Conference Paper

Sentinel-1/2 Time Series for Selective Logging Monitoring in Temperate Forests

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This paper aims to develop a new methodology for monitoring forest disturbances and regrowth using ALOS PALSAR data in tropical regions. In the study, forest disturbances and regrowth were assessed between 2007 and 2010 in Vietnam, Cambodia and Lao People's Democratic Republic. The deforestation rate in Vietnam has been among the highest in the tropics in the last few decades, and those in Cambodia and Lao are increasing rapidly. L-band ALOS PALSAR mosaic data were used for the detection of forest disturbances and regrowth, because L-band SAR intensities are sensitive to forest aboveground biomass loss. The methodology used here combines SAR data processing, which is particularly suited for change detection, forest detection and forest disturbances and regrowth detection using expectation maximization, which is closely related to fuzzy logic. A reliable training and testing database has been derived using AVNIR-2 and Google Earth images for calibration and validation. Efforts were made to apply masking areas that are likely to show different SAR backscatter temporal behaviors from the forests considered in the study, including mangroves, inundated forests, post-flooding or irrigated croplands and water bodies, as well as sloping areas and urban areas. The resulting forest disturbances and regrowth map (25-m resolution) indicates disturbance rates of -1.07% in Vietnam, -1.22% in Cambodia and -0.94% in Lao between 2007 and 2010, with corresponding aboveground biomass losses of 60.7 Tg, 59.2 Tg and 83.8 Tg, respectively. It is expected that the method, relying on free of charge data (ALOS and ALOS2 mosaics), can be applied widely in the tropics.
Article
Full-text available
This paper evaluates the opportunity provided by global interferometric radar datasets for monitoring deforestation, degradation and forest regrowth in tropical and semi-arid environments. The paper describes an easy to implement method for detecting forest spatial changes and estimating their magnitude. The datasets were acquired within space-borne high spatial resolutions radar missions at near-global scales thus being significant for monitoring systems developed under the United Framework Convention on Climate Change (UNFCCC). The approach presented in this paper was tested in two areas located in Indonesia and Australia. Forest change estimation was based on differences between a reference dataset acquired in February 2000 by the Shuttle Radar Topography Mission (SRTM) and TanDEM-X mission (TDM) datasets acquired in 2011 and 2013. The synergy between SRTM and TDM datasets allowed not only identifying changes in forest extent but also estimating their magnitude with respect to the reference through variations in forest height.
Article
Full-text available
The correction of atmospheric effects is one of the preliminary steps required to make quantitative use of time series of high resolution images from optical remote sensing satellites. An accurate atmospheric correction requires good knowledge of the aerosol optical thickness (AOT) and of the aerosol type. As a first step, this study compares the performances of two kinds of AOT estimation methods applied to FormoSat-2 and LandSat time series of images: a multi-spectral method that assumes a constant relationship between surface reflectance measurements and a multi-temporal method that assumes that the surface reflectances are stable with time. In a second step, these methods are combined to obtain more accurate and robust estimates. The estimated AOTs are compared to in situ measurements on several sites of the AERONET (Aerosol Robotic Network). The methods, based on either spectral or temporal criteria, provide accuracies better than 0.07 in most cases, but show degraded accuracies in some special cases, such as the absence of vegetation for the spectral method or a very quick variation of landscape for the temporal method. The combination of both methods in a new spectro-temporal method increases the robustness of the results in all cases.
Article
Full-text available
Forests in Flux Forests worldwide are in a state of flux, with accelerating losses in some regions and gains in others. Hansen et al. (p. 850 ) examined global Landsat data at a 30-meter spatial resolution to characterize forest extent, loss, and gain from 2000 to 2012. Globally, 2.3 million square kilometers of forest were lost during the 12-year study period and 0.8 million square kilometers of new forest were gained. The tropics exhibited both the greatest losses and the greatest gains (through regrowth and plantation), with losses outstripping gains.
