ArticlePDF Available

Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives

Authors:

Abstract and Figures

The market for biogenic and synthetic alternatives to leather is increasing aiming to replace animal-based materials with vegan alternatives. In parallel, bio-based raw materials should be used instead of fossil-based synthetic raw materials. In this study, a shoe upper leather and an artificial leather, and nine alternative materials (Desserto®, Kombucha, Pinatex®, Noani®, Appleskin®, Vegea®, SnapPap®, Teak Leaf®, and Muskin®) were investigated. We aimed to compare the structure and technical performance of the materials, which allows an estimation of possible application areas. Structure and composition were characterized by microscopy and FTIR spectroscopy, the surface properties, mechanical performance, water vapor permeability, and water absorption by standardized physical tests. None of the leather alternatives showed the universal performance of leather. Nevertheless, some materials achieved high values in selected properties. It is speculated that the grown multilayer structure of leather with a very tight surface and a gradient of the structural density over the cross-section causes this universal performance. To date, this structure could neither be achieved with synthetic nor with bio-based materials.
Content may be subject to copyright.
Coatings2021,11,226.https://doi.org/10.3390/coatings11020226www.mdpi.com/journal/coatings
Article
ComparisonoftheTechnicalPerformanceofLeather,Artificial
Leather,andTrendyAlternatives
MichaelMeyer*,SaschaDietrich,HaikoSchulzandAnkeMondschein
FILKFreibergInstitutegGmbH,MeißnerRing1,09599Freiberg,Germany;
sascha.dietrich@filkfreiberg.de(S.D.);haiko.schulz@filkfreiberg.de(H.S.);
anke.mondschein@filkfreiberg.de(A.M.)
*Correspondence:michael.meyer@filkfreiberg.de
Abstract:Themarketforbiogenicandsyntheticalternativestoleatherisincreasingaimingtore
placeanimalbasedmaterialswithveganalternatives.Inparallel,biobasedrawmaterialsshould
beusedinsteadoffossilbasedsyntheticrawmaterials.Inthisstudy,ashoeupperleatherandan
artificialleather,andninealternativematerials(Desserto
®
,Kombucha,Pinatex
®
,Noani
®
,Apple
skin
®
,Vegea
®
,SnapPap
®
,TeakLeaf
®
,andMuskin
®
)wereinvestigated.Weaimedtocomparethe
structureandtechnicalperformanceofthematerials,whichallowsanestimationofpossibleappli
cationareas.StructureandcompositionwerecharacterizedbymicroscopyandFTIRspectroscopy,
thesurfaceproperties,mechanicalperformance,watervaporpermeability,andwaterabsorptionby
standardizedphysicaltests.Noneoftheleatheralternativesshowedtheuniversalperformanceof
leather.Nevertheless,somematerialsachievedhighvaluesinselectedproperties.Itisspeculated
thatthegrownmultilayerstructureofleatherwithaverytightsurfaceandagradientofthestruc
turaldensityoverthecrosssectioncausesthisuniversalperformance.Todate,thisstructurecould
neitherbeachievedwithsyntheticnorwithbiobasedmaterials.
Keywords:leather;syntheticleather;apparel;consumergood;leatheralternative
1.Introduction
Acirculareconomyaimsatreusingconsumedmaterialsandideally,productcycles
becomeclosedaccordingtothecradletocradleprinciple[1,2].“Biobased”meanstheuse
ofbiogenicrawmaterialstomanufactureavarietyofproductsinsteadoffossilgas,coal,
orpetroleumaspartofthebioeconomy.Lastly,“biodegradable”meansthatamaterial
canbedegradedintheenvironmentbymicroorganismsandphysicochemicalimpact.Re
cently,thesocietiesofthecountriesoftheGlobalNorthhaveexperiencedastrongchange
intheirmindsetduetothediscussionaboutclimatechange,finitenessofresources,the
overutilizationofecosystems,andthepollutionoftheenvironmentbynondegradableor
harmfulsubstances.Thisaffectsespeciallytheconsumergoodsindustryandthedesign
ersofnewmaterialsaimtoreplacefossilbasedpolymerswithbiogenicandfullybiode
gradablematerialswhilebeinganimalfreeandwithouttheuseofanyharmfulsub
stances.Ideally,thenewmaterialsaremadefromdomesticwaste,sawdust,ororganic
garbage[3–5].
Leatherisabiobasedandbiodegradablematerialwithatraditionnearlyaslongas
mankind.Forcenturies,itwasusedasastrongandlonglastingmaterialwithabroad
spectrumofmaterialsproperties.Leatherwasusedasprotectiveanddecorativeclothing
forsportsgoodsandastechnicalmaterial,e.g.,fortransmissionbelts,buckets,oraswine
skin.Untilthemiddleofthe19thcentury,leatheroccupiedthematerialspropertygapof
aflexiblematerialbesidesstone,metal,andwoodashardmaterialsandvarioustextiles,
whichwerenotwaterproof.Processingallowedadjustingtheleatherpropertiesfroma
Citation:Meyer,M.;Dietrich,S.;
Schulz,H.;andMondschein,A.;
ComparisonoftheTechnicalPerfor
manceofLeather,Artificialleather,
andTrendyAlternatives.Coatings
2021,11,226.
https://doi.org/10.3390/coat
ings11020226
Received:25January2021
Accepted:11February2021
Published:13February2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti
tutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(http://creativecommons.org/licenses
/by/4.0/).
Coatings2021,11,2262of15
hardboardlikeappearance,e.g.,assoleleathertoverysofttouchtextilelikegloveleath
ers.Tomanufactureshoes,leatherismadehydrophobic,andaswashleather,itabsorbs
muchliquid.Thebasicstructureisananimalskin,whichcanbedescribedasanonwoven
withdifferentdensitygradientsingrain,papillaryandreticularlayer(Figure1A).
Duringindustrialization,alternativematerialswereinvented,firstandforemostthe
oilclothesmadefromtextiles(linen,cotton),whichweresoakedorcoatedwithboiled
linseedoilandaddedwithfillers,siccatives,andpigments[6].Thenextlevelofcoating
textileswasachievedbytheuseofnaturalrubberbutonlythediscoveryofvulcanization
ledtononstickyfilms[7].Moreandmorenewmaterialsemergedwiththeinventionof
additionalsyntheticpolymers,whichallowedthereplacementofleatherinmanyappli
cations.Syntheticpolymersenabledcustomizedandhighperformancesolutionsthatout
performedleatherbyfarfortechnicalapplicationsingears,conveyorbelts,orvessels.
Alternativesweredevelopedaswellindesigndrivenapplicationssuchasupholstery,
shoes,andclothing.Often,itisaimedtoimitateleatherbythesematerials.
Figure1.Theprincipalstructureofleather(A)andartificialleather(B).Leatherstillreflectsthe
histologicalstructureofskinwithgrainmembrane(a),papillarylayer(b),reticularlayer(c),and
hairchannels(d).Artificialleatheriscomposedofatopcoat(e),acompactlayer(f),afoamedmid
dlelayer(g),andthetextilesupport(h)(drawingsbyEnnoKluever,FILK).
Leathershowsanumberofuniqueproperties,whicharehighlyvaluedforpurposes
suchasstrengthandelasticity,watervaporpermeability,abrasionresistance,durability,
andlongevity.Inthepast,syntheticmaterialscompetingwithleathertriumpheddueto
lowerprices,theyareofteneasiertobeprocessedandcanbemanufacturedasacontinu
ousmaterialaccordingtoindustrialneedsinrolltorollproductionlines.However,
leatherisstillpopularduetoitsbeneficialproperties,naturalappearance,andatouchof
noblematerial.
Syntheticalternativesusuallyconsistoftextilesupportcoveredbytwoormoresyn
theticpolymerlayers(Figure1B).Nowadays,oftenpolyestertextilescoatedbyPVCor
polyurethanefilmsareused,makingthemacompletelyfossilbasedmaterial.Thesurface
opticcanbedesignedleatherlikebyembossingagrainstructure.Manydifferentterms
areusedtodescribethesematerialsinthemarket,e.g.,artificialleather,syntheticleather,
leatherette,imitationleather,fauxleather,manmadeleather,bondedleather,pleather,
textileleather,orpolyurethane(PU)leather.Meanwhile,theusageofthesetermsisre
strictedintheEuropeanstandardEN15987.Here,wewillusetheterm“artificialleather”
todescribesyntheticmaterialsimitatingtheopticalappearanceofleather.
