Conference PaperPDF Available

A Review of Trust in Artificial Intelligence: Challenges, Vulnerabilities and Future Directions

A Review of Trust in Artificial Intelligence: Challenges, Vulnerabilities and
Future Directions
Steven Lockey
University of Queensland
Nicole Gillespie
University of Queensland
Daniel Holm
University of Queensland
Ida Asadi Someh
University of Queensland
Artificial Intelligence (AI) can benefit society, but it
is also fraught with risks. Societal adoption of AI is
recognized to depend on stakeholder trust in AI, yet
the literature on trust in AI is fragmented, and little is
known about the vulnerabilities faced by different
stakeholders, making it is difficult to draw on this
evidence-base to inform practice and policy. We
undertake a literature review to take stock of what is
known about the antecedents of trust in AI, and
organize our findings around five trust challenges
unique to or exacerbated by AI. Further, we develop
a concept matrix identifying the key vulnerabilities to
stakeholders raised by each of the challenges, and
propose a multi-stakeholder approach to future
1. Introduction
Artificial Intelligence (AI) is an increasingly
ubiquitous aspect of modern life that has had a
transformative impact on how we live and work [1].
However, despite holding much promise AI has been
implicated in high profile breaches of trust and ethical
standards and concerns have been raised over the use
of AI in initiatives and technologies that could be
inimical to society. For example, AI underpins lethal
autonomous weapons, is central to mass surveillance,
and is subject to racial bias in healthcare.
Trust is vital for AI’s continued social license. The
European Commission's AI High-Level Expert Group
(AI HLEG) highlight that if AI systems do not prove
to be worthy of trust, their widespread acceptance and
adoption will be hindered, and the vast potential
societal and economic benefits will remain unrealized
[2]. While trust has been shown to be important for the
adoption of a range of technologies [3], AI creates an
array of qualitatively different trust challenges
compared to more traditional information technologies
[4]. In response, the AI HLEG provided a set of
guidelines for the development, deployment and use of
trustworthy AI [2]. These guidelines are just one of
many [5].
Research shows that trust is an important predictor
of the willingness to adopt a range of AI systems, from
product recommendation agents [e.g., 6, 7] and AI-
enabled banking [e.g., 8] to autonomous vehicles
(AVs) [e.g., 9, 10]. Given the central role of trust, there
is a strong practical need to understand what
influences and facilitates trust in AI, with multiple
recent calls for research from policymakers [2, 11],
industry [12] and scholars [e.g., 13, 14].
Yet we are only at an early stage of understanding
the antecedents of trust in AI systems. A recent review
of the empirical literature suggests that AI
representation plays an important role in the
development of trust [15] and differentially impacts
trust over time; for robotic AI, trust tends to start low
and increase over time, but for virtual and embedded
AI the opposite commonly occurs. However, it is
difficult however to isolate the antecedents of trust in
this work, as trust was equated with affect [e.g. 16]
attraction to [e.g. 17] and general perceptions of AI
[e.g. 18]. Previous meta-analyses have examined the
antecedents to trust in specific applications of AI, such
as human-robot interaction [19] and automation [20],
but have not taken into account human trust in AI more
In this review, we take stock of the scholarly
literature over the past two decades to examine the
antecedents of trust in AI systems. Our review differs
to prior work in four ways: 1) our organization of the
literature around five trust challenges that are unique
to, or exacerbated by, the inherent characteristics of
AI; 2) our focus on articles that operationalize trust in
line with established definitions; 3) a focus on trust in
all forms of AI; and 4) the integration of conceptual
and empirical scholarship.
We contribute to the literature on trust in AI in
three ways. First by synthesizing the fragmented and
interdisciplinary literatures to meaningfully take stock
of what we know about the antecedents of trust in AI.
Second, by developing a concept matrix identifying
the key vulnerabilities for stakeholders raised by each
of the five AI trust challenges. Third, by drawing on
this matrix to identify omissions in current
Proceedings of the 54th Hawaii International Conference on System Sciences | 2021
Page 5463
(CC BY-NC-ND 4.0)
understanding and promising directions for future
2. Defining AI and Trust
2.1. Conceptualizing AI
We adopt the OECD's [21] definition of AI, as
recently recommended by AI experts [22]: "a
machine-based system that can, for a given set of
human-defined objectives, make predictions,
recommendations, or decisions influencing real or
virtual environments…AI systems are designed to
operate with varying levels of autonomy".
