ArticlePDF Available

Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster from the Netherlands

Authors:
  • Oertijdmuseum Boxtel, Netherlands
N. Jb. Geol. Paläont. Abh.
Stuttgart,
www.schweizerbart.deE. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany
DOI:
Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster
from the Netherlands
Heiner F.J. Becker, René H.B. Fraaije, and Eric W.A. Mulder
With 8 figures
Abstract: A new Early Cretaceous glypheid lobster, Glypheopsis tubantiensis, is described from the
Staring Quarry, a geological open- air museum in the municipality of Losser in the easternmost part of
the Netherlands. It is the sole outcrop of the Gildehaus Sandstone Member in this country.
Key words: Decapoda, Glypheidae, Hauterivian, Gildehaus Sandstone, Losser, Lower Saxony
Basin.
299/2 (2021), 161–170
February 2021
Article
© 2021
10.1127/njgpa/2021/0962 0077-7749/2021/0962 $ 2.50
1. Introduction
In 1843, near- surface marl and sandstone were discov-
-
ity of the municipality of Losser, situated in the east-
ernmost part of the Dutch province of Overijssel, near
the German border (Fig. 1A). The sedimentary rocks

 (1808–1877), who is regarded as the
   1979; -
 2001). In 1968, a monument comprising a bronze
bust on a monolithic pedestal was erected to honour
him ( 1968, 1976-
cent pit was dug by enthusiastic amateur geologists to
provide access to the Gildehaus Sandstone Member on
sight (Fig. 1B). This sandstone is of Early Cretaceous
(early Late Hauterivian) age. At present, a section of
about 3 m is accessible in this pit, which was to be-
come a geological open- air museum, and which is still
known as the Staring Groeve (Staring Quarry).
Over the past 50 years, several dozens of moulting
remains of glypheid crustaceans have been collected
there. They are considered to belong to one species
and were assigned to Glyphea cretacea , 1854
and G. cf. cretacea by  (1971), preparatory
to W. s paper ( 1980). The
species was redescribed and reassigned to Glyphe-
opsis cretacea (, 1854) by  et al.
(2013
     
as well as the temporal range of the Staring Quarry
specimens differ considerably from Glypheopsis cre-
tacea; the latter species being known from the Albian
(late Early Cretaceous) and Cenomanian (early Late
Cretaceous) of the United Kingdom (
et al. 2013: 119). Therefore, we describe the studied
specimens from Losser as a new species, Glypheopsis
tubantiensis.
2. Geological setting
During the Late Hauterivian the Losser area was situ-
ated at the western margin of the Lower Saxony Basin,
where sedimentation in a shallow marine environment
took place (Fig. 2). The palaeoceanographic condi-
tions of the Lower Saxony Basin were extensively
described by  &  (2014), based
on the presence of calcareous nannoplankton species.
The bivalves of the Staring Quarry were described by
 (2002).
eschweizerbart_xxx
162 H.F.J. Becker et al.
Fig. 1. A The area of the municipality of Losser. B Exposure of the Gildehaus Sandstone Member. Activities in the
Staring Quarry (photograph by ).
Fig. 2. Palaeogeographic map of the Lower Saxony Basin (LSB) during the Hauterivian, showing in purple the present- day
 &  2014).
eschweizerbart_xxx
163
Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster
Based on the ammonite Simbirskites staf -
, 1910 and the presence of the coccolithophore
Tegulalithus septentrionalis  1963 (-
, pers. comm., October 2019; 
2012: 110, 111), the Gildehaus Sandstone Member,
as exposed in the Staring Quarry, can be determined
as of early Late Hauterivian (Early Cretaceous) age
(Fig. 3). The Gildehaus Sandstone, well- known from
the outcrops at Gildehaus (Germany) and Losser, is
rich in benthic fossil communities and has been in-
terpreted as an oxygen- rich, nutritious, shallow water
setting ( 1976;  1992;  2002;
 &  2014). The sediment can be
characterized as spiculitic, calcareous, clayey sand-
stone ( 1992). In fresh condition it shows a
greyish colour. However, close to the surface down to
a depth of 10 to 20 m, the primarily present carbonate
cement has been dissolved and has been replaced by
iron- oxide and -hydroxide, which gives the sandstone
of the Staring Quarry its characteristic brownish co-
lour ( 1992: 70). Here, strongly bioturbated
layers alternate with mollusc- rich hardgrounds (-
 1976: 74).