Inrecentyears,concernsoversustainabilityinanyfieldofindustrialproductionhave
ledtoapressingrationaletoenhancetheuseofnaturalmaterialsandreplacenonrenew
ablefossilbasedrawmaterials.Althoughleatherisbiobasedandrenewable,thesecon
siderationsdidnotleadtoarenaissanceofleather.Instead,leathergotevenmoreunder
pressureduetoongoingdiscussionsoverthegreenhousegasemissionofcattlebreeding,
Coatings2021,11,2263of15
thesustainabilityofleatherproduction,andanimalwelfare.Atthesametime,anincreas
ingnumberofpeoplewanttoeatconsciouslymeatfreeortodowithoutanyproductsof
animaloriginentirely.Alltheseneedsposenewchallengesincultureandmaterialdevel
opment[3].
Onestrategypursuesthedevelopmentofalternativenaturebased,animalfreefi
brousmaterials.Thismaterialistrama,thebulkmaterialofsomemushroomfruitbodies
(e.g.,Fomesfomentarius,Phellinusellipsoideus).Theextraordinarysoftfeelofthedrymyce
liummakesitapreciousmaterialforcupsandhandcraftaccessoriesandalreadytheIce
manuseditasamaterialincombinationwithleather[8,9].Muskin®isanexampleofthis
material.Duetothecomplicatedharvest,therestrictedavailabilityofthementioned
fungi,andthelimitedareasthatcanbeobtaineditseemstobefarfrombeingableto
replaceleather.
Furthernewwaysarepavedbyusingbiotechnologicalprocessestoproducefiber
basedmaterials.Namely,fungiandsymbiosisofbacteriaandyeastareusedtoproduce
fibrousnetworksaimingtoimitatethefibrousstructuresimilartoananimalskinassingle
materialsorassupportforacoatinglayer.Microcellulosicfibernetworksareproduced
bybacteria(e.g.,Acetobacterxylinum),themyceliumfibernetworksoffungihyphaecon
sistofchitin,cellulose,andproteoglycans[5,10,11].Thesemyceliagrowonorganicwaste
[11,12].
Inasecondstrategy,itistriedtoreducethenonrenewablecontentofartificialleather
byreplacingpartsofthesyntheticcomponentpolyvinylchloride(PVC)orpolyurethane
(PUR)ofsyntheticcoatingswithagriculturalwastederivedproductsasfillingmaterial,
suchasgrain,applepomace(Vegea®,Appleskin®),ormilledcactusleaves(Desserto®).
Athirdwaytoreplaceallfossilbasedrawmaterialsinacoatedtextilehasbeenex
ploredinPinatex®.Renewablefibersofpineappleleavesareprocessedintononwoven
supportcoatedwithpolylacticacid(PLA)producedfromcornstarch[13].
Regardlessofthetypeofmaterial,itcanbeleather,artificialleather,oratrendyal
ternativeacoupleofphysicalandmechanicallimitsareusuallydefinedandhavetobe
achieved.Theselimitsmustbeevaluatedinregardtothestressesassociatedwiththepro
duction,processing,anduseofthematerials.Ingeneral,examinationstoqualifymaterials
andtoquantifytheirpropertiesneedtobeperformedaccordingtostandardizedtesting
procedures.
Here,wepresentacomparativestudyofleatherandalternativematerials,whichare
usedforsimilarfinalapplications,focusedonmaterialstructures,physical,andmechan
icalperformance.Additionally,thematerialswerescreenedforhazardoussubstancesby
establishedstandardizedtestmethodswithrespecttoshoe,glove,andapparelgoodsap
plications.Materialsintendedforautomotiveandupholsteryapplicationsareexplicitly
notincludedinthisstudy,becausetheyhavetomeetmanysuperiorspecifications.
Wefocusedonmaterialperformance.Otherimportantaspectssuchastheoriginof
therawmaterial(renewableoroilbased),thecarbonfootprint,theenvironmentalfoot
print,traceability,andbiodegradabilityarenotdealtwithinthisstudy.Alternativema
terialsofdifferentsourcesweretestedincomparisontoacommonshoeupperleatheras
areferenceandaconventionalPURcoatedtextile(artificialleather)asusedforfootwear
asasecondreference.Allmaterialsarecommerciallyavailableandhavealreadybeen
appliedinvarioustypesoffinalproducts.Thematerialsweretestedaccordingtotheap
propriateinternationallyharmonizedandacceptedspecificationsforshoe,glove,andap
parelgoods[14–16].
2.MaterialsandMethods
Ninematerials,whichareofferedasanalternativeforleatherandrepresentdifferent
principalstructures,havebeeninvestigatedbylightmicroscopy;theirphysicalproperties
weremeasuredandtheirchemicalcompositionswereanalyzed(Table1).Theregistered
Coatings2021,11,2264of15
trademarksarespecifiedinthetable.Additionally,ashoeupperleatherandapolyure
thanecoatedtextileasartificialleatherweretestedasareference.TheNoani®samplewas
obtainedasabeltconsistingofseveralmaterials,whichhadbeencombinedbysewing.
Thephysicalcharacterizationcomprisedstandardizedmeasurementsofthickness,
tensilestrength,tearstrength,flexresistance,watervaporabsorption,andwatervapor
permeability[17–22].Thecrosssections,surfaces,andthereversesideofthematerials
wereportrayedbylightmicroscopyatdifferentmagnifications.Chemicalconstitution
andadditiveswereinvestigatedbyFTIR(fouriertransforminfraredspectroscopy)and
thermaldesorptionGC/MS(gaschromatography/massspectroscopy).FTIRspectrawere
measuredusingadiamondATR(attenuatedtotalreflection)techniquewith16scansina
rangeof4000–650cm1.Evaluationofthespectrawasbasedonownandvariouscommer
cialdatabases.VolatileandharmfulsubstancesweremeasuredaccordingtoVDA278[23]
(VDAVerbandderAutomobilindustrie,Germany).Atotalof5mgto10mgofmaterial
wereheatedto120°Cfor60min,andallvolatilecompoundswerecollectedfromthe
evaporatebycoolingwithliquidnitrogentominus100°C.Thesubstanceswerevaporized
fromthetrapfor5minat280°C,separatedandcharacterizedbyGC/MS(GC:50°Cfor2
min,25K/minto160°C,10K/minto280,10minat280°C,columnUltra2(5%phenyl
methylsiloxane),50m×320μm×0.52μm,flow1.3mL/minconstantpressure,MS:29–
450m/z).
Table1.Samplesandtheircomposition.
NameColorComposition(fromtoptobackside)
Shoeupper
leatherbrownFullgrainbovineleather;typicalleatherstructure;finishedwithaverythintopcoat
Muskin®brownFinelyfibrous,porous,andnaturallygrownmaterialinasinglelayer;naturalfibersbasedonpolysaccha
rides;withoutanycoatingortextilebacking
KombuchabrownDensecompactmaterialbasedonpolysaccharides,containstalcum,someheterogeneousinclusionsofun
clearorigin
PURcoated
textilegrey
Coatedtextilewiththincompacttopcoat(PUR),alayerunderneath(PUR)filledwithheterogeneousparti
clesmadeofmodifiedcelluloseandatextilecarrierbasedonpolyester,materialmadebycoagulationpro
cess
Desserto®beigeCoatedtextilewithacompactlayer(PUR)andpartiallyfoamedlayer(PUR)filledwithheterogeneousparti
clesoforganicorigin,textilecarrierbasedonpolyester,materialmadebyareversecoatingprocess
Appleskin®blackCoatedtextilewiththincompactlayers(PUR),afoamedlayer(PUR)filledwithorganicparticlesandaPUR
impregnatedtextilecarrier,materialmadebycoagulationprocess
Vegea®blackCoatedtextilewithacompactlayer(PUR),apartiallyfoamedlayer(PUR)filledwithsomeparticles,anda
cellulosebasedtextilecarrier
TeakLeaf®russet
Coatedandlaminatedleaves,topcoat:atransparentfilmbasedonpolyolefinwax,leaves,laminationon
backofleaveswithtwononwoventextilelayers(lightbrown–cellulosebasedfiberswithacrylatebased
binderandwhitepolypropylenefibers)
Pinatex®blackNonwovenmaterialmadeofcellulosebasednaturalfibers,coatedwithathinpolymericlayer(similarto
polyurethaneacrylate)
SnapPap®brownDensesinglelayermaterialwithanonwovenstructuremadeofcellulosicfibersandimpregnatedwith
acrylatebasedpolymer
Noani®mixed
Compositematerialmadeupofthreeindividualmainlayers:Upperlayerpolyestermicrofibermaterial,
corelayerleatherfiberboard,backsidelayercoatedtextilewithacompactlayer(PUR),afoamedlayerPVC,
andatextilecarrier
Forevaluation,10welltrainedpanelistsassessedthematerialstoevaluatetouchand
feel.Nomaterialrelatedinformationwasprovidedtotheminadvanceoftheevaluation.