Most notable advances in AI are driven by machine
learning [23], a subset of AI and can be defined as a
"machine’s ability to keep improving its performance
without humans having to explain exactly how to
accomplish all the tasks it’s given” [34]. A further
subset of machine learning is deep learning, which is
a specialized class of machine learning that is built on
artificial neural networks [25]. Advances in machine
learning and the shift from rule-based to algorithmic
learning exponentially increases the power and
functionality of these systems, enabling more accurate
results than previous iterations. However, they also
change the nature of how IT artifacts are designed and
work [26], their capacity for autonomous functioning,
creating risks, challenges and uncertainties [27] not
inherent in traditional technologies. Trust matters most
under conditions of risk and uncertainty [28, 29].
2.2. Conceptualizing trust
We adapt popular, cross-disciplinary definitions
[30, 31] to define trust as a psychological state
comprising the intention to accept vulnerability based
upon positive expectations of the intentions or
behaviour of another entity (e.g. an AI system).
The two defining components of trust are the
intention to accept vulnerability based on positive
expectations. In positioning their stance on trust in IT
artifacts, McKnight et al. [32, p. 3] note: “trust
situations arise when one has to make oneself
vulnerable by relying on another person or object”.
Trust is only relevant under conditions of risk and
uncertainty, where misplaced trust results in loss or
harm [32]. Examples include relying on an
autonomous vehicle to drive safely, or on the
decision of an AI system to be accurate and unbiased.
Vulnerability is central to trust and captures the ‘leap
of faith’ required to engage with entities under
conditions of risk and uncertainty.
A foundational tenet of trust theory is that this
willingness to be vulnerable should be based on 'good
reasons' [33]. 'Trusting' without good reasons (or
positive expectations) is not trust at all; it amounts to
hope or blind faith. Positive expectations of AI
systems can be based on system-oriented assessments
of functionality, reliability and predictability, and
helpfulness [32]. Hence, there must be some expected
utility or value to accept vulnerability to an AI
system that is, positive expectations that the system
will be useful, reliable and operate as intended.
Trust theory and research highlights the
importance of understanding the trustor (i.e. who is
doing the trusting), the referent of trust (i.e. what or
whom are they trusting in), and the nature of trusting
(i.e. what are the risks, vulnerabilities or dependence
in the trusting act) [34, 35, 36]. Understanding the
trustor (i.e. the stakeholder) is particularly important
in the context of AI, as it will influence the nature of
the risks and vulnerabilities inherent in trusting an AI
system, and hence the salient cues and antecedents
that influence trust. For example, domain experts are
likely to pay attention to different trust cues than
those that impact end users or customers.
3. Methodology
We conducted an interdisciplinary literature
review using the Web of Science and EBSCO
Business Source Complete databases, searching for
the terms “*trust*” AND “Artificial Intelligence” OR
“Machine Learning” OR “Deep Learning. Peer-
reviewed journal articles, conference and symposia
papers and proceedings, and book chapters published
since 2000 were included in our review. We further
examined the reference lists of recent review articles
on trust in AI, robots and automation [e.g. 15, 19] and
highly cited papers [e.g. 13] to identify additional
articles that met our inclusion criteria.
We excluded articles that did not address
antecedents of trust in AI, either conceptually or
empirically, and did not meet a commonly accepted
definition or conceptualization of trust (e.g., where
trust was conflated with distinct constructs, such as
emotion or attraction). Reasons for exclusion
included: a focus on computational trust, discussion of
trusts in the financial/legal sense (e.g., trust fund ) or
healthcare (e.g., an NHS trust), articles in which trust
was peripheral rather than central to the article, or in
empirical papers that mention trust but did not
measure it. After this screening process, our search
produced 102 relevant articles.
Our review comprised more empirical (57%) than
conceptual (43%) articles. Most empirical papers were
experimental (47/58 papers), and only one paper used
Page 5464
a mixed-method design. 71% of papers were published
in 2016 or later, and the earliest article in our review
was published in 2005. Articles reflected a diversity of
fields, including information systems, computer
science, ergonomics, business and economics,
psychology, medicine, and law.
4. Literature Review: AI Trust
We organize our review by focusing on concepts
related to five central AI trust challenges: 1)
transparency and explainability, 2) accuracy and
reliability, 3) automation, 4) anthropomorphism, and
5) mass data extraction. These five trust challenges
capture the large majority of articles identified by our
review. This approach positions our paper as an
organizing review [37]. For each concept, we first
explain the trust challenge, before synthesizing the
relevant literature.
