raised. The meticulous work of Castro-Balado et al. [16] seems to have definitively eliminated these concerns. ...
Preprint
Full-text available
Background Considering anti coronavirus effects of ethanol, the efficacy of its administration was evaluated in this research. Because of respiratory tract entrance of virus in COVID-19, this study was done by inhalation of nebulized ethanol. Methods Ninety-nine positive SARS-CoV-2-PCR patients who had been admitted at a respiratory clinic were included in this study. Patients were randomly assigned to the control (distilled water spray) and intervention (35% ethanol spray) group. Both groups were instructed to inhale 3 puffs of spray and inhale it, every six hours for a week. Global symptomatic score (GSS), clinical status scale,0020Blood Oxygenation, and C-Reactive Protein (CRP) at the first visit and days 3, 7, 14 were measured and compared between groups. Results The GSS decreased more and faster in the intervention group (ethanol) (1.4+1.4 vs 2.3+1.7, P=0.035) two weeks after starting intervention. On day 14, the odds of intervention group to have better clinical status was 5.715 times (95% CI, 2.47 to 13.19) than of control group a statistically significant effect, Wald χ2 (1) =16.67, P =0.001. Blood oxygen saturation also improved earlier in the ethanol group but without statistical significance difference. The readmission rate was lower in the intervention group (zero vs 10.9%, P=0.02). Conclusion Inhaled ethanol seems to be effective in improvement, mitigating clinical symptoms and reducing the need to repeat treatment. Considering the low cost, availability and no significant adverse events of ethanol, research and additional efforts are recommended to evaluate its curative effects in the early stages of COVID-19.
... Theoretically, inhalation of EtOH vapor can expose the respiratory epithelium to enough EtOH to inactivate enveloped viruses [16]. Indeed, a molecular imaging study detected substantial amounts of EtOH in the lungs of rats following inhalation of EtOH vapor [17]. These observations support the therapeutic potential of EtOH vapor inhalation against respiratory infectious diseases, but there is no direct evidence that inhaled EtOH inhibits viral respiratory infections without damaging epithelial cells. ...
Article
Full-text available
Ethanol (EtOH) effectively inactivates enveloped viruses in vitro, including influenza and SARS-CoV-2. Inhaled EtOH vapor may inhibit viral infection in mammalian respiratory tracts, but this has not yet been demonstrated. Here we report that unexpectedly low EtOH concentrations in solution, approximately 20% (v/v), rapidly inactivate influenza A virus (IAV) at mammalian body temperature (37°C) and are not toxic to lung epithelial cells upon apical exposure. Furthermore, brief exposure to 20% (v/v) EtOH decreases production of infectious progeny viruses in IAV-infected cells. Using an EtOH vapor exposure system that is expected to expose murine respiratory tracts to 20% (v/v) EtOH solution by gas-liquid equilibrium at 37°C, we demonstrate that brief EtOH vapor inhalation twice a day protects mice from lethal IAV respiratory infection by reducing viruses in the lungs without harmful side effects. Our data suggest that EtOH vapor inhalation may provide a versatile therapy against various respiratory viral infectious diseases.
Article
Full-text available
Background Therapies to interrupt the progression of early coronavirus disease 2019 (Covid-19) remain elusive. Among them, convalescent plasma administered to hospitalized patients has been unsuccessful, perhaps because antibodies should be administered earlier in the course of illness. Methods We conducted a randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adult patients within 72 hours after the onset of mild Covid-19 symptoms. The primary end point was severe respiratory disease, defined as a respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both. The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably and steady enrollment of trial patients became virtually impossible. Results A total of 160 patients underwent randomization. In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P=0.03), with a relative risk reduction of 48%. A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81). No solicited adverse events were observed. Conclusions Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. (Funded by the Bill and Melinda Gates Foundation and the Fundación INFANT Pandemic Fund; Dirección de Sangre y Medicina Transfusional del Ministerio de Salud number, PAEPCC19, Plataforma de Registro Informatizado de Investigaciones en Salud number, 1421, and ClinicalTrials.gov number, NCT04479163.)