Thematerialswerepresentedtothepanelistsalwaysinthesameordereitherbylayingit
directlyonatableboardorplacingitonasoftPURfoamof4mmthickness.Thesurfaces
ofthematerialswereblindlytouchedwithoutanystretchingorfolding.Thetouchand
feelpropertiesofallmaterialswerereferencedtoleather—temperaturesensation(warmer
Coatings2021,11,2265of15
orcolder),deformationinzdirection(softerorharder),roughness,slipperiness/blocking
behavior,pleasantorunpleasant,naturalorartificialtouch,high‐orlowqualityfeeling.
3.ResearchResults
3.1.MaterialCompositionandStructure
Allmaterialsarecomposedoffibers.However,chemicalconstitution,arrangement,
fibersize,andcoatingfollowdifferentprincipalconcepts.Theresultsofthelightmicro
scopicinvestigations,thermaldesorptionanalysis,andFTIRspectraallowustoidentify
thecompositionsofthematerials(Table1).
Aselectionofmicroscopicpicturesofthecrosssectionsrepresentingthedifferent
principalstructuresisshowninFigure2,andthedifferentsurfacedesignsarepresented
inFigure3.Allmicroscopicpicturesareaddedinhighresolutioninthesupplementsas
wellasanexampleofaFTIRspectrumofDesserto®,aPURcoatedmaterial(seeSupple
mentaryMaterials).
ThestructuresofDesserto®(Figure2A),Vegea®,andAppleskin®reflectthetypical
compositionofPURcoatedartificialleatherusedfor,e.g.,shoeorupholsteryapplication.
Thesupportoftheinvestigatedsamplesconsistedofknittedorwovenpolyestertextiles,
exceptthatofVegea®,whichwasmadeofcellulose.Thetextileswerecoatedwithfoamed
polyurethanebasedmiddlelayerscontainingorganicfillersbasedoncellulose.Thema
terialsarefinishedwithpolymerbasedtopcoats.Thesurfacesofthematerialswerepartly
embossedtoachievealeatherlikeopticandtoadjustthehaptic(Figure3E–H).EvenTeak
Leaf®fallsintothestructuralcategoryofacoatedtextile.Here,thetextilesupportonthe
reversesideisbuiltbytwononwovenlayers.Themiddlelayeriscellulosebased,the
fibersarestucktogetherwithanacrylicacidbasedpolymericbinder,andthebasicsup
portonthereversesideispolyesterbased.Onthetop,theTeakLeaf®materialiscoated
byatransparentwaxypolyolefinfilm.Theleafofteakmainlyfulfillsdesiredopticalneeds
(Figure3D).
Coatings2021,11,2266of15
Figure2.Leather(A)andamaterialwithanaturallygrownfiberstructure(Muskin®)(B);struc
tureofatypicalcoatedtextile(exampleDesserto®(C);(a)topcoat;(b)foamedmiddlelayer;(c)
textilesupport);nonwovenmadeofnaturalfibers(examplePinatex®)(D).Thescalesbetween
Muskin®andtheothersamplesdifferby2.5times.
Pinatex®(Figure2D)andSnapPap®consistofacellulosebasedfibrousnonwoven.
ThefibersofSnapPap®arebondedbyanacrylicacidbasedpolymericbinder.Incontrast,
theinvestigatedsampleofPinatex®iscoatedwithathinpolymericlayer.Thefibrous
structuresofthenonwovenfabricofbothmaterialsarevisibleatthesurfaceduetothe
thincoatinglayer(Figure3I,K).
Muskin®(Figure2B)andKombuchaaresinglelayermaterialswithoutanytextile
supportandwithoutatopcoat.Bothconsistofpolysaccharides.Muskin®appearsvery
porouscomposedoffinebrownfiberswithafiberorientationperpendiculartothesur
face.Thesefibersappearatthesurfaceasafinelawnwithoutadistinctstructure(Figure
3B).Incontrast,Kombuchaconsistsofonecompactlayer,whichcontainssomeinclusions
andtalcumandshowsaglossybrownsurface(Figure3C).
ItwasfoundthatNoani®wasnotasinglematerialbutcraftedofthreedistinctlayers.
Thetopisformedbyanembossedmicrofibermaterial,themiddlelayerconsistsofleather
boardmaterialandthebacksideisaPUR/PVCcoatedtextilethatconsistsofthreelayers
typicalforconventionalartificialleather.Theuseofaleatherboardmaterialissurprising
becauseNoani®isreferredtoasaveganproductandthelabel“PETAapproved”isem
bossedinthematerial.BecauseofthisandsincetheNoani®sampledoesnotrepresenta
singlematerial,itwillnotbefurtherdiscussedwithrespecttostructuralcategories.Re
gardlessoftheactualcomposition,allengineeredmaterialstrytomimicanaturalappear
ance(Figure3).
Figure3.Surfacesoftheinvestigatedmaterials:Naturallygrownmaterial(Leather(A),Muskin®
(B),Kombucha(C),TeakLeaf®(D));embossedsurfacesofcoatedtextiles(PURcoatedtextile(E),
Desserto®(F),Appleskin®(G),Vegea®(H));fiberstructuresofnonwovennaturalfibers(Pinatex®
(I),SnapPap®(K)),andmicrofibermaterial(Noani®(L),embossed).
3.2.TouchandFeelProperties
ThesurfaceofMuskin®andtheuppermaterialofNoani®feelpleasant.Duetothe
presenceofveryfinefibers,bothmaterialscreateavelvetyfeelingsimilartosuedeleather.
Thematerialswithsyntheticsurfacesasinartificialleathers(Desserto®,Appleskin®,
Coatings2021,11,2267of15
Vegea®,PURcoatedtextile)showasoftfeelingandcanbedeformedinthezdirection.
However,thetouchofthesematerialsappearsartificiallywithastickytendency.Thesur
faceofPinatex®andTeakLeaf®appearssynthetic,too.Inaddition,Desserto®,Pinatex®,
andSnapPap®areevaluatedtofeelrough.ThesurfaceofKombuchaappearedsticky.
3.3.Thickness
Thethicknessofthematerialswasdeterminedbysurveyingthepreparedmicro
scopiccrosssections.Theoverallthicknessofallmaterialswasfoundtorangefrom0.29
mmto6.22mm,whichalsoshowsthevarietyofthematerialtypes(Table2).Thethickness
ofleather,thePURcoatedtextile,andthetrendyalternativesDesserto®,Appleskin®,
Vegea®,andPinatex®areinatypicalrangeformaterialsusedforshoes,gloves,andap
parelgoodsapplications.ThematerialsKombucha,SnapPap®,andTeakLeaf®appear
verythinandincontrast,Muskin®isverythickforthementionedapplications.Inconse
quence,alreadyfromtheresultsofthethicknessmeasurements,significantdifferencesin
thematerialpropertiescouldbeexpected,e.g.,indeformationproperties.
Table2.Physicalproperties.
Physicalproperties
ThicknessTensileStrengthTearRes.WVPWVAFlexRes.
ISO17186AISO3376ISO33771ISO14268ISO17229ISO32100
(mm)(N/mm2)(N/mm)(mg/(cm2×h))mg/cm2FlexCyclesto
Grade≥2
Naturallygrown
material
Leather1.9339.582.94.68.4>200,000
Muskin®6.220.20.510.46.010,000
Kombucha0.299.75.10.19.210,000
Coatedtextile
PURcoattext.1.3710.2171.11.4200,000
Desserto®0.8820.837.20.52.530,000
Appleskin®1.141418.40.41.750,000
Vegea® 0.959.416.60.63.050,000
TeakLeaf®0.5712.230.70.10.1100
Nonwovensofplant
fibers
Pinatex®1.434.5312.53.8150,000
SnapPap®0.5724.97.510.33.75,000
(WVP:watervaporpermeability;WVA:watervaporabsorption;TearRes:tearresistance).
3.4.TensileStrengthandTearStrength
Themostimportantmechanicalpropertiesformaterialsusedforshoes,gloves,and
apparelgoodsaretensilestrengthandtearstrength[17,18].Theresultsforbothparame
tersvaryoveraverywiderange,whereasthecategoryofnaturallygrowntissuesshows
thebroadestrange.
Leatherasthegrownskintissueshowsaveryhighmechanicalstability(tensile
strength,tearstrength),representingthehighestvalueforthetensilestrengthandtear
strengthwithinthatsurvey.Tensilestrengthexceedsthespecificationof>15N/mm2for
chrometannedupperleatherforshoes(ISO20942)[14].Incontrast,thevaluesoftheMus
kin®sampleareextremelylow.