4.1. Transparency and Explainability
AI is often considered a ‘black box’ [38].
Advanced algorithmic learning methods (such as deep
learning) are inherently not transparent or explainable.
The antidote to this black box is creating AI that can
explain itself, where decisions and predictions are
made transparently. However, there is a tension
between accuracy and explainability, in that models
that perform best tend to be the least transparent and
explainable, while the ones most able to provide the
clearest explanations are the least accurate [39]. There
is an entire field of research dedicated to making AI
more explainable and transparent, with the central aim
of improving user trust [38].
Many articles in our review theorize or empirically
demonstrate that transparency and explainability of AI
applications facilitate trust. In healthcare, scholars
argue that interpretable models that are explainable
and transparent are necessary to enable clinicians to
understand and trust in the outcomes of clinical
support systems [40, 41]. However, full transparency
may be difficult to achieve in practice. Instead,
different levels of transparency can be used based on
factors such as level of risk and the ability of the
clinician to evaluate the decision [41].
Explanations are argued to play a key role in
facilitating trust in AI systems [42], particularly when
the user lacks previous experience with the system.
Researchers propose that system transparency is a key
mitigator of user overtrust, that is trusting AI more
than is warranted by its capabilities [43, 44]. However,
explanations may actually cause overtrust [45] and can
be manipulative [46]. The seminal ‘Copy Machine’
study [47] showed that providing an explanation, even
without a legitimate reason, was effective in
promoting compliance. This is particularly
problematic when the audience of the explanation (e.g.
an end user) diverges from its beneficiary (e.g. a
deploying organization; [46]). System explanations
are problematic when produced alongside incorrect
results, particularly when they seem plausible [45].
Empirical research demonstrates the positive
impact of AI transparency and explainability on trust
[e.g. 48, 49, 50]. Experimental research undertaken in
military settings indicates that when human operators
and AI agents collaborate, increased transparency
enhances trust [48,49]. Explanations have been shown
to increase trust in the results of a product release
planning tool [51].
However, research further suggests that the
relationship between transparency and trust is not
straightforward. For example, in the context of
students interacting with an AI assessment grading
tool, providing procedural transparency about the
fairness of the algorithm was found to buffer the
negative impact of expectation violation on trust [52].
However, providing more transparency related to the
outcome (how the raw grade was calculated) did not
enhance trust, indicating that the type and amount of
transparency matters.
4.2. Accuracy and Reliability
A key trust challenge relates to the accuracy of AI
systems, as inaccurate outcomes can lead to bias,
inequality and harm. AI systems can be configured to
optimize a variety of accuracy metrics, and may have
a high rate of accuracy for certain predictions (e.g.
outcomes for white men), but not others (e.g.
outcomes for minority groups) [53]. A study of
automated facial analysis algorithms demonstrated
this problem; there were significantly more
misclassifications of darker-skinned females than
lighter-skinned males [54]. Hence, relying on
accuracy metrics alone may not be sufficient to garner
trust in AI applications; the fairness of the system is
also relevant [53].
Several experiments show that as the reliance,
accuracy or performance of AI systems decreases, so
does user trust [55, 56]. The timing of a reliability
failure also matters. Unreliable performance early in
one's experience with a system may cause more
significant trust break down than failure later in an
interaction [57]. Moreover, even if an AI agent is
accurate, users may not trust it [58]: they also need to
perceive that it is accurate. For example, teams
engaged in a large, street-based game were regularly
Page 5465
mistrustful of the (entirely accurate) information
provided by automated advice, and often chose to
ignore it, despite being told that following the
information was vital for them to progress in the game
However, other research suggests that even though
inaccurate agent behaviour negatively impacts
perceived trustworthiness, this does not necessarily
translate into reduced compliance: users may still
follow instructions from an AI system they believe is
untrustworthy [59]. Taken together, while most
research indicates a positive influence of accuracy on
trust, the relationship is not straightforward and
warrants further research.
4.3. Automation versus augmentation
Automation enables machines to complete tasks
without direct human involvement [60]. Normative
prescriptions tend to advise organizations to prioritize
augmentation human collaboration with machines to
perform a task - over automation. Yet there is an
argument that such neat delineation is not realistic and
that an automation-augmentation paradox exists [60].
