Conference Paper

The French Land Data and Services Center: Theia

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Earth System, an infrastructure research program of data and services on the cutting edge of digital imagery and cartography Observe, understand and predict the history, operation and evolution of the Earth system, subject as it is to global changes, is a fundamental topic for research and a necessity for pursuing sustainable development goals. This calls for an interoperable infrastructure to speed up the extraction, analysis, diffusion and intelligent use of data, and for indicators and models derived from national and international systems of observation. Intended for scientists, public officials and innovators, these products and services are accessible via the Internet portals that, used for space missions and observation networks, support sustainable development. Coordinate, federate and optimize the existing set of institutions, arrangements and means are among the major ambitions of the Earth System program (IR Système Terre) with its European and international aspirations.
Article
Full-text available
This paper presents a comparison between the Sentinel-1/Sentinel-2-derived soil moisture product at plot scale (S2MP) and the new Copernicus surface soil moisture (C-SSM) product at 1-km scale over a wide region in southern France. In this study, both products were first evaluated using in situ measurements obtained by the calibrated time delay reflectometer in field campaigns. The accuracy against the in situ measurements was defined by the correlation coefficient R, the root mean square difference (RMSD), and the bias and the unbiased root mean square difference (ubRMSD). Then, the soil moisture estimations from both SSM products were intercompared over one year (October 2016–October 2017). Both products show generally good agreement with in situ measurements. The results show that using in situ measurements collected over agricultural areas and grasslands, the accuracy of the C-SSM is good (RMSD = 6.0 vol%, ubRMSD = 6.0 vol%, and R = 0.48) but less accurate than the S2MP (RMSD = 4.0 vol%, ubRMSD = 3.9 vol%, and R = 0.77). The intercomparison between the two SSM products over one year shows that both products are highly correlated over agricultural areas that are mainly used for cereals (R value between 0.5 and 0.9 and RMSE between 4 and 6 vol%). Over areas containing forests and vineyards, the C-SSM values tend to overestimate the S2MP values (bias > 5 vol%). In the case of well-developed vegetation cover, the S2MP does not provide SSM estimations while C-SSM sometimes provides underestimated SSM values.
Article
Full-text available
Mapping irrigated plots is essential for better water resource management. Today, the free and open access Sentinel-1 (S1) and Sentinel-2 (S2) data with high revisit time offers a powerful tool for irrigation mapping at plot scale. Up to date, few studies have used S1 and S2 data to provide approaches for mapping irrigated plots. This study proposes a method to map irrigated plots using S1 SAR (synthetic aperture radar) time series. First, a dense temporal series of S1 backscattering coefficients were obtained at plot scale in VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations over a study site located in Catalonia, Spain. In order to remove the ambiguity between rainfall and irrigation events, the S1 signal obtained at plot scale was used conjointly to S1 signal obtained at a grid scale (10 km × 10 km). Later, two mathematical transformations, including the principal component analysis (PCA) and the wavelet transformation (WT), were applied to the several SAR temporal series obtained in both VV and VH polarization. Irrigated areas were then classified using the principal component (PC) dimensions and the WT coefficients in two different random forest (RF) classifiers. Another classification approach using one dimensional convolutional neural network (CNN) was also performed on the obtained S1 temporal series. The results derived from the RF classifiers with S1 data show high overall accuracy using the PC values (90.7%) and the WT coefficients (89.1%). By applying the CNN approach on SAR data, a significant overall accuracy of 94.1% was obtained. The potential of optical images to map irrigated areas by the mean of a normalized differential vegetation index (NDVI) temporal series was also tested in this study in both the RF and the CNN approaches. The overall accuracy obtained using the NDVI in RF classifier reached 89.5% while that in the CNN reached 91.6%. The combined use of optical and radar data slightly enhanced the classification in the RF classifier but did not significantly change the accuracy obtained in the CNN approach using S1 data.Remote Sensing
Article
Full-text available
The objective of this paper is to present an analysis of Sentinel-1 derived surface soil moisture maps (S1-SSM) produced with high spatial resolution (at plot scale) and a revisit time of six days for the Occitanie region located in the South of France as a function of precipitation data, in order to investigate the potential of S1-SSM maps for detecting heavy rainfalls. First, the correlation between S1-SSM maps and rainfall maps provided by the Global Precipitation Mission (GPM) was investigated. Then, we analyzed the effect of the S1-SSM temporal resolution on detecting heavy rainfall events and the impact of these events on S1-SSM values as a function of the number of days that separated the heavy rainfall and the S1 acquisition date (cumulative rainfall more than 60 mm in 24 hours or 80 mm in 48 hours). The results showed that the six-day temporal resolution of the S1-SSM map doesn’t always permit the detection of an extreme rainfall event, because confusion will appear between high S1-SSM values due to extreme rainfall events occurring six days before the acquisition of S1-SSM, and high S1-SSM values due to light rain a few hours before the acquisition of Sentinel-1 images. Moreover, the monitoring of extreme rain events using only soil moisture maps remains difficult, since many environmental parameters could affect the value of SSM, and synthetic aperture radar (SAR) doesn’t allow the estimation of very high soil moistures (higher than 35 vol.%).