Thecoatedtextilesshowtensilestrengthsof9upto20N/mm2.Thetensilestrength
ofcoatedtextilesdependsmainlyonthepropertiesofthesupportingfabric.Theresults
showareasonablechoiceoffabricfortheintendeduseoftheseengineeredmaterialsre
gardlessofthenaturalorartificialoriginofthefabricfibers.
Thetensilestrengthsofthenonwovenmaterialsmadeofnaturalplantfibersrange
from4upto25N/mm2.Strengthdependsonfiberpropertiesandfiberbonding.Despite
asatisfyingtensilestrength,thetearresistanceofSnapPap®islowduetotheshortfiber
length,whichcannotbeleveragedbythepolymericbinder.Exceptforthenonwoven
materials,tearstrengthfollowsthesametendencyastensilestrength.
Coatings2021,11,2268of15
3.5.FlexResistance
Materialsforshoesmustresistintensivebendingandconvexandconcavedefor
mationduringusage.Theflexometertestisusedtoassessthelongtimeresistanceagainst
bending.Grade0isthebestratingindicatingthatthematerialitselfandthecoatinglayers
showsnocracksbyflexing.Agradeof≤2(onlyverysmallcracksintoplayerofthecoat
ing)isusuallyacceptedtopassthattest.Whenagradeof>2isobserved,flexinghastobe
stoppedandthenumberofflexcyclesisnoted.Leather,Pinatex®,andPURcoatedtextile
fulfilledthespecificationof>80.000flexcyclesaccordingtoISO20942.Theflexresistance
ofTeakLeaf®,SnapPap®,andMuskin®materialwasfoundtobeinsufficientfortheaimed
applications.
3.6.WaterVaporPermeabilityandWaterVaporAbsorption
Apleasantwearingcomfortofshoes,gloves,orapparelisrelatedtothewatervapor
permeability(WVP)ofthematerial,whichallowstransportingthehumidityofthebody
throughtheclothingmaterialtoitssurface.Thecomfortisalsoenhancedbytheabilityof
thematerialstoabsorbwatervapor.Comfortablewatervaporpermeabilitylimitsare
specifiedinISO20942tobe>>0.8mg/(cm2×h).Leather,Muskin®,andSnapPap®exceed
thewatervaporpermeabilitybyfar,andPinatex®andPURcoatedtextilestillfulfillthe
ISO20942requirement.TheWVPofallothermaterialsisinsufficient.
Watervaporabsorption(WVA)ofKombucha,leather,andMuskin®ishigh,presum
ablyduetotheirpolarnatureofthenaturalpolymers.Theothermaterials,especially
thosethatcontainasignificantamountofsyntheticpolymerwithlesspolarityshowmuch
lowerwatervaporabsorption.
3.7.HarmfulSubstances
Thematerialswereexaminedforpotentiallyhazardoussubstancesbymeansofther
maldesorptionanalysis.Inseveralsamples(Appleskin®,Pinatex®,Desserto®,Vegea®,
SnapPap®,TeakLeaf®)syntheticandbiogenicrawmaterialshadbeencombined.How
ever,theprocessingoffossilbasedrawmaterialsoftenrequirestheapplicationofsol
vents,crosslinkingagents,orplasticizerstoachievesuitablematerialproperties.
Alltestedmaterialsemittedvolatileorganiccompoundswhenappliedtothethermal
desorptionscreeningprocedure.Restrictedsubstanceswereidentifiedinthesamplesof
PURcoatedtextile(reference),thesimilarlyconstructedmaterialsDesserto®,Appleskin®,
andVegea®,butalsoinPinatex®.ThePURcoatedtextilecontainedconsiderableamounts
ofdimethylformamide(DMFa)andtolueneandtracesofN,Ndimethylacetamide.InAp
pleskin®,butanoneoximeandtracesofDMFaweredetected.Desserto®containedthefive
restrictedsubstancesbutanoneoxime,toluene,freeisocyanate,folpet(anorganicpesti
cide),andtracesoftheplasticizerDiisobutylphthalate(DIBP).Toluenewasdetectedin
thesampleofVegea®andDIBPinthatofPinatex®.
4.Discussion
Thematerialsthathavebeentestedinthisstudyareusedtomanufacturefashionable
consumergoodsasshoes,bags,clothes,andaccessories.Inthisregard,aspectsof(1)func
tionalpropertiesand(2)theappearancehavetobediscussed.Whiletheconstructionof
thematerialmainlyinfluencesthefunctionalproperties,theappearanceismarkedlya
resultofthesurfaceproperties.Bothgroupsofpropertiesvariedonaverybroadscale,
thoughthematerialsareofferedforsimilarfinalapplications.Analyzingthecomposition,
theconstruction,thesurfaces,andthefeelallowedustocomparethematerialsinregard
totheirpossibleperformance.Forthispurpose,thematerialswereinvestigatedbystand
ardizedtestingproceduresforleathersincethematerialsareofferedasaleatheralterna
tive.
4.1.Structure
Coatings2021,11,2269of15
Basedonthestructuraldesignandwithrespecttofunctionalproperties,theinvesti
gatedsamplescanbegroupedintothreecompletelydifferentmaterialconcepts,which
are(a)grownanimalfreematerials,(b)multilayeredcoatedfabricsasforartificialleather
combinedwithplantbasedadditives,and(c)nonwovenfabricswithorwithoutasurface
finish.
AsderivedfromtheresultsoftheFTIRanalysis,thefunctionallayersofthecoated
fabricsaremainlyPURbased.Incontrast,fullybiobasednaturallygrownmaterialsin
vestigatedinthisstudydidnotnearlyfulfillthemechanicalrequirementsexpected,e.g.,
forshoeuppermaterials.Thequestionarises,whyanimalfreematerials(a),whichare
directlymanufacturedbypreservingagrownstructurecombinedwithmoreorlessin
tensiveprocessing,showonlypoormechanicalresistancecomparedtoleather.
Theresultingstructuresofgrownnaturalmaterialsareintendedtobeanalternative
forthefibrousstructureofanimalskin[11,24,25].Atypicalrepresentativeisthefungus
basedmaterialMuskin®takenfromPhellinusellipsoideus.Themicroscopicpicturesshow
thatthemyceliumiscomposedofhyphaethatrepresentthestructureformingcompo
nent.Ourmeasurementsshowedmainlypolysaccharidesaschemicalstructures.There
fore,itcanbeassumedthatchitinformsthehyphae.TheFTIRspectrumexactlyfitsthat
ofotherinvestigations[26].Thelatterinterpretedthespectrainmoredetailandalsoas
signedproteins,lipids,andnucleicacids.However,themechanicalstabilityofthemyce
liumislimited.Thismaybecausedbythelimitedstabilityofthehyphaeitself,andthe
processedmyceliumasshownelsewhere[11,27].Thepicturesofthecrosssectionshow
thatthefibersareorientedperpendiculartothesurface.Thisalsoleadstopoormechanical
stability.Presumably,themechanicalperformancecouldbeimprovedifthefiberswere
alignedalongthedirectionofthemechanicalload.
Incontrast,KombuchaisatraditionalJapanesebeverage,whichispreparedbya
symbiosisofbacteriaandyeastsmetabolizingsugarsintoorganicacids,ethanol,andcar
bondioxide.Inparallel,bacteria(e.g.,Acetobacterxylinum)aresecretinghighmolecular
weightpolysaccharides,whichleadtoagellikeconsistency.Theintensivelygrowingmi
croorganismscanbeharvestedandthesecretedpolymersareusedasabiogenicstructure
formingmaterialafteradryingstep[10].ThemechanicalstabilityoftheKombuchama
terialsamplewasmuchhigherthanthatofMuskin®butmissedtherequirementsforshoe
uppermaterialsaswell.WhileMuskin®showsalooseandopenstructure,whichallows
watervaportodiffusethroughthematerial,Kombuchaisverytightbutitabsorbshigher
amountsofwater.Bothmicroorganismbasedmaterialsappearhomogenousintheircross
sections.
Therawmaterialofleather,theanimalskiniscomposedofcollagen,astructure
formingprotein.Leatherisbuiltfromintertwinedfibrilsandfibers,whichareaddition
allycrosslinkedbyleathertanning.Thefibrousstructureofleathershowsagradientin
itsmaterialdensityfromthegraintothereverseside.Thefinallayerontopiscomposed
ofverythinandtightcollagenfibers.Thegrownskintissueshowsaveryhighmechanical
stability(tensilestrength,tearstrength),whichisby100to1000timeshigherthanthatof
themicroorganismbasedmaterials[5,10,11,25,26,28].Thestrengthofleathercanbere
latedtothestabilityofthecollagenfibersthemselvesandtotheweavingandcrosslinks
betweenthefibers.
