PreprintPDF Available

On the Designing of Quantum Potential Wells with Given Spectral Properties

Authors:
  • Independent Researcher
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

In this article, a method is described for modifying a 1D square potential well in a way that converts it to an effective n-level system with a large energy gap between the n:th eigenvalue of the Hamiltonian and the higher eigenvalues, with n varying from 2 to 5. The method is based on forming potential energy perturbation terms that have a large overlap integral with the square modulus of some energy eigenfunction in the position representation, and therefore have most effect on the eigenvalue of that particular state. The procedure is conceptually simpler to understand than the solution of the full Inverse Scattering Problem, and its possible applications are in the production of semiconductor-based quantum wells with predetermined energy spacings. It is also likely that the results can be extended for multidimensional potential wells and systems of several electrons in a straightforward way.
Content may be subject to copyright.
En
|ψniˆ
H
ˆ
H
E1E2E3. . .
V(x)x
V(x)
V(x)7→ V(x+c)V(x)7→ V(x)
V(x)V(x)
Enen
Γ(n)
E1, E2E1, E2, E3
exp(En/kT )
V(x) = 0,|x| ≤ L
2
V0,|x|>L
2
.
V0→ ∞
ψn(x) = Cncos nπx
L, n
Cnsin nπx
L, n .
Cn
En=h2n2
8mL2=π2~2n2
2mL2,
V0n
n=n
|x| ≤ L/2
V0(x)
n En
E0
n=hψn|ˆ
V0|ψni=Z
−∞
|ψn(x)|2V0(x)dx.
|ψni
ψn(x) = hx|ψni
V0(x)
V0(x) = Aexp h(x/δ)2i,
δ V (x)
Enψn(x)
x= 0 n
V(x)
Enψn
V0(x)
x
V0(x)
|ψn(x)|2V0(x)|ψn(x)|2
E3
x= 0 V(x)
V0(x) = Ccos23πx
L,
C
V0(x) = Ccos43πx
L
V0V0
n
Imn =Z
−∞
|ψm(x)|2|ψn(x)|2dx
m=n m 6=n
N×N A
|φ1i,|φ2i, . . . |φNiλ1, λ2. . . λNA A 7→ A+C|φjihφj|
C j λj
ˆxˆp
V(x)V(0)(x)
n ψ(0)
n(x)
V(1)(x)
V(1)(x) = V(0) (x) +
X
k=1
C(0)
k|ψ(0)
k(x)|2.
C(0)
k
C(0)
k
V(1)(x)
|ψ(1)
n(x)|2
V(2)(x) = V(1) (x) +
X
k=1
C(1)
k|ψ(1)
k(x)|2,
C(1)
k
ψ(2)
n(x)E(2)
n
V0= 200
V0= 600 L= 2
V0L
R2=E3E2
E2E1
, R3=E4E3
E3E1
.
R2
R3
n
H
E1E5
~2
2m
2ψ(x)
x2+V(x)ψ(x) = (x)
m=~= 1
1
2
2ψ(x)
x2+V(x)ψ(x) = (x).
x, E, V (x)
2ψ(x)
x2= 2(V(x)E)ψ(x).
V(x) = V(x)x E1
x= 0 ψ(0) = 1
ψ0(0) = 0 |x|=L/2
E < E1E > E1
E1
Enn > 1n ψ(0) = 0 ψ0(0) = 1
En
ˆ
H x y ψn(x, y) = X(x)Y(y)
x y
V(x, y) = Vx(x) + Vy(y)
n
(n1)
V0= 200 L= 2
x= 0
V0(x) = θ(L/2− |x|)A1cos2πx
2+A3cos23πx
2+A4sin2(2πx),
n= 1 n= 3 n= 4
θ
A1A3A40A110 27 A30
0A420 36
E2E1E3E2
E4E3E3E1
A1A3A4
V0(x) = θ(L/2− |x|)A1cos2πx
2+A3cos23πx
2+A4sin2(2π)
A1A3A4A1A3A4
E5E4
E4E1
V0= 200 L= 2
V0(x) = θ(L/2− |x|)A1cos4πx