Article
Full-text available
This study evaluates the accuracy of several recent remote sensing Surface Soil Moisture (SSM) products at sites in southwestern France. The products used are Soil Moisture Active Passive “SMAP” (level 3: 36 km × 36 km, level 3 enhanced: 9 km × 9 km, and Level 2 SMAP/Sentinel-1: 1 km × 1km), Advanced Scatterometer “ASCAT” (level 2 with three spatial resolution 25 km × 25 km, 12.5 km × 12.5 km, and 1 km × 1 km), Soil Moisture and Ocean Salinity “SMOS” (SMOS INRA-CESBIO “SMOS-IC”, SMOS Near-Real-Time “SMOS-NRT”, SMOS Centre Aval de Traitement des Données SMOS level 3 “SMOS-CATDS”, 25 km × 25 km) and Sentinel-1(S1) (25 km × 25 km, 9 km × 9 km, and 1 km × 1 km). The accuracy of SSM products was computed using in situ measurements of SSM observed at a depth of 5 cm. In situ measurements were obtained from the SMOSMANIA ThetaProbe (Time Domaine reflectometry) network (7 stations between 1 January 2016 and 30 June 2017) and additional field campaigns (near Montpellier city in France, between 1 January 2017 and 31 May 2017) in southwestern France. For our study sites, results showed that (i) the accuracy of the Level 2 SMAP/Sentinel-1 was lower than that of SMAP-36 km and SMAP-9 km; (ii) the SMAP-36 km and SMAP-9 km products provide more precise SSM estimates than SMOS products (SMOS-IC, SMOS-NRT, and SMOS-CATDS), mainly due to higher sensitivity of SMOS to RFI (Radio Frequency Interference) noise; and (iii) the accuracy of SMAP-36 km and SMAP-9 km products was similar to that of ASCAT (ASCAT-25 km, ASCAT-12.5 km and ASCAT-1 km) and S1 (S1-25 km, S1-9 km, and S1-1 km) products. The accuracy of SMAP, Sentinel-1 and ASCAT SSM products calculated using the average of statistics obtained on each site is defined by a bias of about −3.2 vol. %, RMSD (Root Mean Square Difference) about 7.6 vol. %, ubRMSD (unbiased Root Mean Square Difference)about 5.6 vol. %, and R coefficient about 0.57. For SMOS products, the station average bias, RMSD, ubRMSD, and R coefficient were about −10.6 vol. %, 12.7 vol. %, 5.9 vol. %, and 0.49, respectively.
Article
Full-text available
Soil moisture mapping at a high spatial resolution is very important for several applications in hydrology, agriculture and risk assessment. With the arrival of the free Sentinel data at high spatial and temporal resolutions, the development of soil moisture products that can better meet the needs of users is now possible. In this context, the main objective of the present paper is to develop an operational approach for soil moisture mapping in agricultural areas at a high spatial resolution over bare soils, as well as soils with vegetation cover. The developed approach is based on the synergic use of radar and optical data. A neural network technique was used to develop an operational method for soil moisture estimates. Three inversion SAR (Synthetic Aperture Radar) configurations were tested: (1) VV polarization; (2) VH polarization; and (3) both VV and VH polarization, all in addition to the NDVI information extracted from optical images. Neural networks were developed and validated using synthetic and real databases. The results showed that the use of a priori information on the soil moisture condition increases the precision of the soil moisture estimates. The results showed that VV alone provides better accuracy on the soil moisture estimates than VH alone. In addition, the use of both VV and VH provides similar results, compared to VV alone. In conclusion, the soil moisture could be estimated in agricultural areas with an accuracy of approximately 5 vol % (volumetric unit expressed in percent). Better results were obtained for soil with a moderate surface roughness (for root mean surface height between 1 and 3 cm). The developed approach could be applied for agricultural plots with an NDVI lower than 0.75.