Fromthebiologicalpointofview,hyphaeofmicroorganismsandtheanimalskin
fulfillverydifferenttasksintherespectiveorganisms.Theperformanceofnaturalmate
rialshadbeensummarizedinthepastinAshbyplots.Figure4providesanimpressive
overviewofacoupleofdifferentnaturalmaterialsandtheirmechanicallimits[29].Nat
uralflexibleloadtransferringmaterialsappearwithadensityof~1Mg/m3andrangefrom
0.1MPatomorethan1000MPa(markedred).Thetensilestrengthofparenchymatous
planttissuesislow(markedblue).Collagenbasedmaterialssuchasskinandtendonap
peartobeverystable(redellipse).Highstabilityisalsoobservedinstructuresofplants,
whichhavetotransferload(wood,cellulosefibers).
Coatings2021,11,22610of15
Itcanbededucedfromtheseconsiderationsthatgrownnaturalmaterialswillonly
exhibitflexibleandmechanicalresiliencewhenloadtransferringstructuresareused.The
animalskincoversabroadsetofaimedfunctions.Ithastoprotectthebodyforalong
timeagainstmechanicalimpact,itisflexibletoallowmobility,andoftenithastoregulate
thetemperatureandwaterbalance.Plantfibershavetoabsorbtheweightoftheplant
againstgravitationandinloaddirection.
Incontrast,thetissuelikestructuresofmicroorganismsappearasparenchymatous
materials,basedonfibernetworks,whichprimarilyofferactivecellsamatrixformetab
olism(bacteria,fungi)andtransportationofnutrients(hyphae).Therefore,theyappearat
thebottomofFigure4.Toovercomethesemechanicaldeficiencies,itwasproposedto
stabilizethefibernetworkofMuskin®bycrosslinkingagents[25,26],ortoadjustthesoft
nessofKombuchamaterialsbytheadditionofplasticizingagents[10].However,thiscon
tradictsthemultiscaleidea,thevariationofthedensityandtheorientationofthefibers
alongtheirloaddirection,whichwouldpresumablybetterhelptoovercometheobserved
limitations.
Figure4.“Amaterialpropertychartfornaturalmaterials,plottingstrengthagainstdensity.(…)
Structurallyefficientmaterialsarelightandstrong.”Reprintwithpermissionfrom[29]Copyright
2021Taylor&Francis.Naturalflexibleloadtransferringmaterialsappearwithadensityof~1
Mg/m3andrangefrom1MPatomorethan1000MPa(markedred).Thetensilestrengthofparen
chymatousplanttissuesislow(markedblue).
Thesecondconcepttoachievehighlyfunctionalleatherlikematerialswithahigh
contentofbiobasedcomponentstakesuptheprincipleofartificialleather.Thesemateri
alssimulatethestructureofleatherasmultilayermaterial.Thefunctionscanbeseparated
betweenthetextilesupport,whichhastofulfillthemechanicalfunction(tensilestrength,
tearstrength),themiddlelayer,bywhichfeelandsoftnessareadjusted,andthetopcoat,
whichtakesoverthefinalopticalappearance.Agrainstructuresimilartothatofleather
ismostlyachievedbyembossing.Therefore,toincreasethebiogenicpartofthematerials,
itwouldbeeffectivetoreplacethepolyestersupportwithnaturalfibers.Asshownin
Figure4,thenaturalfibersmayshowexcellentmechanicalstabilities.However,only
Coatings2021,11,22611of15
Vegea®andTeakLeaf®useacellulosebasedfabricassupport.Therenewablecontentin
thesemultilayermaterialscouldalsobeincreasedbyreplacingsyntheticpolymersinthe
coatinglayers.Desserto®andAppleskin®adoptthisprinciple.ApartofPURisreplaced
byagriculturalbyproducts,whichareusedasfillers.Adetailedanalysisoftheoriginof
thenaturalcomponentanditscontentinrelationtothebulkofthematerialwasnotpos
sible,however.Nevertheless,thebulkofthematerialsremainstoconsistofpolyurethane.
InthecaseofTeakLeaf®,anaturalappearingsurfaceiscreatedbyimpartingthenatural
leaf,whichiscoveredbysyntheticwaxes.However,becauseofthemissingelasticfoam
layerasusedinartificialleatheranditsreplacementbytheplantleaf,theflexresistance
ishamperedandappearsnotadequatelyadjustedfromafunctionalpointofview.
Asathirdstrategytoreplaceleatherwithanimalfreematerialsforwhichplant
basednonwovenfabricsareused.Thefossilbasedpolyestertextilesupportisexchanged
bynaturalfiberalternativesascotton,linen,etc.Ideally,thefabricwouldbefinishedwith
abiobasedpolymer.Pinatex®,forexample,ismanufacturedfrompineappleleaffibers,
whicharelaboriouslyprocessedbeforetheyarecoatedbyathinpolymerfilmthatcanbe
eitherfossilbasedorfromrenewableresourcestoimproveusability.Pinatex®promotes
itspolymerfinishtobepolylactide,whichcanbeproducedfullybiobased[13,30–32].
However,ouranalysisshowedatleastaremarkablecontentofPUR/acrylateinthefinish.
Theverythinsurfacecoatingdoesnotcompletelycoverthefibrousnonwoven,which
leadstoahardsurfacewithafibrousappearancethatwithstandstheflextest,however.
Thematerialappearsmoresimilartoatextilenonwovenandthelowmechanicalre
sistancecanbecorrelateddirectlytothelowbindercontentofthefibersofthenonwoven
support.SnapPap®isbasedoncellulosicfibersaswell,butincontrasttoPinatex®,the
matrixisboundwithacrylicacidbasedpolymers.Bothmaterialsneithersimulatea
leatherstructurenordotheyappearasaleathersurface.Therefore,theyshouldratherbe
estimatedascoatedorimpregnatedtextilethanasartificialleatherorleatheralternative.
Figure5showsimpressivelytheperformanceofthedifferentmaterialsincompari
sontothereferences.Alternativematerialshavespecificadvantages,butnoneofthema
terialscombineshighmechanicalstrengthandflexresistancewithhighwatervaporper
meabilityasinthecaseofleather.
Coatings2021,11,22612of15
Figure5.Comparisonofthephysicalpropertiesofthematerials.Thevaluesarenormalizedtothe
maximumvaluemeasuredinthissurveyfortherespectiveparameter.
4.2.SurfacesandAppearance
Thesurfacesofthematerialsaretheir“face.”Thisisimpressivelyshownwiththe
appliedleafinTeakLeaf
®
asaneyecatcher.Theresultingstructuresappearopticallyin
terestingbutdonotfulfillthesamefunctionasthefoamlayerinengineeredcoatedtex
tiles.Otherplantmaterials,whichareusedinsimilarconstructionstoachieveinteresting
opticalpropertiesare,e.g.,corkbased.Theyhavenotbeeninvestigatedinthisstudybut
havetobesupportedaswellbytextilestoachievesuitablephysicalproperties[33–35].
Therefore,theTeakLeaf
®
solutionappearsmoredesigndriventhanittakesfunctional
aspectsintoaccount.
Toachievesufficientfunctionalpropertiesofthesurfaceofflexiblematerialsoftena
finaltopcoatisapplied,whichthendeterminestheopticandpartiallyhapticandother
usefulpropertiesofthematerials,e.g.,flexresistance,abrasionbehavior,andsoilingbe
havior.Thewatervaporpermeabilityalsodependsonthetightnessofthetopcoatorof
watertightlayersinbetween.Thethickerthislayerthelessthematerialallowsvaporand
gaspermeation[36].
Leatherasinvestigatedusuallyshowsonlyaverythintopcoattoimprovethesoiling
behavior.Theflexresistanceisveryhigh.Thewatervaporpermeabilityisinanappropri
aterange.Muskin
®
andSnapPap
®
showveryopenstructures,whichallowwatervapor
perfectlytodiffuse.However,theirperformancecharacteristics,particularlythepoorflex
resistance,limitsthelongtimeuse.Allotherinvestigatedmaterialsareverytightagainst
watervaporpermeation.Usedasashoematerial,thiswouldleadtosweatingofthefeet
andwouldreducethecomfort[37,38]butthematerialswouldbetightagainstrainifused
as,e.g.,bagorrainjacket.