Article
Full-text available
Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations' carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of methods available to estimate national-level forest carbon stocks in developing countries. While there are no practical methods to directly measure all forest carbon stocks across a country, both ground-based and remote-sensing measurements of forest attributes can be converted into estimates of national carbon stocks using allometric relationships. Here we synthesize, map and update prominent forest biomass carbon databases to create the first complete set of national-level forest carbon stock estimates. These forest carbon estimates expand on the default values recommended by the Intergovernmental Panel on Climate Change's National Greenhouse Gas Inventory Guidelines and provide a range of globally consistent estimates.
Article
Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and accurate forest monitoring systems are needed to provide early warning of potential declines in forest condition. To address that need, state-of-the-art simulations models were used to evaluate the utility of C-, L- and P-band synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak and coniferous forests in Romania. The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated the C-band signal by <1 dB which may be insufficient for a meaningful retrieval of drought effects on forest. C-band sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. The simulation results may be applicable to forests outside of Romania since the forests types used in the study have similar morphological characteristics to forests elsewhere in Europe.
Article
In response to the urgent need for improved mapping of global biomass and the lack of any current space systems capable of addressing this need, the BIOMASS mission was proposed to the European Space Agency for the third cycle of Earth Explorer Core missions and was selected for Feasibility Study (Phase A) in March 2009. The objectives of the mission are 1) to quantify the magnitude and distribution of forest biomass globally to improve resource assessment, carbon accounting and carbon models, and 2) to monitor and quantify changes in terrestrial forest biomass globally, on an annual basis or better, leading to improved estimates of terrestrial carbon sources (primarily from deforestation); and terrestrial carbon sinks due to forest regrowth and afforestation. These science objectives require the mission to measure above-ground forest biomass from 70 degrees N to 56 degrees Sat spatial scale of 100-200 m, with error not exceeding +/- 20% or +/- 10 t ha(-1) and forest height with error of +/- 4 m. To meet the measurement requirements, the mission will carry a P-Band polarimetric SAR (centre frequency 435 MHz with 6 MHz bandwidth) with interferometric capability, operating in a dawn-dusk orbit with a constant incidence angle (in the range of 25 degrees-35 degrees) and a 25-45 day repeat cycle. During its 5-year lifetime, the mission will be capable of providing both direct measurements of biomass derived from intensity data and measurements of forest height derived from polarimetric interferometry. The design of the BIOMASS mission spins together two main observational strands: (1) the long heritage of airborne observations in tropical, temperate and boreal forest that have demonstrated the capabilities of P-band SAR for measuring forest biomass; (2) new developments in recovery of forest structure including forest height from Pol-InSAR, and, crucially, the resistance of P-band to temporal decorrelation, which makes this frequency uniquely suitable for biomass measurements with a single repeat-pass satellite. These two complementary measurement approaches are combined in the single BIOMASS sensor, and have the satisfying property that increasing biomass reduces the sensitivity of the former approach while increasing the sensitivity of the latter. This paper surveys the body of evidence built up over the last decade, from a wide range of airborne experiments, which illustrates the ability of such a sensor to provide the required measurements. At present, the BIOMASS P-band radar appears to be the only sensor capable of providing the necessary global knowledge about the world's forest biomass and its changes. In addition, this first chance to explore the Earth's environment with a long wavelength satellite SAR is expected to make yield new information in a range of geoscience areas, including subsurface structure in arid lands and polar ice, and forest inundation dynamics.