3. Material
The following abbreviation is used to denote the repository
of the studied material referred to in the text: S, Museum
of the Staringmonument Foundation (Stichting Het Staring-
monument), Losser (the Netherlands). The majority of the
material comprises only strongly fragmented exoskeletal
elements; none of them in anatomical association. Some
90 specimens have been registered and archived in the so-
called Anderson- collection of the Staringmonument Foun-
  
in morphology as compared to each other. Therefore, it is
assumed that all remains belong to the same species. The
derived average length (total length) and height of the cara-
paces are 32 mm and 13 mm, respectively.
From proportional values obtained from various body
parts, mainly carapaces, an average body length from the
tip of the rostrum to the distal margin of the telson of ca.
-
dividuals have not been observed. Relatively few imprints
of pereiopods have been collected. An average size of be-
tween 60 and 70 mm could be derived for the total length of

have been observed so far.
Fig. 3. Hauterivian biostratigraphy with ammonite zonations and calcareous nannofossil BC zones, correlated to the lithol-
 &  2014).
eschweizerbart_xxx
164 H.F.J. Becker et al.
4. Systematic palaeontology
Subphylum Crustacea , 1772
Class Malacostraca , 1802
Order Decapoda , 1802
Superfamily Glypheoidea , 1885
Family Glypheidae , 1885
Genus Glypheopsis , 1928
emend.  et al. (2013)
Glypheopsis tubantiensis n. sp.
Figs. 4, 7, 8
1980 Glyphea Cretacea. – , pp. 74, 77–78 ;

1980 Glyphea cf. Cretacea. – , p. 77; unnum-

1992 Glyphea cretacea. – 
Etymology: Named after the region in which the Tubantes,
a Franco- Germanic tribe, presumably settled here from pre-
Roman until early medieval times. Nowadays the region’s
name is Twente, probably derived from the name of the
aforementioned tribe.
Type material: The holotype, S 1367a, b, slab and counter
slab, comprises a carapace, disrupted pleon, and fragmen-
tary pereiopods (Figs. 6, 7A, B). The paratypes, S 1381,
a carapace with fragmentary pereiopods (Fig. 7E), and
S 1407, a carapace dorsally orientated (Fig. 8D). The ho-
lotype S 1367a, b (slab and counter slab) is stored in the
Oertijdmuseum, Boxtel, the Netherlands. All other material
used is stored in the museum of the Stichting Het Staring-
monument, Losser, the Netherlands.
Type locality:     

Diagnosis: Typical Glypheopsis with gastro- orbital ridge
bending antero- dorsally and disappearing close to the ros-
tral margin. Area between antero- dorsal gastro- orbital ridge
and the anterior margin occupied by a shallow lobe of acute
triangular shape. Antennal ridge extending anteriorly to the
antero- ventral margin. Antennal notch absent. Hepatic re-
gion bilobed.
Description: The carapace is sub- cylindrical, laterally com-
pressed; the cephalon is relatively small; the short, point-
ed, spineless rostrum is straight, occasionally bent slightly
upwards; cephalic region with longitudinal spiny carinae,
orbital carinae considerably closer to the dorsal centre line
than to gastro- orbital carina, anteriorly, orbital carinae clos-
er to centre line, posteriorly increasingly spaced (Fig. 7D);
all carinae tuberculated; gastro- orbital and antennal carinae
more pronounced than the orbital ones and tubercles are
more pronounced, occasionally spiny; intermediate regions
smooth with occasional tubercles; gastro- orbital and anten-
nal carinae run sub- parallel for most of their extension; an-
teriorly, the gastro- orbital carina bends antero- dorsally and
disappears close to the rostral margin. The area between the
antero- dorsally bent orbital carina and the anterior margin
is occupied by a shallow lobe of an acute triangular shape;
antennal carina extends anteriorly to the antero- ventral edge;
the anterior course of the lateral carinae give room for a sin-
gle frontal notch (Figs. 4, 7F). The cephalic carinae extend
posteriorly close to the cervical groove; consequently, the
gastro- orbital groove is absent (Fig. 7F). The ventral margin
of the antenna region extends straight postero- ventrally by
Fig. 4. Glypheopsis tubantiensis, drawing compiled from S 1381 (outline), S 1367, S 1322, and others. Scale bar: 1 cm.