As an example, domain experts may work with an AI
system to determine and codify appropriate variables
(augmentation), and the system may then be
automated based on these criteria. However, if
conditions change over time, a further stage of
augmentation will be necessary. This brings into
question the role of the domain expert and the potential
for their role in the augmentation process to ultimately
lead to the automation of their own work.
The impact of automated AI on trust in high-risk
contexts has been conceptually discussed. In
healthcare, there are concerns that AI may disrupt the
bond of trust between doctors and patients [61], and
patients may be more skeptical of automated advice
than advice provided by a doctor [62]. A ‘doctor-in-
the-loop’ approach, in which the doctor both provides
tacit knowledge to AI systems and is the final authority
on decisions proposed by the AI systems, has been
proposed to address these concerns [63]. This
‘augmentation over automation’ approach has
received empirical support. A suite of experiments
found a reluctance to use medical care delivered by AI
providers, except when the AI was used to support the
human provider’s decision, rather than replacing the
human [64]. This ‘human-in-the-loop’ approach has
also been proposed for AI in financial services [65].
Adaptive automation, where automation is not
fixed at the design stage but rather adapts to the
situation, increased trust in a robot during a
collaborative task to a greater extent than when there
was either no automation or static automation.
A concern related to automated AI is the potential
for deskilling if domain experts over-rely on
automated systems [67, 68]. One study found financial
investors trust fully automated artificial advisors more
than human advisors [69]. However other research
indicates that AI over-reliance on AI systems tends to
be experienced by novices; experts are generally less
willing to trust AI systems [70, 71].
4.4. Anthropomorphism and embodiment
Anthropomorphism involves the inclusion of
human-like characteristics into an AI’s design. It has
been theorized that the more human-like an AI agent
is, the more likely humans are to trust and accept it
[72]. However, there are concerns that over-
anthropomorphism may lead to overestimation of the
AI’s capabilities, potentially putting the stakeholder at
risk [73], damaging trust [74], and leading to a host of
ethical and psychological concerns, including
manipulation [75].
Empirical findings broadly support the proposition
that anthropomorphism increases trust in AI. This has
been shown in the context of autonomous vehicles
[72,76], with people demonstrating more trust in AVs
with human features than without [72], as well as in
the context of virtual agents [e.g. 9, 77].
Research into the buffering impact of virtual agent
human-likeness on decreasing reliability found that
although anthropomorphism decreased initial
expectations, it increased trust resilience. When
performance deteriorated, decreases in trust were more
pronounced in a machine-like agent than an
anthropomorphic agent. Embodiment of virtual agents
(i.e. having a physical form) also increases user trust
in the agent, primarily through perceptions of its social
presence [9, 77, 78]. Research also indicates that
augmented reality and 3D agents were perceived as
more trustworthy than those in traditional 2D
interfaces [79].
However, not all empirical work suggests that
anthropomorphism leads to stronger perceptions of
trust. For example, a study investigating the
anthropomorphism of a care robot found that a highly
human-like robot was perceived as less trustworthy
and empathetic than a more machine-like robot [62].
Further research is required to understand when and
how AI anthropomorphism enhances trust, and what
moderates this relationship.
4.5. Mass Data Extraction
AI systems, particularly advanced algorithmic
learning systems, require the extraction and processing
of large amounts of data to function, making them
Page 5466
qualitatively different from traditional IT artifacts
[81]. Data extraction is fundamentally different from
previous forms of market exchange, as it connotes a
one-way taking of data rather than a consensual or
reciprocal process [82].
The trust challenge around data extraction is
primarily around issues of privacy. For end users, loss
of privacy and inappropriate sharing of information is
a concern, and can result in reduced self-
determination. These vulnerabilities can scale to the
societal level to the point where expectations of
privacy as a societal norm may be lost. Indeed,
Facebook CEO Mark Zuckerberg has explicitly stated
that privacy is no longer a social norm [83]. This
proposition is clearly contentious, as privacy is
considered and codified as a fundamental human right
in several democracies, and people usually express
that they value privacy, even if they do not always
demonstrate this proposition in their behavior [84].
Some jurisdictions have taken regulatory
approaches to tackling concerns about big data
extraction, with the European Commission’s General
Data Protection Regulation (GDPR) aiming to give
European residents control over their personal data
through requirement of ‘Privacy by Design’ [85].