Coatings2021,11,22613of15
ThemicroscopicsurfaceofSnapPap®andPinatex®showsthefibrousnonwovenfab
ric,whichtakesoverthemechanicalpropertiesofthematerial.SnapPap®andPinatex®do
notappearleatherlike.Theyshowhardsurfacesandanexposedfibrousnonwoven
structure.Applyingathickerpolymercoatingandembossingagrainstructurewould
presumablyleadtoaleatherlikeoptic.Inthiscase,considerationsregardingwatervapor
permeabilityforcoatedtextileshavetobetakenintoaccount.
5.Conclusions
Noneofthealternativematerialsachievedthepropertiesofleatheraccordingtothe
appliedreferencevalues,althoughmanyofthemareofferedasaleatheralternative(Fig
ure5).Thequestionofwhyitisdifficulttoachievethesepropertiesbyalternativenatural
materialsisansweredwiththedifferentbiologicalfunctionsoftheusedmaterials.Leather
isamultiscalematerial,whichisdesignedbynaturetofulfillloadtransferringandmet
abolicfunctions.Itshowsagradientinthetightnessofthestructurecomposedofdiffer
entlyfinehydrophilicproteinfibers.Eachpartofthestructuretakesoveraspecificfunc
tion.Thereticularlayer,whichconsistsofcoarsefiberbundlesisresponsibleforthehigh
mechanicalresistance(tensileandtearstrength).Thedestructionofthefibernetworkof
thegrowntissueleadstoadecreaseofthemechanicalstabilityby10times[28].Thiscan
onlyslightlybeimprovedwhenthefibersareagainboundbybindingagents(e.g.,middle
layerleatherboardofNoani®).Themorecompactandfinerfibersofthepapillarylayerof
leatherandthegrainmembranecausetheleatherlikeappearanceandthetightstructure
ontop.Nevertheless,thewatervaporpermeabilityishighifnotightsynthetictopcoatis
applied.Thehydrophilicfibersofleathercanabsorbmuchwater,whichleadstohigh
comfortifcomparedwiththesyntheticalternatives.Thebiogenicnonwoventextiles
Pinatex®,SnapPap®,andKombuchashowsimilarwaterabsorptionvaluesasleatherbut
lackmechanicalandflexuralstrength.Therefore,itremainsachallengeandanaimto
reproducethefunctionofthebionicstructureoftheskinwithalternativebiologicaltech
niquesashasalreadybeenmentionedmanyyearsago[29].Whenagriculturalbyprod
uctsareaddedtopolymerlayersofartificialleathers,thebiobasedcontentofthematerials
israisedbutnophysicaladvantageoverthereferencematerialcanbemeasured.Onlya
properlifecycleanalysiswouldallowassessingtheassociatedadvantage.
SupplementaryMaterials:Thefollowingareavailableonlineatwww.mdpi.com/2079
6412/11/2/226/s1,FigureS1:Sampleshoeupperleather;(a)crosssection,(b)surface,FigureS2:Sam
pleMuskin®;(a)crosssection(25timesmagnification),(b)surface,FigureS3:SampleKombucha;
(a)crosssection(100timesmagnification),(b)surface,FigureS4:SamplePURcoatedtextile;(a)
crosssection,A:thincompacttoplayer,B:foamedlayer,C:textilecarrier,(b)surface,FigureS5:
SampleDesserto®;(a)crosssection,A:compacttoplayer,B:foamedlayer,C:textilecarrier,(b)sur
face,FigureS6:SampleAppleSkin®;(a)crosssection,A:compacttoplayers,B:foamedlayer,C:
impregnatedlayerwithatextilecarrier,(b)surface,FigureS7:SampleVegea®;(a)crosssection,A:
compacttoplayer,B:foamedlayer,C:textilecarrier(b)surface,FigureS8:SampleTeakleaf®;(a)
crosssection,A:leafwithatransparenttoplayer,B:textilelayer1,C:textilelayer2,(b)surface,
FigureS9:SamplePinatex®;(a)crosssection,nonwovenwithacompacttoplayer,(b)surface,Fig
ureS10:SampleSnapPap®;(a)crosssection,(b)surface,FigureS11:SampleNoani®;(a)crosssection
(25timesmagnification),A:microfiberlayer,B:leatherboardlayer,C:textilecarrier,D:foamed
layer,E:compactlayer,(b)surface,embossedregion,FigureS12:FTIRspectrumofDesserto®asan
exampleofaPURcoatedmaterialwithtypicalmolecularvibrations(3359NH;3931CH2;2862CH2;
1744C=O;1635O=C–NH;1554Amid;1464CH2;1257C–O–C).
AuthorContributions:Conceptualization,S.D.,H.S.,andM.M.;methodology,H.S.andS.D.;vali
dation,S.D.andH.S.;investigation,S.D.andH.S.;datacuration,S.D.,A.M.,H.S.,andM.M.;writ
ing—originaldraftpreparation,A.M.andM.M.;writing—reviewandediting,H.S.,A.M.,andM.M.
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
Coatings2021,11,22614of15
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:DataiscontainedwithinthearticleandSupplementaryMaterialsac
cordingtotheDataAvailabilityStatementsinsection“MDPIResearchDataPolicies”at
https://www.mdpi.com/ethics.
Acknowledgments:WethanktheGermanLeatherAssociation(VDL)forthedonationofallsam
ples.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Braungart,M.;McDonough,W.;Bollinger,A.Cradletocradledesign:Creatinghealthyemissions—astrategyforecoeffective
productandsystemdesign.J.Clean.Prod.2007,15,1337–1348.
2. McDonough,W.;Braungart,M.;Anastas,P.T.;Zimmerman,J.B.Applyingtheprinciplesofgreenengineeringtocradleto
cradledesign.Environ.Sci.Technol.2003,37,434A–441A.
3. Peters,S.SustainableMultipurposeMaterialsforDesign.InMaterialsExperience:FundamentalsofMaterialsandDesign,Karana,
E.,Pedgley,O.,Rognoli,V.,Eds.;Elsevier:Amsterdam,TheNetherlands,2014;pp.169–179ISBN9780080993591.
4. Peters,S.MaterialrevolutionII:NeueNachhaltigeUndMultifunktionaleMaterialienFürDesignUndArchitektur;WalterdeGruyter:
Berlin,Germany,2014;ISBN3038210005.
5. Goh,W.;Rosma,A.;Kaur,B.;Fazilah,A.;Karim,A.;Bhat,R.Microstructureandphysicalpropertiesofmicrobialcellulose
producedduringfermentationofblackteabroth(Kombucha).II.Int.FoodRes.J.2012,19,153–158.
6. Tuttle,F.J.Thestoryofcoatedfabrics:Idevelopmentofoilcloth.Text.Res.1944,14,228–232,doi:10.1177/004051754401400709.
7. Tuttle,F.J.Thestoryofcoatedfabrics:IIrubberandpyroxylincoatings.Text.Res.1944,14,260–269.
8. Peintner,U.;Pöder,R.;Pümpel,T.Theiceman’sfungi.Mycol.Res.1998,102,1153–1162.
9. Papp,N.;Rudolf,K.;Bencsik,T.;Czégényi,D.EthnomycologicaluseofFomesFomentarius(L.)Fr.andPiptoporusBetulinus(Bull.)
P.Karst.inTransylvania,Romania.Genet.Resour.CropEvol.2017,64,101–111,doi:10.1007/s1072201503352.
10. Domskiene,J.;Sederaviciute,F.;Simonaityte,J.Kombuchabacterialcelluloseforsustainablefashion.IJCST2019,31,644–652,
doi:10.1108/IJCST0220190010.
11. Haneef,M.;Ceseracciu,L.;Canale,C.;Bayer,I.S.;HerediaGuerrero,J.A.;Athanassiou,A.Advancedmaterialsfromfungal
mycelium:Fabricationandtuningofphysicalproperties.SciRep2017,7,41292,doi:10.1038/srep41292.
12. Cerimi,K.;Akkaya,K.C.;Pohl,C.;Schmidt,B.;Neubauer,P.Fungiassourcefornewbiobasedmaterials:Apatentreview.
FungalBiolBiotechnol2019,6,17,doi:10.1186/s406940190080y.
13. https://www.ananasanam.com,(accessedon:30December2020).
14. ISO20942:2019Leather—FullChromeUpperLeather—SpecificationandTestMethods.ISO:Geneva,Switzerland,2019.
15. ISO14930:2012Leather—LeatherforDressGloves—Specification.ISO:Geneva,Switzerland,2012.
16. ISO14931:201506LeatherGuidetotheselectionofleatherforapparel(excludingfurs).ISO:Geneva,Switzerland,2015.
17. ISO3376:2020LeatherPhysicalandMechanicalTestsDeterminationofTensileStrengthandPercentageElongation.ISO:
Geneva,Switzerland,2020.