Note the lapses of the gastro- orbital and antennal ridges, the single anterior (orbital) notch, the weak triangular lobe close
to the anterior margin, and the steeply inclining margin of the pterygostomial region towards the antennal region. Abbre-
viations: a, branchiocardiac groove; ac, antennal ridge; e1e, cervical groove; gc, gastro- orbital ridge; hr, hepatic region;
i, inferior groove; py, pterygostomial region; tl, triangular lobe.
eschweizerbart_xxx
165
Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster
ca. 16° with respect to the antennal carina for about 3/4 of
its total length. Where the pterygostomial region merges the
ventral margin of the antennal region, the latter bends fur-
ther down by about 40° to terminate at the cervical groove.
Epistome not preserved. Deep and broad sinusoidal cervical
groove, intercepting dorsal midline at ca. 70° at a distance
of ca. 0.45 of the total length of the dorsal margin from ante-
rior, terminating ventrally at the merge of the antennal- and
hepatic groove at ca. 90°; intercervical groove weakly de-
veloped, occasionally present as a shallow trough on some
specimens; bilobed hepatic groove unlinked to cervical
groove; deep sub- parallel postcervical and branchiocardiac
grooves; postcervical groove joins branchiocardiac groove
dorsally and ventrally, delimiting elongate, club- shaped
lobe; branchiocardiac groove intercepting dorsal margin of
carapace at angle of ca. 25° at distance of ca. 15 % of to-
tal length of dorsal margin from posterior; shallow cardiac
groove perpendicular at dorsal midline at about one third
total length of cardiac region from branchiocardiac groove;
concave inferior groove. Thoracic region tuberculated; bran-
chial and pterygostomial regions with uniform, evenly dis-
tributed tubercles; cardiac region more irregular and coarser
Fig. 6. G. tubantiensis (A) and G. cretacea (B) compared. Scale bar: 1 cm. A compiled as outlined in Fig. 4; B drawn from
SM B22332 ( et al. (2013
Fig. 5. Drawing of elements of pereiopod 1 (P1) compiled from slabs S 1408a (Fig. 8B) and S 1408b. The merus differs
from the majority of the observed meri in being broader and spiny. Abbreviations: me, merus; cp, carpus; pr, propodus.
Scale bar: 1 cm
eschweizerbart_xxx
166 H.F.J. Becker et al.
eschweizerbart_xxx
167
Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster
tuberculated than branchial region. A rim, proximally ac-
companied by a groove, extends along the entire ventral and
posterior margin of the carapace. It is strongly pronounced
at the antennal region, least pronounced at the pterygosto-
mial region and strongest at the posterior and postero- dorsal
margin of the thoracic region (Fig. 7D–F). The appearance
of the pleon (pl) generally corresponds in size, ornamenta-
tion and proportion with other Glypheidae (Figs. 7C, 8E).
The subchelate pereiopod 1 (P1) has a relatively long,
slender merus, short and sturdy carpus, a sturdy trapeziform
propodus, and a dagger- like dactylus; surfaces are smooth;
occasionally the pereiopods’ margins show a bead of tender
holes (Fig. 8B). The meri of S 1408a, b differ from the above
description in being broader and spiny (Figs. 5, 8F).
5. Discussion and conclusions
Four species of Glypheopsis have been described from
the Early Cretaceous so far ( et al. 2013).
G. franzini (, 2011), G. georgiensis (,
1979) and G. santaecrucis , 1969 are known
from the Early Cretaceous. G. franzini, from the Albian
of France, differs from G. tubantiensis n. sp. in having
a much coarser and forwardly directed tuberculation,
a straight instead of bilobed intercervical and hepatic
grooves, and a more medially expanded pterygostomi-
al region. G. georgiensis, from the Early Cretaceous of
Antarctica, has a less angular corner between the cer-
vical and antennal groove, a straight instead of bilobed
intercervical groove and an anteriorly more elongated
pterygostomial region. G. santaecrucis, from the Al-
bian of Poland, has a downturned anterior part of the
gastric region, and straight instead of bilobed intercer-
vical and hepatic grooves.