While this type of legislation may reduce privacy-
related vulnerabilities of end-users and society, it
introduces a new set of vulnerabilities for domain
experts, who are responsible for ensuring data privacy
and accountable for appropriate data use under threat
of large fines
Research on data extraction and the privacy
concerns that underpin it has been primarily
conceptual. Scholars note big data extraction is an
ethical dilemma in the development and use of AI-
enabled medical systems [62, 86], virtual agents [87]
and smart cities [88]. One solution to ensure citizen
privacy and promote trust is creating an environment
in which data analysis can occur without allowing
organizations to extract the data [88].
The limited empirical work in this area has focused
on the interaction between privacy and trust. For
example, when people have few privacy concerns
related to autonomous vehicles collecting passenger
location information and being used as a conduit for
surveillance, they were more likely to trust in the
autonomous vehicle [89].
Interestingly, a study of virtual agent embodiment
found that participants were more willing to share
private data with an AI agent and more confident that
the agent would respect their privacy when it could
move around naturally and speak compared with a
static agent that could speak [77].
4.6. The Role of Governance in Addressing
AI Trust Challenges
In addition to the five trust challenges, our review
identified two broad, generic mechanisms for
overcoming these trust challenges: familiarity and
governance. Empirical studies indicate that familiarity
and experience engaging with AI systems facilitates
trust [90, 91]. Conceptual work argues that governance
in the form of appropriate controls to ensure
trustworthy AI development and deployment - is a
necessary condition for trust in AI [e.g. 92, 93]. A
recent national survey identified beliefs about the
adequacy of AI regulation and governance to be the
strongest predictor of trust in AI systems [94]. It may
be more important and efficient to make AI systems
verifiably trustworthy via appropriate governance
rather than seek explanations for specific outcomes
[45]. Governance that encourages collaboration
among key stakeholders, supports the recognition and
removal of bias, and clarifies the appropriate control
over and use of personal information has been
proposed to enhance trust [92]. However, this work
further notes that AI development remains largely
unregulated to date [95], despite public expectation of
AI regulation [94; 96].
5. Discussion and Future Directions
Our review demonstrates that research on the
antecedents of trust in AI can largely be organized
around five key trust challenges that are unique to, or
exacerbated by, the inherent features of AI. Each of
these trust challenges raises a set of vulnerabilities or
risks for stakeholders of AI systems. In Table 1, we
present a concept matrix mapping the key
vulnerabilities associated with each of the five trust
challenges for three AI stakeholder groups domain
experts, end users, and society. These stakeholders are
each central to the acceptance and uptake of AI
As shown in Table 1, the use of AI systems open
up (potential or actual) risks and vulnerabilities for
each of these stakeholders, making trust a highly
salient and pertinent concern. Our concept matrix
shows that the vulnerabilities experienced in relation
to an AI system depend on the stakeholders’ role
which determines how they interact with, are
responsible for, or are impacted by the AI systems. In
the next section, we discuss the key vulnerabilities
domain experts, end users and society more broadly
experience in relation to each AI trust challenge, and
how these differ across these stakeholder groups.
Page 5467
Table 1: Concept matrix of the five AI trust challenges and the respective vulnerabilities each creates for
AI trust challenge
Stakeholder vulnerabilities
End user
1. Transparency and
Ability to understand how
decisions affecting them are
Ability to provide meaningful
consent and exercise agency
Knowledge asymmetries
Power imbalance and
Scaled disempowerment
2. Accuracy and
Inaccurate / harmful outcomes
Unfair / discriminatory
Entrenched bias / inequality
Scaled harmed to select
3. Automation
Loss of dignity (humans as data
points; de-contextualization)
Loss of human engagement
Over-reliance and deskilling
Scaled deskilling
Reduced human connection
Scaled technological
Cascading AI failures
4. Anthropomorphism
and embodiment
Manipulation through
Over-reliance and over-sharing
Manipulation through
Human connection and identity
5. Mass data
Personal data capture and loss
of privacy
Inappropriate re-identification
and use of personal data
Loss of control
Inappropriate use of citizen data
Mass surveillance
Loss of societal right to privacy
Power imbalance & societal
Domain experts. Domain experts in deploying
organizations are those with the expert knowledge and
experience in the field of application of the AI system.
For example, doctors in relation to AI-enabled medical
diagnosis applications. Domain expert knowledge can
be used to create codified information used to train AI
systems, meaning they have a role in system input.