18. ISO33771:2011LeatherPhysicalandMechanicalTestsDeterminationofTearLoad—Part1:SingleEdgeTear.ISO:Geneva,
Switzerland,2011.
19. ISO17186:2011Leather–PhysicalandMechanicalTests–DeterminationofSurfaceCoatingThickness.ISO:Geneva,Switzerland,
2011.
20. ISO32100:2018RubberorPlasticsCoatedFabricsPhysicalandMechanicalTestsDeterminationofFlexResistancebythe
FlexometerMethod.ISO:Geneva,Switzerland,2018.
21. ISO17229:2016Leather–PhysicalandMechanicalTests–DeterminationofWaterVapourAbsorption.ISO:Geneva,Switzerland.
2016.
22. ISO14268:2012Leather–PhysicalandMechanicalTests–DeterminationofWaterVapourPermeability.ISO:Geneva,
Switzerland,2012.
23. VDA278ThermalDesorptionAnalysisofOrganicEmissionsfortheCharacterizationofNonMetallicMaterialsfor
AutomobilesVDA:Berlin,Germany,2011.
24. Jones,M.;Bhat,T.;Kandare,E.;Thomas,A.;Joseph,P.;Dekiwadia,C.;Yuen,R.;John,S.;Ma,J.;Wang,C.H.Thermal
degradationandfirepropertiesoffungalmyceliumandmycelium—Biomasscompositematerials.SciRep2018,8,17583,
doi:10.1038/s41598018360329.
25. Jones,M.;Gandia,A.;John,S.;Bismarck,A.Leatherlikematerialbiofabricationusingfungi.NatSustain2021,4,9–16,
doi:10.1038/s41893020006061.
26. Bustillos,J.;Loganathan,A.;Agrawal,R.;Gonzalez,B.A.;Perez,M.G.;Ramaswamy,S.;Boesl,B.;Agarwal,A.Uncoveringthe
mechanical,thermal,andchemicalcharacteristicsofbiodegradablemushroomleatherwithintrinsicantifungaland
antibacterialproperties.AcsAppl.BioMater.2020,3,3145–3156,doi:10.1021/acsabm.0c00164.
27. Islam,M.R.;Tudryn,G.;Bucinell,R.;Schadler,L.;Picu,R.C.Morphologyandmechanicsoffungalmycelium.SciRep2017,7,
13070,doi:10.1038/s41598017132952.
Coatings2021,11,22615of15
28. Meyer,M.Processingofcollagenbasedbiomaterialsandtheresultingmaterialsproperties.Biomed.Eng.Online2019,18,1–74,
doi:10.1186/s1293801906470.
29. Wegst,U.G.K.;Ashby,M.F.Themechanicalefficiencyofnaturalmaterials.Philos.Mag.2004,84,2167–2186.
30. Sureshkumar,P.S.;Thanikaivelan,P.;Phebe,K.;Krishnaraj,K.;Jagadeeswaran,R.;Chandrasekaran,B.Investigationson
structural,mechanical,andthermalpropertiesofpineappleleaffiberbasedfabricsandcowsoftyleathers:Anapproachtoward
makingamalgamatedleatherproducts.J.Nat.Fibers2012,9,37–50,doi:10.1080/15440478.2012.652834.
31. Jose,S.;Salim,R.;Ammayappan,L.Anoverviewonproduction,properties,andvalueadditionofpineappleleaffibers(PALF).
J.Nat.Fibers2016,13,362–373,doi:10.1080/15440478.2015.1029194.
32. Kannojiya,R.;Gaurav,K.;Ranjan,R.;Tiyer,N.;Pandey,K.Extractionofpineapplefibresformakingcommercialproducts.J.
Environ.Res.Dev.2013,7,1385.
33. Gil,L.Corkcomposites:Areview.Materials2009,2,776–789,doi:10.3390/ma2030776.
34. Silva,S.P.;Sabino,M.A.;Fernandes,E.M.;Correlo,V.M.;Boesel,L.F.;Reis,R.L.Cork:Properties,CapabilitiesandApplications.
Int.Mater.Rev.2005,50,345–365,doi:10.1179/174328005x41168.
35. Gil,L.Cork:Sustainabilityandnewapplications.Front.Mater.2015,1,38,doi:10.3389/fmats.2014.00038.
36. Lomax,G.R.TheDesignofWaterproof,WaterVapourPermeableFabrics.J.Coat.Fabr.1985,15,40–66,
doi:10.1177/152808378501500105.
37. Satsumoto,Y.;Piao,S.Effectsofshoefitandmoisturepermeabilityofaleathershoeonshoemicroclimateandairexchange.J
Ergon.2016,6,1–7,doi:10.4172/21657556.1000171.
38. Gulbiniene,A.;Jankauskaite,V.;Kondratas,A.Investigationofthewatervapourtransferpropertiesoftextilelaminatesfor
footwearlinings.FibresText.East.Eur.2011,19,86.
... However, vegan fashion materials are making significant strides in matching these qualities. High-end alternatives such as Piñatex (pineapple fiber leather), Mylo (mushroom leather), and Tencel (a fabric made from sustainably sourced wood pulp) mimic the tactile properties of their traditional counterparts, offering softness, breathability, and even a premium aesthetic (Meyer et al., 2021). While lower-quality vegan options like polyurethanebased faux leather can feel artificial or plastic-like, luxury-grade vegan materials are often engineered to provide a similar sensory experience to animal-derived fabrics, contributing to a shift in perception within the luxury sector (Meyer et al., 2021). ...
... High-end alternatives such as Piñatex (pineapple fiber leather), Mylo (mushroom leather), and Tencel (a fabric made from sustainably sourced wood pulp) mimic the tactile properties of their traditional counterparts, offering softness, breathability, and even a premium aesthetic (Meyer et al., 2021). While lower-quality vegan options like polyurethanebased faux leather can feel artificial or plastic-like, luxury-grade vegan materials are often engineered to provide a similar sensory experience to animal-derived fabrics, contributing to a shift in perception within the luxury sector (Meyer et al., 2021). ...
Article
Full-text available
As environmental concerns rise, luxury fashion brands are increasingly adopting vegan materials to create eco-friendly collections without compromising on quality or style. This study aims to explore the viability and impact of veganism in luxury fashion, focusing on its influence on consumer behavior, industry standards, and sustainability. A comprehensive review of secondary sources, including academic literature, industry reports, and sustainability assessments, was conducted to analyze the rise of vegan materials in luxury fashion. The study found that environmental awareness, ethical consumerism, and technological advancements are key drivers behind the increasing viability of vegan materials like Piñatex and Mylo in luxury fashion, despite challenges related to durability and environmental trade-offs. The adoption of vegan materials offers luxury brands a strategic opportunity to align with consumer demand for sustainability and ethical production, enhancing brand image and loyalty. Future research should explore the scalability of vegan materials, examine consumer perceptions of vegan luxury, and assess the long-term sustainability and lifecycle impacts of these alternatives.
... Artificial leathers are commonly prepared by coating or laminating textile fabrics with hydrophobic polymers, such as polyurethane (PU), polyvinyl chloride (PVC), and silicone rubber to mimic the tactile feel, surface textures, and properties of genuine leathers [28]. In this study, polyester fabric was coated with a thin layer of PU doped with 1 to 2% CAA to fabricate artificial leather samples with antibacterial functions. ...
Article
Full-text available
Background: Standard test methods for evaluating the antibacterial performance of plastic (non-porous) and textile (porous) materials are accurate and reliable, but completing a standard assessment generally requires at least several days to a week. Well-trained and experienced technicians are also required to conduct the standard tests consistently and analyse the samples and test results systemically. These costs are often not favourable for the performance assurance of antimicrobial products in industrial production, nor for meeting the fast-return demands in research and development of antimicrobial materials nowadays. Methods: In this study, “Rapid Tests” are developed to evaluate the antibacterial activities of plastic and textile materials. Results: The assessment results from Rapid Tests for plastics and textiles are highly correlated to those from the ISO 22196 and the AATCC Test Method 100, respectively, whereas the evaluation operation can be completed within one day. Based on bioluminescence technology, colony-forming units of E. coli from the inoculated specimens are determined via luminometry. Antibacterial efficacy of the treated plastic and textile samples can be examined effectively. Conclusions: By analysing antimicrobial artificial leather samples composed of hydrophilic polyurethane polymer using Rapid Tests for plastics and textiles, the applicability and scope of these tests were remarkedly recognised and verified.
... At the same time, "synthetic leathers" improve and there are no more sectors in which leather cannot be more or less replaced by other materials. It is why, today more than ever, research and development are of extreme importance (Meyer et al., 2021). ...