Article
This paper describes a computationally fast and accurate technique for the atmospheric correction of satellite measurements in the solar spectrum. The main advantage of the method is that it is several hundred times faster than more detailed radiative transfer models like 5S and that it does not require precalculated look-up tables. The method is especially useful for correcting the huge amounts of data acquired by large-field-of-view high-repetitivity sensors, like the ones on board polar orbiting and geostationary meteorological satellites.The technique is based on a set of equations with coefficients which depend on the spectral band of the sensor. Semi-empirical formulations are used to describe the different interactions (absorption, scattering, etc.) of solar radiation with atmospheric constituents during its traverse through the atmosphere. Sensor specific coefficients of each equation are determined using a best fit technique against the computations of the 5S code (Simulation of Satellite Signal in the Solar Spectrum, Tanré et al. 1990). Other radiative transfer models could be used. Once coefficients for a specific spectral band are determined, the inputs of the model are vertically integrated gaseous contents, aerosol optical depth at 550 nm, geometric conditions and reflectance at the top of the atmosphere (TOA). TOA reflectances were calculated using our method and then compared to the TOA reflectances calculated by 5S for a wide range of gaseous and aerosol contents, illumination and observation conditions for various sensor spectral bands. In the case of NOAA-9 AVHRR visible data the maximum relative error is 2·35 per cent (i.e. 0·01 for a reflectance value of 0·4) and the corresponding rmse is 0·0018. For NOAA-9 AVHRR near-infrared, Meteosat-1 visible, Landsat-5 TM band 1 and Landsat-5 TM band 4 the maximum relative errors are 3·11, 4·0, 1·65 and 2·37per cent respectively. The corresponding values of the rmse are 0·0022, 0·0015, 0·0017 and 0·0012.The method can be used both in the direct and in the inverse mode, i.e., to compute TOA reflectance knowing the surface reflectance (e.g., for fast sensitivity studies), or conversely to retrieve surface reflectance from the TOA reflectance. It can easily be implemented in operational data preprocessing computer code, since only band specific coefficients need to be updated when new sensors are flown, while the routines remain the same.
Article
We introduce and test LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery), a new approach to extract spectral trajectories of land surface change from yearly Landsat time-series stacks (LTS). The method brings together two themes in time-series analysis of LTS: capture of short-duration events and smoothing of long-term trends. Our strategy is founded on the recognition that change is not simply a contrast between conditions at two points in time, but rather a continual process operating at both fast and slow rates on landscapes. This concept requires both new algorithms to extract change and new interpretation tools to validate those algorithms. The challenge is to resolve salient features of the time series while eliminating noise introduced by ephemeral changes in illumination, phenology, atmospheric condition, and geometric registration. In the LandTrendr approach, we use relative radiometric normalization and simple cloud screening rules to create on-the-fly mosaics of multiple images per year, and extract temporal trajectories of spectral data on a pixel-by-pixel basis. We then apply temporal segmentation strategies with both regression-based and point-to-point fitting of spectral indices as a function of time, allowing capture of both slowly-evolving processes, such as regrowth, and abrupt events, such as forest harvest. Because any temporal trajectory pattern is allowable, we use control parameters and threshold-based filtering to reduce the role of false positive detections. No suitable reference data are available to assess the role of these control parameters or to test overall algorithm performance. Therefore, we also developed a companion interpretation approach founded on the same conceptual framework of capturing both long and short-duration processes, and developed a software tool to apply this concept to expert interpretation and segmentation of spectral trajectories (TimeSync, described in a companion paper by Cohen et al., 2010). These data were used as a truth set against which to evaluate the behavior of the LandTrendr algorithms applied to three spectral indices. We applied the LandTrendr algorithms to several hundred points across western Oregon and Washington (U.S.A.). Because of the diversity of potential outputs from the LTS data, we evaluated algorithm performance against summary metrics for disturbance, recovery, and stability, both for capture of events and longer-duration processes. Despite the apparent complexity of parameters, our results suggest a simple grouping of parameters along a single axis that balances the detection of abrupt events with capture of long-duration trends. Overall algorithm performance was good, capturing a wide range of disturbance and recovery phenomena, even when evaluated against a truth set that contained new targets (recovery and stability) with much subtler thresholds of change than available from prior validation datasets. Temporal segmentation of the archive appears to be a feasible and robust means of increasing information extraction from the Landsat archive.