Article
Full-text available
In a perspective to develop an inversion approach for estimating surface soil moisture of crop fields from Sentinel-1/2 data (radar and optical sensors), theWater Cloud Model (WCM) was calibrated from C-band Synthetic Aperture Radar (SAR) data and Normalized Difference Vegetation Index (NDVI) values collected over crops fields and grasslands. The soil contribution that depends on soil moisture and surface roughness (in addition to SAR instrumental parameters) was simulated using the physical backscattering model IEM (Integral Equation Model). The vegetation descriptor used in the WCM is the NDVI because it can be directly calculated from optical images. A large dataset consisting of radar backscattered signal in Vertical transmit and Vertical receive (VV) and Vertical transmit and Horizontal receive (VH) polarizations with wide range of incidence angle, soil moisture, surface roughness, and NDVI-values was used. It was collected over two agricultural study sites. Results show that the soil contribution to the total radar backscattered signal is lower in VH than in VV because VH is more sensitive to vegetation cover. Thus, the use of VH alone or in addition to VV for retrieving the soil moisture is not advantageous in presence of well-developed vegetation cover.
Article
Full-text available
The inversion of radar images to estimate surface soil parameters requires the use of well‐calibrated backscattering models. The first objective of this paper is to confirm the empirical calibration proposed by Baghdadi et al. (2004) for the backscattering Integral Equation Model (IEM). That calibration was a partial one, because it covered only a few radar configurations. The second objective is to extend this calibration to include Synthetic Aperture Radar (SAR) data in C‐band, for HH and VV polarizations, at any radar incidence between 20° and 50°. Advanced Synthetic Aperture Radar (ASAR) data were used to supplement the database employed by Baghdadi et al. (2004). The results show good agreement between the backscattering coefficients given by the SAR sensors and those estimated from the calibrated IEM. This study also confirms the robustness of this calibration.
Article
This letter proposes a deep learning model to deal with the spatial transfer challenge for the mapping of irrigated areas through the analysis of Sentinel-1 data. First, a convolutional neural network (CNN) model called "Teacher Model" is trained on a source geographical area characterized by a huge volume of samples. Then, this model is transferred from the source area to a target area characterized by a limited number of samples. The transfer learning framework is based on a distill and refine strategy in which the teacher model is firstly distilled into a student model and, successively, refined by data samples coming from the target geographical area. The proposed strategy is compared to different approaches including a random forest (RF) classifier trained on the target dataset, a CNN trained on the source dataset and directly applied on the target area as well as several CNN classifiers trained on the target dataset. The evaluation of the performed transfer strategy shows that the "distill and refine" framework obtains the best performance compared to other competing approaches. The obtained findings represent a first step towards the understanding of the spatial transferability of deep learning models in the Earth Observation domain.
Article
Soil moisture is a key environmental variable, important to, e.g., farmers, meteorologists, and disaster management units. Here, we present a method to retrieve surface soil moisture (SSM) from the Sentinel-1 (S-1) satellites, which carry C-band Synthetic Aperture Radar (CSAR) sensors that provide the richest freely available SAR data source so far, unprecedented in accuracy and coverage. Our SSM retrieval method, adapting well-established change detection algorithms, builds the first globally deployable soil moisture observation data set with 1-km resolution. This paper provides an algorithm formulation to be operated in data cube architectures and high-performance computing environments. It includes the novel dynamic Gaussian upscaling method for spatial upscaling of SAR imagery, harnessing its field-scale information and successfully mitigating effects from the SAR's high signal complexity. Also, a new regression-based approach for estimating the radar slope is defined, coping with Sentinel-1's inhomogeneity in spatial coverage. We employ the S-1 SSM algorithm on a 3-year S-1 data cube over Italy, obtaining a consistent set of model parameters and product masks, unperturbed by coverage discontinuities. An evaluation of therefrom generated S-1 SSM data, involving a 1-km soil water balance model over Umbria, yields high agreement over plains and agricultural areas, with low agreement over forests and strong topography. While positive biases during the growing season are detected, the excellent capability to capture small-scale soil moisture changes as from rainfall or irrigation is evident. The S-1 SSM is currently in preparation toward operational product dissemination in the Copernicus Global Land Service.