G. cretacea has been reported from the Albian and
earliest Cenomanian (Cambridge Greensand) of the
United Kingdom. It differs from G. tubantiensis n. sp.
in having the angle at which the cervical groove joins
the dorsal margin of about 85°, but it is about 70° at
G. tubantiensis. In G. cretacea, the spacing between
      
      
orbital and antennal carinae. The cardiac region of
G. cretacea is smooth, whilst it is regularly tubercu-
lated in G. tubantiensis. In the latter, the gastro- orbital
carina bends dorso- ventrally in a short distance before
reaching the anterior margin and disappears before
reaching the orbito- frontal margin; the antennal cari-
na terminates anteriorly at the antero- ventral frontal
margin by forming a single frontal notch. The ven-
tral section of the cervical groove of G. tubantiensis
bends antero- ventrally by ca. 45° before it meets the
antennal grove almost perpendicularly at the merging
point of the hepatic groove. In G. cretacea, the angle
between the cervical groove and the antennal groove
is less acute. In G. cretacea, the ventral margin of the
hepatic region extends from 1/3 posterior of the an-
tennal region and continues posteriorly in a shallow
concave shape. In G. tubantiensis, the hepatic region
ranges from shortly anterior to the acute bent of the
ventral margin of the antennal region and continues
postero- ventrally with an even steeper angle before it
resumes its rounded shape (Fig. 6). The average size
of G. tubantiensis is considerably larger than in G. cre-
tacea.
Glypheopsis cretacea has been reported from the
Hauterivian of the Lower Saxony Basin (LSB) and its
periphery by    &  (1868:
296),  (1879: 589),  (1973:
4, 5), and  (1968: 62, 69, 70). However, these
reports have in common that the specimens mentioned
lack any explanatory descriptions and images.
 et al. (2013) published an extensive
review of the fossil and extant Glypheidae, with Gly-
phea , 1835 and Glypheopsis , 1928
being the most representative genera of the family.
The oldest unambiguous Glypheopsis species have
been reported from the Sinemurian (Early Jurassic).
Most species are of Middle and Late Jurassic age and
are mainly described from Europe. Although records
from various continents have been published, neither
a continuous temporal range nor a global distribution
Fig. 7. AFGlypheopsis tubantiensis n. sp., A and B: S 1367a and S 1367b, holotype, slab and counter slab. A, S 1367a,
slab: partially preserved cephalon, abdomen, and pereiopods with the medial part of propodus, carpus, and an imprint of the
merus; B, S 1367b, counter slab: left lateral view of the distal surface of the carapace and pereiopods; C, S 1367a, detail of
abdomen; dislocated at pleon 5; D, S 1367b, cast of the carapace, left lateral view; the positive illusion is obtained by illu-
minating the imprint from below right and swapping the image; E, S 1381, paratype: carapace and pereiopods; F, S 1322,
left lateral view of an incomplete carapace. The anterior section of the cephalon shows some of the distinctive characters
of G. tubantiensis. The image is manipulated like Fig. 7D. Scale bars: 1 cm. Abbreviations: ac, antennal ridge; gc, gastro-
orbital ridge; on, orbital notch, P1, pereiopod 1; pl, pleon.
eschweizerbart_xxx
168 H.F.J. Becker et al.
eschweizerbart_xxx
169
Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster
of any Glypheopsis species has been demonstrated yet.
G. tubantiensis n. sp. now narrows the huge temporal
gap between records of Tithonian (Late Jurassic) and
Albian (late Early Cretaceous) age. Most Glypheopsis
species, including G. tubantiensis n. sp., might have
been endemic.
The genus Glypheopsis survived the K/Pg Ex-
tinction Event on the southern hemisphere and died
out in the Bartonian (Eocene) of New Zealand with
G. christeyi ( & , 1999). The ge-
nus Glyphea became extinct long before the K/Pg Ex-
tinction Event ( et al. 2013: tables 1, 5).
Surprisingly, however, the glypheids do have mod-
ern representatives, Neoglyphea inopinata  &
  , 1975, from the South- Chinese
Sea, and Laurentaeglyphea neocaledonica (
, 2006), from New Caledonia.
Acknowledgements
Our appreciation goes to the board and volunteers of the
Stichting Het Staringmonument. Special thanks to 
 for his extensive advice and for his permission
to use the origins of Figs. 2 and 3. For the micropalaeonto-
logical analysis of samples of the Gildehaus Sandstone of
the Staring Quarry we have to thank  
and, again,  , both Ruhruniversität Bo-
chum. Thanks to  (Losser) for the photograph
of Fig. 1b. For their effort and their profound and construc-
tive advice, which greatly improved an earlier version of the
typescript, we thank the reviewers  
and .