Domain experts also work with system outputs, as they
use and interface with AI systems for service delivery.
Key vulnerabilities faced by domain experts relate
to professional knowledge, skills, identity, and
reputation. For example, research suggests that
automation through AI may lead to deskilling [67, 68].
A related vulnerability stemming from the AI
explanability challenge is the ability of the domain
expert to understand the AI system and be able to
explain and justify decisions to other stakeholders,
particularly when AI system outputs are used in
service delivery (e.g. clinical decision making
systems). Anthropomorphism may further threaten the
professional identity of domain experts and cause
over-reliance on human-like agents. The reputational
damage and legal risks from inaccurate or unfair
results, or inappropriate data use, sharing or privacy
breach, place a further burden on accountable domain
End users. End users are those directly influenced
by the output or decisions made by the AI system.
They are vulnerable to any problems, inaccuracies or
biases within the system. More broadly, end users face
vulnerabilities around understanding how AI-based
decisions are made, which can lead to diminished
ability to provide meaningful consent, identify unfair
or unethical impact, and exercise agency. Using the
context of AI in personal insurance as an example,
companies purportedly draw on thousands of data
points to judge the risk of someone making a motor
insurance claim, including whether they drink tap or
bottled water [97]. Understanding exactly how such a
decision was made is impossible for an average
customer, and highlights vulnerabilities around
explainability, data capture and loss of privacy related
to data extracted without consent. Further, AI can be
used to ‘nudge’ customer behavior in a way that is
manipulative and intrusive [97]. Concerns have been
raised that the combination of these vulnerabilities
may lead to the loss of human dignity, and lack of
consideration of personal circumstances, effectively
reducing humans to a series of data points. This is
particularly problematic for underrepresented,
marginalised users.
Society. The focus here is on vulnerabilities that
impact society as a whole, and this stakeholder group
includes regulators. Vulnerabilities at the societal level
include knowledge asymmetry, power centralization
and the potential for cascading AI failures. For
Page 5468
instance, knowledge asymmetry between big tech
companies, policymakers and citizens may result in a
continuous cycle of outdated or ineffective regulation
[98]. Internet giants at the forefront of AI development
and mass data extraction activities have already
amassed a unique concentration of power [99]. The
scaled use of inaccurate, biased or privacy invading AI
technologies on citizens can entrench bias, inequality
and undermine human rights, such as the right to
5.1 A multi-stakeholder perspective on trust
in AI
Our concept matrix outlines the varying
vulnerabilities of key stakeholder groups in relation to
AI systems. Accepting vulnerability is a key element
of trust and understanding and mitigating the risks and
vulnerabilities AI systems pose for stakeholders, is
central to facilitating trust and building the confident
positive expectations that it is founded on. Given this
we propose future research take a multi-stakeholder
approach to examining the antecedents of trust in AI.
Prior research has shown that stakeholders’
varying vulnerabilities in trusting another entity
influence the salience and importance of the cues and
antecedents that inform trust [35]. Understanding the
vulnerabilities and expectations of different
stakeholders of complex socio-technical systems is
also important [100] because stakeholder alignment
facilitates trust in firms seeking to innovate with AI
However, as shown in our review, much of the
research to date has focused on a single stakeholder,
usually an individual end user or domain expert. A
reason for this may be that most empirical research on
the antecedents of trust in AI is experimental, and
places participants either as quasi-users or a non-
specific stakeholder role. Further, trusting behavior,
and the antecedents that influence it, may be different
in an experimental setting than in the field due to the
varying risks, vulnerabilities and trust cues. For
example, it is likely people will behave differently in
an autonomous vehicle on the road than in a ‘safe’
driving simulator.
Moving forward, we see field experiments and
longitudinal case studies examining multiple
stakeholders of an AI system, as fruitful
methodological approaches to deepen understanding
of the antecedents of stakeholder trust in AI systems.
Undertaking longitudinal case studies has the
advantage of providing holistic, contextualised
insights into the development of trust in AI systems
over time. This is likely to provide a more systemic
understanding of hitherto underexplored areas such as
how stakeholder groups converge and diverge in
relation to their vulnerabilities, expectations and trust
in AI.
It is evident from our review that although several
trust challenges have been raised, many have not been
examined empirically, and few have been examined
from the perspective of multiple stakeholders, or the
perspective of society as a stakeholder.