Article
Full-text available
Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results Download a PDF of the Research Summary. The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
Article
Full-text available
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods Download a PDF of the Research Summary. In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
Article
Full-text available
Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity. As the world races to develop vaccines against SARS-CoV-2, Dai and Gao highlight which viral targets are best to include in a vaccine and how this impacts the induced immune response and, ultimately, the safety and efficacy of a vaccine.
Article
Full-text available
Objectives: This study aimed to report the results of SARS-CoV-2 PCR-based screening campaigns conducted on dependent elderly residents (compared with staff members) in long-term care facilities (LTCFs) in Marseille, France, and the follow-up of positive cases. Methods: Data from 1691 elderly residents and 1000 members of staff were retrospectively collected through interviewing the medical teams in 24 LTCFs and using the hospitals’ electronic health recording systems. Results: Elderly residents were predominantly female (64.8%) with a mean age of 83.0 years. SARS-CoV-2 detection among residents (226, 13.4%) was significantly higher than among staff members (87, 8.7%) (P < 0.001). Of the 226 infected residents, 37 (16.4%) were detected on a case-by-case basis due to their COVID-19 symptoms and 189 (83.6%) were detected through mass screening. Most (77.0%) had possible COVID-19 symptoms, including respiratory symptoms and signs (44.5%) and fever (46.5%); 23.0% were asymptomatic. A total of 116 (51.4%) patients received a course of oral hydroxychloroquine and azithromycin (HCQ-AZM) for ≥ 3 days; 47 (20.8%) died. Through multivariate analysis, the death rate was positively associated with being male (30.7% vs. 14.0%, OR = 3.95, P = 0.002), aged > 85 years (26.1% vs. 15.6%, OR = 2.43, P = 0.041) and receiving oxygen therapy (39.0% vs. 12.9%, OR = 5.16, P < 0.001) and negatively associated with being diagnosed through mass screening (16.9% vs. 40.5%, OR = 0.20, P = 0.001) and receiving HCQ-AZM treatment ≥ 3 days (15.5% vs. 26.4%, OR = 0.37, P = 0.02). Conclusion: The high proportion of asymptomatic COVID-19 patients and independent factors for mortality suggest that early diagnosis and treatment of COVID-19 patients in LTCFs may be effective in saving lives.
Article
Full-text available
Background The efficacy of interleukin-6 receptor blockade in hospitalized patients with coronavirus disease 2019 (Covid-19) who are not receiving mechanical ventilation is unclear. Methods We performed a randomized, double-blind, placebo-controlled trial involving patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, hyperinflammatory states, and at least two of the following signs: fever (body temperature >38°C), pulmonary infiltrates, or the need for supplemental oxygen in order to maintain an oxygen saturation greater than 92%. Patients were randomly assigned in a 2:1 ratio to receive standard care plus a single dose of either tocilizumab (8 mg per kilogram of body weight) or placebo. The primary outcome was intubation or death, assessed in a time-to-event analysis. The secondary efficacy outcomes were clinical worsening and discontinuation of supplemental oxygen among patients who had been receiving it at baseline, both assessed in time-to-event analyses. Results We enrolled 243 patients; 141 (58%) were men, and 102 (42%) were women. The median age was 59.8 years (range, 21.7 to 85.4), and 45% of the patients were Hispanic or Latino. The hazard ratio for intubation or death in the tocilizumab group as compared with the placebo group was 0.83 (95% confidence interval [CI], 0.38 to 1.81; P=0.64), and the hazard ratio for disease worsening was 1.11 (95% CI, 0.59 to 2.10; P=0.73). At 14 days, 18.0% of the patients in the tocilizumab group and 14.9% of the patients in the placebo group had had worsening of disease. The median time to discontinuation of supplemental oxygen was 5.0 days (95% CI, 3.8 to 7.6) in the tocilizumab group and 4.9 days (95% CI, 3.8 to 7.8) in the placebo group (P=0.69). At 14 days, 24.6% of the patients in the tocilizumab group and 21.2% of the patients in the placebo group were still receiving supplemental oxygen. Patients who received tocilizumab had fewer serious infections than patients who received placebo. Conclusions Tocilizumab was not effective for preventing intubation or death in moderately ill hospitalized patients with Covid-19. Some benefit or harm cannot be ruled out, however, because the confidence intervals for efficacy comparisons were wide. (Funded by Genentech; ClinicalTrials.gov number, NCT04356937.)