References
        
Chinesche Zee en de afdrukken van zijn voorouders in
de Staringgroeve te Losser. – Grondboor & Hamer, 34
(3): 74–81.
 (1928): Die Decapoden des schwäbischen Jura
mit Ausnahme der aus den oberjurassischen Plattenkal-
ken stammenden. – Palaeontographica, 70: 115–278.
 (2011): Deux nouvelles espèces de crustacés dé-
capodes de l’Albien du Bassin de Paris. – Geodiversitas,
33 (2): 279–284. doi: 10.5252/g2011n2a5
 (2001): Facsimile reprint with introduction,
Dutch translation and English summary of Specimen
academicum inaugurale de geologia patriae: PhD-the-
sis by Staring, W.C.H. (1833). – Staringia, 10 / Grond-
boor & Hamer, 55 (5a): 176 pp.
  (1772): Zoologiae fundamenta praelec-
tionibus academicis accomodata. Grunde i Dyrelaeren.
254 pp.; Copenhagen & Leipzig (F.C. Pelt).
, ,   ,  ,
  &  (2015): Phylogeny of
fossil and extant glypheid and litogastrid lobsters (Crusta-
cea, Decapoda) as revealed by morphological charac-
ters. – Cladistics, 31: 231–249. doi: 10.1111/cla.12088
, ,  & -
 (2013): A worldwide review of fossil and extant
glypheid and litogastrid lobsters (Crustacea, Decapoda,
-
toire Naturelle, 205: 304 pp.
 (1969): Some decapod crustaceans from the
Lower Cretaceous of Poland and England. – Acta Palae-
ontologica Polonica, 14 (4): 565–572.
 (2002): Bivalvia from the Gildehaus Sandstone
(Hauterivian; Lower Cretaceous) of Losser, Twente, The
Netherlands. – 47 pp.; Losser (Stichting Het Staring-
monument).
 &  (1999): A new species
of glypheid lobster, Glyphea christeyi (Decapoda: Pali-
nura), from the Eocene (Bartonian) Waihao Greensand,
South Canterbury, New Zealand. – New Zealand Jour-
nal of Geology & Geophysics, 42: 75–78. doi: 10.1080/
00288306.1999.9514832
 &  (2012): A new glypheid
lobster from the Late Cretaceous of Hawke’s Bay, New
Zealand. – Journal of Paleontology, 86 (1): 126–128.
doi: 10.1666/11-057.1
 , (1971): Die Mecochiridae, eine spezialisierte
Familie der mesozoischen Glypheoidea (Crustacea, De-
capoda). Neues Jahrbuch für Geologie und Paläontolo-
gie, Abhandlungen, 137 (3): 396–421.
 &  (1975): Présence dans la
faune actuelle d’un représentant du groupe mésozoïque
des Glyphéides: Neoglyphea inopinata gen. nov., sp. nov.
(Crustacea Decapoda Glypheidae). – Comptes Rendus
de l’Académie des Sciences, Série D, 281: 155–158.
  (2012): Ammonieten uit het Vroeg-
Krijt. – In:  ,   &
  (eds.): Fossiele Cephalopoden van
Fig. 8. A–GG. tubantiensis, A, S 1320, abdomen, interior surface and partial carapace; B, S 1481, pereiopods 1 of a pre-
sumably male specimen in left lateral view, showing the meri, carpi, propodi, and dactyli; C, S 1347, left lateral view of the
external surface of the carapace, showing characteristic features of the anterior cephalic region, the antero- dorsal margin of
the gastric region and the posterior margin of branchial region are not preserved; D, S 1407, carapace in interior dorsal view;
E, S 0273, pleon, somites 1–5 in dorsal view; F, S 0269, carapace, left lateral view of the interior surface, anterior margin
incomplete; G, S 1408b, counter slab, assembly of pereiopods together with an imprint of a section of an antenna (an) and
a weak imprint of a posterior branchial region (br), probably of the same specimen. Scale bars: 1 cm.
eschweizerbart_xxx
170 H.F.J. Becker et al.
Nederland. – Staringia, 13 / Grondboor & Hamer, 66
(1): 104–115.