Furthermore empirical studies have tended to
examine whether a concept (such as accuracy or
anthropomorphism) enhances trust, yet high trust is
not always appropriate, and encouraging people to
trust without ‘good reasons’ [33] can be manipulative.
This tension is particularly apparent in studies of
explainability and transparency, and
anthropomorphism. For instance, people can misplace
trust in inaccurate AI systems when provided an
explanation [46], even nonsensical explanations [47],
and anthropomorphism can lead people to believe that
an agent is competent, even in the face of limited
‘good reasons’ [73]. Broadly, these issues can lead to
overtrust and consequent problems. Further research is
required to understand what influences stakeholders to
trust ‘optimally’, that is in a well calibrated manner
that aligns with actual evidence of trustworthiness and
effective AI design that mitigates and minimizes the
likelihood of harmful consequences [102].
6. References*
[1] K. Grace et al., “When will AI exceed human
performance? Evidence from AI experts”, Journal of
Artificial Intelligence Research, 62, 2018, pp.729-754.
[2] AI HLEG, “Ethics Guidelines for Trustworthy AI”,
European Commission, 2018. Retrieved from
[3] M. Söllner et al., “Trust”, in MIS Quarterly Research
Curations, Ashely Bush and Arun Rai, Eds.,, October 31, 2016.
[4] S. Makridakis. “The forthcoming Artificial Intelligence
(AI) revolution: Its impact on society and firms”,
Futures 90, 2017, pp. 46-60.
[5] Algorithm Watch, “AI Ethics Guidelines Global
Inventory”, 2018. Retrieved from
[6] S.Y. Komiak and I. Benbasat, “The effects of
personalization and familiarity on trust and adoption
of recommendation agents”, MIS Quarterly, 2006, pp.
[7] L. Qiu and I. Benbasat, “Evaluating anthropomorphic
product recommendation agents: A social relationship
perspective to designing information systems”, Journal
of Management Information Systems, 25(4), 2009, pp.
[8] E.M Payne et al., “Mobile banking and AI-enabled
mobile banking”, Journal of Research in Interactive
Marketing, 12(3), 2018, pp. 328-346.
Page 5469
[9] I. Panagiotopoulos and G. Dimitrakopoulos, “An
empirical investigation on consumers’ intentions
towards autonomous driving”, Transportation
Research Part C: Emerging Technologies, 95, 2018,
pp. 773-784.
[10] T. Zhang et al.,“The roles of initial trust and perceived
risk in public’s acceptance of automated vehicles”,
Transportation Research Part C: Emerging
Technologies, 98, 2019, pp. 207-220.
[11] US Chamber of Commerce, “US Chamber of
Commerce Principles on Artificial Intelligence”, 2019.
Retrieved from
[12] IEEE Global Initiative on Ethics of Autonomous and
Intelligent Systems, “Ethically Aligned Design: A
Vision for Prioritizing Human Well-being with
Autonomous and Intelligent Systems”, 2019.
Retrieved from
[13] M.T. Ribeiro et al., “Why should I trust you?:
Explaining the predictions of any classifier”,
Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining,
September 2016, pp. 1135-1144.
[14] K. Siau and W. Wang, “Building trust in artificial
intelligence, machine learning, and robotics”, Cutter
Business Technology Journal, 31(2), 2018, pp. 47-53.
[15] E. Glikson and A.W. Woolley, “Human trust in
Artificial Intelligence: Review of empirical research”,
Academy of Management Annals, advanced online
publication, 2020.
[16] T. Zhang et al., “Service robot feature design effects
on user perceptions and emotional responses”,
Intelligent service robotics, 3(2), 2010, pp.73-88.
[17] T.W. Bickmore et al.,, “Tinker: a relational agent
museum guide”, Autonomous agents and multi-agent
systems, 27(2), 2013, pp. 254-276.
[18] K.S. Haring et al., “The influence of robot appearance
and interactive ability in HRI: a cross-cultural study”,
In International conference on social robotics, 2016,
pp. 392-401. Springer, Cham.
[19] P.A. Hancock et al., “A meta-analysis of factors
affecting trust in human-robot interaction”, Human
Factors, 53(5), 2011, pp.517-527.
[20] K.E. Schaefer et al, “A meta-analysis of factors
influencing the development of trust in automation:
Implications for understanding autonomy in future
systems”. Human Factors, 58(3):, 2016, pp. 377-400.