Article
Full-text available
Leather production is a historic industry that still has an economic influence throughout the world. Leather making is done following a sequence of complex chemical and mechanical steps, using energy, quantity of water and chemicals, and generating waste. For several decades, many organizations have been working toward a cleaner tannery industry resulting in better practices, saving energy and water, and increasing wastewater treatment efficiency. Solid waste management remains a big issue. Another question posed today is the use of chromium in tanning. It is why a lot of research is now dedicated to metal‐free tanning solutions. Chromium alternatives exist but none can actually rival all the advantages of chromium and a balance must be found with environmental issues. To measure the environmental performance of leather, several tools are available. The LWG (Leather Working Group) audit is one of them. On the side of consumers, some reliable leather ecolabelings exist. Finally, life cycle assessment (LCA) is the most exhaustive tool for characterizing leather's environmental performance. Numerous LCA studies done in the past two decades underline the difficulty in obtaining general results, considering the large variety of processes used depending on tanneries, localization, and raw materials. In addition, the data available for LCA are still poor in regard to the specific data needed for leather chemicals. The best methods associated with new technologies, audit, and labeling lead leather production into a cleaner and environment‐friendly industry.
... Moreover, to mitigate the labor-healthy and environmental repercussions of the existing textile industry, numerous efforts are being made throughout the world for dyeing, functionalization, and the discovery of novel bio-based alternative materials (like fungus, bacterial cellulose and protein, and so on) with varied uses in fashion, medical, and other technological applications [4,5,[9][10][11][12][13][14][15][16]. However, these studies have not focused on the reduction of water consumption and discharges of major concerns of current textile dyeing and finishing. ...
Article
Full-text available
The process of dyeing has resulted in significant water consumption and wastewater discharge by the textile industry. The study's goal is to create and characterize self-dyed silks by feeding techniques with various natural and synthetic colorants in order to decrease textile environmental risks and improve the added value of silk. In this study, Bombyx mori was given mulberry leaves that had been dyed using Nanocurcumin derived from turmeric powder, as well as dyestuffs from Caesalpinia sappan, Acid Red 88, and Basic Red 13. The colorimetric, morphological, and thermal characteristics of both pristine and degummed self-dyed silks were thoroughly assessed using the CIELab color, color strength K/S, scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). Consequently, Acid Red 88 greatly improved the coloring effectiveness of silks when compared to another natural dye and basic red. After all of the self-dyed silk was degummed, it was discovered that it was dispersed mainly in the sericin layer rather than the fibroin. The surface morphology and temperature properties of silk threads were also changed by the self-dyeing process. This study proposed waterless and sustainable silk coloration methods with various natural and synthetic colorants, which will help to address the health and environmental dangers connected with the dyeing industry, as well as the increasing demand for greener and more sustainable long-term development choices. Besides, the effects of the degumming process on self-dyed silks were also fully depicted. Journal link: https://vjs.ac.vn/index.php/jst/article/view/19056
Chapter
The current chapter provides a conclusive view of the topics discussed in this book pertaining to vegan alternatives for leather. We summarize some of the advantages and disadvantages of vegan leather, consequently assessing whether the vegan materials discussed in this book pose a threat to the traditional animal-based leather industry and considering future directions.
Article
Full-text available
Background: The circular economy closes loops in industrial manufacturing processes and minimizes waste. A bio-based economy aims to replace fossil-based resources and processes by sustainable alternatives which exploits renewable biomass for the generation of products used in our daily live. A current trend in fungal biotechnology-the production of fungal-based biomaterials-will contribute to both. Results: This study gives an overview of various trends and development applications in which fungal mycelium is used as new and sustainable biomaterial. A patent survey covering the last decade (2009-2018) yielded 47 patents and patent applications claiming fungal biomass or fungal composite materials for new applications in the packaging, textile, leather and automotive industries. Furthermore, fungal-based materials are envisaged for thermal insulation and as fire protection materials. Most patents and patent applications describe the use of different lignin- and cellulose-containing waste biomass as substrate for fungal cultivations, covering 27 different fungal species in total. Our search uncovered that most patent activities are on-going in the United States and in China. Conclusion: Current patent developments in the field suggest that fungal bio-based materials will considerable shape the future of material sciences and material applications. Fungal materials can be considered as an excellent renewable and degradable material alternative with a high innovation potential and have the potential to replace current petroleum-based materials.
Article
Full-text available
Purpose The purpose of this paper is to analyse the properties of bacterial cellulose (BC) film, obtained through Kombucha tea fermentation. Design/methodology/approach Kombucha fungus was used to produce BC film under static cultivation conditions. Physical and mechanical properties under the influence of drying temperature and durability of BC material were investigated. Tensile properties were estimated by TINIUS OLSEN H10 KT test machine according to ISO 3376:2011, thickness was measured by DPT 60. BC structure was analysed by Scanning Electron Microscopy Quanta 200 FEG. Findings BC material with excellent deformation properties in wet state were obtained by fermenting Kombucha tea. Due to the presence of fermentation residues, Kombucha film is sensitive to drying temperature. The best deformation properties retain when BC material is dried at low temperature (about 25°C). BC material becomes stiffer and ruptures at lower deformations due to rapid water evaporation at higher drying temperature. It is confirmed that during time, the properties of BC film changes significantly and there may be problems with the durability of products from this material. BC film has an interesting set of properties, therefore its application to fashion industry without further preparation is limited. Originality/value A new approach is based on the evaluation of Kombucha material properties and investigation of BC as new type of material for fashion industry. Some recommendations for Kombucha BC film production are provided, basing on gained experience, experimental results and analysed literature. The advantages and disadvantages of material are discussed in the paper, in order to search for the ways to adapt the new type of material to fashion business.
Article
Full-text available
Abstract Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Article
Full-text available
Mycelium and mycelium-biomass composites are emerging as new sustainable materials with useful flame-retardant potentials. Here we report a detailed characterisation of the thermal degradation and fire properties of fungal mycelium and mycelium-biomass composites. Measurements and analyses are carried out on key parameters such as decomposition temperatures, residual char, and gases evolved during pyrolysis. Pyrolysis flow combustion calorimetry (PCFC) evaluations reveal that the corresponding combustion propensity of mycelium is significantly lower compared to poly(methyl methacrylate) (PMMA) and polylactic acid (PLA), indicating that they are noticeably less prone to ignition and flaming combustion, and therefore safer to use. The hyphal diameters of mycelium decrease following pyrolysis. Cone calorimetry testing results show that the presence of mycelium has a positive influence on the fire reaction properties of wheat grains. This improvement is attributable to the relatively higher charring tendency of mycelium compared to wheat grain, which reduces the heat release rate (HRR) by acting as a thermal insulator and by limiting the supply of combustible gases to the flame front. The mycelium growth time has been found to yield no significant improvements in the fire properties of mycelium-wheat grain composites.
Article
Full-text available
We study a unique biomaterial developed from fungal mycelium, the vegetative part and the root structure of fungi. Mycelium has a filamentous network structure with mechanics largely controlled by filament elasticity and branching, and network density. We report the morphological and mechanical characterization of mycelium through an integrated experimental and computational approach. The monotonic mechanical behavior of the mycelium is non-linear both in tension and compression. The material exhibits considerable strain hardening before rupture under tension, it mimics the open cell foam behavior under compression and exhibits hysteresis and the Mullins effect when subjected to cyclic loading. Based on our morphological characterization and experimental observations, we develop and validate a multiscale fiber network-based model for the mycelium which reproduces the tensile and compressive behavior of the material.
Article
Full-text available
In this work is presented a new category of self-growing, fibrous, natural composite materials with controlled physical properties that can be produced in large quantities and over wide areas, based on mycelium, the main body of fungi. Mycelia from two types of edible, medicinal fungi, Ganoderma lucidum and Pleurotus ostreatus, have been carefully cultivated, being fed by two bio-substrates: cellulose and cellulose/potato-dextrose, the second being easier to digest by mycelium due to presence of simple sugars in its composition. After specific growing times the mycelia have been processed in order to cease their growth. Depending on their feeding substrate, the final fibrous structures showed different relative concentrations in polysaccharides, lipids, proteins and chitin. Such differences are reflected as alterations in morphology and mechanical properties. The materials grown on cellulose contained more chitin and showed higher Young’s modulus and lower elongation than those grown on dextrose-containing substrates, indicating that the mycelium materials get stiffer when their feeding substrate is harder to digest. All the developed fibrous materials were hydrophobic with water contact angles higher than 120°. The possibility of tailoring mycelium materials’ properties by properly choosing their nutrient substrates paves the way for their use in various scale applications.