 (1968): De Gildehauser Zandsteen bij Gildehaus
en Losser. – Grondboor & Hamer, 22 (2): 58–74.
  (1976): Geologischer Führer durch die Graf-
schaft Bentheim und die angrenzenden Gebiete, mit
einem Abriß der emsländischen Unterkreide (5th edi-
tion). – 206 pp.; Nordhorn (Heimatverein der Grafschaft
Bent heim).
 (1992): Die tiefe Unterkreide im Vechte- Dinkel-
Gebiet (westliches Niedersächsisches Becken). – 95 pp.;
Losser (Stichting Het Staringmonument).
  (1802–1803): Histoire naturelle, générale
et particulière, des Crustacés et des Insectes, 3: 467 pp.;
Paris (Dufart).
  (1854): On some new Cretaceous Crustacea.
Annals and Magazine of Natural History, Series 2, 14:
116–122. doi: 10.1080/037454809494314
        
Jahrbuch für Mineralogie, Geognosie, Geologie und Pe-
trefaktenkunde, 1835: 328–329.
 &   (2014): Middle Hauterivi-
an biostratigraphy and palaeoceanography of the Lower
Saxony Basin (Northwest Germany). – Zeitschrift der
Deutschen Gesellschaft für Geowissenschaften, 165 (4):
501–520. doi: 10.1127/1860-1804/2014/0084
 (1973): Fossile Krebse aus dem Raum Han-
nover. – Arbeitskreis Paläontologie Hannover, 5: 1–7.
 (2006): Discovery in Coral Sea of a
second species of glypheid (Crustacea, Decapoda, Gly-
pheoidea). – Zoosystema, 28 (1): 17–29.
 (1879): Neue und weniger gekannte Kreide-
und Tertiär-Krebse des nördlichen Deutschlands. – Zeit-
schrift der Deutschen Geologischen Gesellschaft, 31:
586–615.
 (1963): New contributions to Mesozoic stra-
tigraphy by means of nannofossils. – Proceedings of the
Sixth World Petroleum Congress. Section 1, Paper 4:
167–183.
 (1979): Macrurous Decapoda from the Lower
Cretaceous of South- Eastern Alexander Island. – British
81: 1–39.
  (1979): J.G.S. van Breda en de Com-
missie voor de Geologische Kaart van Nederland,
1852–1855. – In:  &   
(eds.): Leven en werken van J.G.S. van Breda
(1788–1876): 267–402; Groningen (Tjeenk Willink).
 &  (1868): Neue Fische
und Krebse aus der Kreide von Westphalen. – Palaeon-
tographica, 15: 269–310.
  (1910): Ueber die Lobenentwicklung der
Simbirskiten. – Sitzungsberichte der Gesellschaft Natur-
forschender Freunde zu Berlin, 3: 93–105.
 (1878): On Meyeria Willettii, a new macru-
rous crustacean from the Chalk of Sussex. – Geological
Magazine, New Series, 2 (5): 556–558.
 (1885): Handbuch der Palaeontologie. I. Ab-
theilung Palaeozoologie. II. Band, Mollusca und Ar-
thropoda: 679–721; München (Oldenbourg).
Manuscript received: October 6th, 2020.
Revised version accepted by the Stuttgart editor: Decem-
ber 4th, 2020.