Article
Full-text available
Background Coronavirus disease 2019 (Covid-19) is associated with diffuse lung damage. Glucocorticoids may modulate inflammation-mediated lung injury and thereby reduce progression to respiratory failure and death. Methods In this controlled, open-label trial comparing a range of possible treatments in patients who were hospitalized with Covid-19, we randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone. The primary outcome was 28-day mortality. Here, we report the preliminary results of this comparison. Results A total of 2104 patients were assigned to receive dexamethasone and 4321 to receive usual care. Overall, 482 patients (22.9%) in the dexamethasone group and 1110 patients (25.7%) in the usual care group died within 28 days after randomization (age-adjusted rate ratio, 0.83; 95% confidence interval [CI], 0.75 to 0.93; P<0.001). The proportional and absolute between-group differences in mortality varied considerably according to the level of respiratory support that the patients were receiving at the time of randomization. In the dexamethasone group, the incidence of death was lower than that in the usual care group among patients receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81) and among those receiving oxygen without invasive mechanical ventilation (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94) but not among those who were receiving no respiratory support at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI, 0.91 to 1.55). Conclusions In patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support. (Funded by the Medical Research Council and National Institute for Health Research and others; RECOVERY ClinicalTrials.gov number, NCT04381936; ISRCTN number, 50189673.)
Article
Background Anosmia is common in Coronavirus disease 2019, but its impact on prognosis is unknown. We analysed whether anosmia predicts in-hospital mortality; and if patients with anosmia have a different clinical presentation, inflammatory response, or disease severity. Methods Retrospective cohort study including all consecutive hospitalized patients with confirmed Covid-19 from March 8th to April 11th, 2020. We determined all-cause mortality and need of intensive care unit (ICU) admission. We registered the first and worst laboratory parameters. Statistical analysis was done by multivariate logistic and linear regression. Results We included 576 patients, 43.3% female, and aged 67.2 years in mean. Anosmia was present in 146 (25.3%) patients. Patients with anosmia were more frequently females, younger and less disabled and had less frequently hypertension, diabetes, smoking habit, cardiac and neurological comorbidities. Anosmia was independently associated with lower mortality (OR: 0.180, 95% CI: 0.069–0.472) and ICU admission (OR: 0.438, 95% CI: 0.229–0.838, p = 0.013). In the multivariate analysis, patients with anosmia had a higher frequency of cough (OR: 1.96, 95%CI: 1.18–3.28), headache (OR: 2.58, 95% CI: 1.66–4.03), and myalgia (OR: 1.74, 95% CI: 1.12–2.71). They had higher adjusted values of hemoglobin (+0.87, 95% CI: 0.40–1.34), lymphocytes (+849.24, 95% CI: 157.45–1541.04), glomerular filtration rate (+6.42, 95% CI: 2.14–10.71), and lower D-dimer (−4886.52, 95% CI: −8655.29-(−1117.75)), and C-reactive protein (−24.92, 95% CI: −47.35-(−2.48)). Conclusions Hospitalized Covid-19 patients with anosmia had a lower adjusted mortality rate and less severe course of the disease. This could be related to a distinct clinical presentation and a different inflammatory response.
Article
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by coronavirus-2 (SARS-CoV-2) that causes a severe acute respiratory syndrome, a characteristic hyperinflammatory response, vascular damage, microangiopathy, angiogenesis and widespread thrombosis. Four stages of COVID-19 have been identified: the first stage is characterised by upper respiratory tract infection; the second by the onset of dyspnoea and pneumonia; the third by a worsening clinical scenario dominated by a cytokine storm and the consequent hyperinflammatory state; and the fourth by death or recovery. Currently, no treatment can act specifically against the SARS-CoV-2 infection. Based on the pathological features and different clinical phases of COVID-19, particularly in patients with moderate to severe COVID-19, the classes of drugs used are antiviral agents, inflammation inhibitors/antirheumatic drugs, low molecular weight heparins, plasma, and hyperimmune immunoglobulins. During this emergency period of the COVID-19 outbreak, clinical researchers are using and testing a variety of possible treatments. Based on these premises, this review aims to discuss the most updated pharmacological treatments to effectively act against the SARS-CoV-2 infection and support researchers and clinicians in relation to any current and future developments in curing COVID-19 patients.