2+A3cos43πx
2+A4sin4(2πx),
A1A3A4
A1A3A4
V0(x) = θ(L/2− |x|)A1cos4πx
2+A3cos43πx
2+A4sin4(2π)
A1A3A4A1A3A4
R3R21
E2E1E3E2E4E3E5E4
E6E5
V0= 200 L= 2 x= 0
Ck|ψ(0)
k(x)|2
ψ(1)
k(x)
|ψ(1)
k(x)|21.05L/2x1.05L/2R
1V(2)(x)|x|= 1.05L/2
0
E(2)
kk6
V(2)(x)|ψ(2)
k(x)|2
E1E5
R2R3
En
V0(x) = θ(L/2− |x|)A1cos2πx
2+A3cos23πx
2+A4sin2(2π)
A1A3A4L V0
E1E2E3E4E5R2R3
En
V0(x) = θ(L/2− |x|)A1cos2πx
2+A3cos23πx
2+A4sin2(2π)
E1E2E3E4E5R2R3
V(x)
V(x)
V0= 600 L= 2
1
V0(x) = θ(L/2− |x|)A1cos2πx
2+A2sin2(πx) + A3cos23πx
2
+A4sin2(2πx) + A5cos25πx
2,
A1= 13.1A2= 14.0A3= 8.6A4=38.2A5= 20.5
E2E1E3E2E4E3
E5E4>3.5(E4E1)
V(x) + V0(x)
V(x)
L= 2 V0= 600
R2R3
EnV0(x) = θ(L/2
|x|)A1cos4πx
2+A3cos43πx
2+A4sin4(2π)
A1A3A4L V0
E1E2E3E4E5R2R3
V(x)
V(x)
|ψ(1)
n(x)|2
|x|= 1.05L/2
C(1)
k
C(1)
1=0.425 C(1)
3=0.95 C(1)
4= 10.0E(2)
k
|ψ(2)
n(x)|2
R310.0
C(1)
4= 10.0
E4C(1)
1C(1)
3
V(2)(x)
x= 0 V0= 200
L= 2 C(0)
kC(0)
1= 8.0C(0)
2= 10.0C(0)
3= 18.0
C(0)
4= 3.0C(0)
5=37.0V(1)(x)ˆ
H
|ψ(1)
k(x)|2
|x|= 1.05L/2
C(1)
kC(1)
1= 3.7C(1)
2= 2.4C(1)
3= 2.55
C(1)
4= 3.8C(1)
5=28.0C(1)
6= 4.0V(2)(x)E(2)
k
|ψ(2)
k(x)|2k= 1 k= 3
|E(2)
2E(2)
1| |E(2)
3E(2)
2| |E(2)
4E(2)
3| |E(2)
5E(2)
4|
|E(2)
6E(2)
5|
C(l)
k
V(1)(x)
V(2)(x)
[V0(x)]2
V(x)
V0
ρn(x, y, z)n
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
An alternative method for finding exactly solvable quantum mechanical potentials is presented and discussed. As examples of this approach, the hydrogenic (Coulomb) radial potential and the anharmonic Pöschl—Teller diatomic potential are derived. The utility of the latter potential is checked by fitting it to published data for the B electronic state of diatomic iodine. This alternative means of finding exactly solvable quantum mechanical potentials should be of interest and use to physical and theoretical chemists. Keywords (Audience): Graduate Education / Research
  • I Gel'fand
  • B Levitan
I. Gel'fand, B. Levitan (1951) Izv. Akad. Nauk SSSR, Ser. Math. 15 309.
  • I Tralle
  • K Majchrowski
I. Tralle, K. Majchrowski (2014) World Journal of Condensed Matter Physics 4 24.
  • Y Sanghvi
  • Y Kalepu
  • U Khankhoje
Y. Sanghvi, Y. Kalepu, U. Khankhoje (2020) IEEE Trans. Comput. Imag. 6 46.
  • S Kreinberg
S Kreinberg et al. (2018) Light Sci. Appl. 7 1.
  • D Sugny
  • C Kontz
D. Sugny, C. Kontz (2008) Phys. Rev. A 77 063420.
  • A Landau
  • Y Aharonov
  • E Cohen
A. Landau, Y. Aharonov, E. Cohen (2016) Int. J. Quantum Inform. 14 1650029.
  • P Pereyra
P. Pereyra (2005) Ann. Phys. (N. Y.) 320 1.