Addresses of the authors:
, Spoolderlanden 10, 7542 CS En-
schede, the Netherlands;
e-mail: hfjbecker@ziggo.nl
, Oertijdmuseum, Bosscheweg 80,
5283 WB Boxtel, the Netherlands;
e-mail: info@oertijdmuseum.nl
, Museum Natura Docet/Wonder-
ryck Twente, Oldenzaalsestraat 39, 7591 GL Dene-
kamp, the Netherlands;
e-mail: e.mulder@wonderryck.nl
eschweizerbart_xxx
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In the Early Cretaceous an epicontinental sea covered most of what is nowadays Northwest Germany. Sediments accumulated in a synsedimentary subsiding basin, the Lower Saxony Basin (= LSB), which formed the southern extension of the proto-North Sea. Two sedimentary successions of mid-Hauterivian age (calcareous nannofossil zones BC8–9) were correlated by means of coccolith biostratigraphy. The sections represent (a) a marginal marine environment, German Marine Sedimente der Unterkreide haben heute in Nordwestdeutschland eine weite Verbreitung. In der frühen Kreide bildete dieser Raum einen epikontinental-marin geprägten Sedimentationsbereich, der auch als Niedersächsisches Becken bezeichnet wird und die südliche Fortsetzung der Proto-Nordsee darstellt. Zwei Profile, die ein hauterivezeitliches Alter haben (Nannofossil Zonen BC8–9) wurden mittels Coccolithenbiostratigrafie korreliert. Diese Profile repräsentieren zwei unterschiedliche Ablagerungsräume im Niedersächsischen Becken. Ein randlich-mariner Ablagerungsbereich mit einer Küstenentfernung von 50 km Küstenentfernung, hingegen durch Tone und Siltsteine (Resse). Ziel dieser Arbeit war die Rekonstruktion der paläoozeanografischen Verhältnisse im Niedersächsischen Becken während des mittleren Hauterive. Zu diesem Zweck wurden die zeitgleichen Nannofossilassoziationen des Rand- und Beckenprofils analysiert, interpretiert und palökologisch gedeutet. Im Raum Emlichheim (6 km südöstlich der deutsch-niederländischen Grenze) ist der Gildehaus-Sandstein mit groben Siliziklastika und Tonsteineinschaltungen entwickelt. Die tonige Matrix führt eine diverse Nannofossil-Vergesellschaftung, die in Kombination mit der Lithologie eine sequenzstratigrafische Interpretation des Gildehaus-Sandsteins ermöglicht. Die Ton- und Siltsteine des Beckenprofils (Resse) sind neben den Nannofloren durch reiche Ammonitenfaunen gekennzeichnet. Letztere zeigen innerhalb des Profils deutliche Änderungen in ihrer provinziellen Herkunft; endemische, tethyale und boreale Taxa schließen sich in ihrer vertikalen Verbreitung aus. Die quantitative Analyse der kalkigen Nannofloren ergab, dass die relative Häufigkeit der Nährstoff-Indikatoren Zeugrhabdotus erectus und Biscutum constans der beiden Lokalitäten gegensätzlich ist. In Emlichheim ist Z. erectus häufiger als B. constans, während in Resse B. constans dominiert. Dies unterstützt die Annahme, dass die beiden Taxa sich in ihren ökologischen Präferenzen unterscheiden und dass der limitierende Parameter die Höhe des Nährstoffgehalts ist. Damit spiegelt sich in den beiden Profilen ein unterschiedlicher Nährstoffeintrag wider. Korrespondierend mit dem Wechsel der Ammonitenfauna von endemischen zu kosmopolitischen Formen zeigen die kalkigen Nannofossilien in Resse einen starken Anstieg der absoluten Häufigkeiten. Die Nannofossil-, Ammoniten- und δ18Obel-Daten sowie die Lithologie der bearbeiteten Profile dokumentieren einen Anstieg des Nährstoffgehalts, eine Regression und eine schwache Erwärmung.
Article
A new species of glypheid of the previously monotypic genus Neoglyphea Forest & de Saint Laurent, 1975, N. neocaledonica n. sp., is described from deep waters in the Coral Sea. The unique female specimen is described and compared to the other species of the genus, N. inopinata Forest & de Saint Laurent, 1975. The two species can be easily separated by a series of characters: in N. neocaledonica n. sp., the general shape is more stout, the anterior part of the cephalothorax bears a series of dorsal carinas, the first pereiopods are shorter, the eyes larger, the coloration consists of spots pattern. © Publications Scientifiques du Muséum national d'Histoire naturelle.
Article
A phylogenetic analysis of a total of 31 species: 27 fossil species from seven families (Glypheidae, Litogastridae, Mecochiridae, Pemphicidae, Erymidae, Clytiopsidae, Chimaerastacidae), and four extant species from three families (Glypheidae, Nephropidae, Stenopodidae) is proposed. Most of the genera considered are coded exclusively based upon their type species and, as much as possible, based upon the type specimens. The cladistic analysis demonstrates that the glypheidean lobsters (infraorder Glypheidea) form a monophyletic group including two superfamilies: Glypheoidea and Pemphicoidea new status. Glypheoidea includes three families: Glypheidae, Mecochiridae and Litogastridae. Litogastridae is the sister group of the clade Glypheidae + Mecochiridae. Pemphicoidea includes a single family: Pemphicidae. A new classification of Glypheidea is proposed and currently known genera are rearranged based upon the phylogenetic analysis.