[21] OECD, “Artificial Intelligence on Society”, OECD
Publishing, Paris, 2019. Retrieved from, 58(3), 2016, 377-
[22] P.M. Krafft et al., “Defining AI in Policy versus
Practice”, Proceedings of the AAAI/ACM Conference
on AI, Ethics, and Society, 2020, pp. 72-78.
[23] M.I. Jordan and T.M. Mitchell, “Machine learning:
Trends, perspectives, and prospects”. Science,
349(6245), 2015, pp. 255-260.
[24] E. Brynjolfsson and A. Mcafee “The business of
artificial intelligence”. Harvard Business Review, July
2017, pp. 1-20.
[25] Y. LeCun et al., “Deep learning”. Nature, 521(7553),
2015, p. 436-444.
[26] I. Rahwan et al., “Machine behaviour”, Nature,
568(7753), 2019, pp. 477-486.
[27] Y.K. Dwivedi et al., “Artificial Intelligence (AI):
Multidisciplinary perspectives on emerging
challenges, opportunities, and agenda for research,
practice and policy”, International Journal of
Information Management, 101994, 2019, pp.
[28] P. Ping Li, “When trust matters the most: The
imperatives for contextualizing trust research”. Journal
of Trust Research 2(2), 2012, pp. 101-106.
[29] M. Deutsch, “The effect of motivational orientation
upon trust and suspicion”. Human Relations,13(2),
1960, pp. 123-139.
[30] D. Gefen et al., Trust and TAM in online shopping:
An integrated model”, MIS Quarterly, 27(1), 2003, pp.
[31] D.M. Rousseau, et al., “Not so different after all: A
cross-discipline view of trust”, Academy of
Management Review, 23(3), 1998, pp. 393-404.
[32] D.H. McKnight et al., Trust in a specific technology:
An investigation of its components and measures”,
ACM Transactions on management information
systems (TMIS), 2(2), 2011, pp. 1-25.
[33] J.D Lewis and A. Weigert, “Trust as a social reality”.
Social Forces, 63(4), 1985, pp. 967-985.
[34] C.A. Fulmer and M.J. Gelfand, “At what level (and in
whom) we trust: Trust across multiple organizational
levels”, Journal of Management, 38(4), 2012, pp.
[35] M. Pirson and D. Malhotra, “Foundations of
organizational trust: What matters to different
stakeholders?”, Organization Science., 22(4), 2011,
[36] R.C. Mayer et al., “An integrative model of
organizational trust”, Academy of Management
Review, 20(3), 1995. pp. 709-734.
[37] D.E. Leidner, “Review and theory symbiosis: An
introspective retrospective”, Journal of the Association
for Information Systems. 19(6), 2018, Article 1.
[38] A. Adadi and M. Berrada, “Peeking inside the black-
box: A survey on Explainable Artificial Intelligence
(XAI)”, IEEE Access, 6, 2018, pp. 52138-52160.
[39] A. Holzinger, et al., “What do we need to build
explainable AI systems for the medical domain?”,
arXiv preprint arXiv1712.09923, 2017.
[40] R. Elshawi et al., “On the interpretability of machine
learning-based model for predicting hypertension”,
BMC medical informatics and decision making, 19(1),
2019, pp. 1-32.
[41] C. Gretton, “Trust and Transparency in Machine
Learning-Based Clinical Decision Support”. In J.
Zhou and F. Chen (eds.), Human and Machine
Learning, 2018, pp. 279-292. Springer, Cham.
[42] P. Andras et al., (2018) “Trusting Intelligent
Machines: Deepening Trust Within Socio-Technical
Systems”. IEEE Technology and Society Magazine,
37(4), 2018, pp. 76-83.
[43] V. Hollis, et al., “On being told how we feel: how
algorithmic sensor feedback influences emotion
perception”. Proceedings of the ACM on Interactive,
Page 5470
Mobile, Wearable and Ubiquitous Technologies, 2(3),
2018, pp. 1-31.
[44] A. R. Wagner et al., “Overtrust in the robotic age”.
Communications of the ACM, 61(9), 2018, pp. 22-24.
[45] J. A. Kroll, “The fallacy of inscrutability”.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
376(2133), 2018, 20180084.
[46] A. Weller, Challenges for transparency”, arXiv
preprint arXiv,1708.01870, 2017.
[47] E.J. Langer et al., “The mindlessness of ostensibly
thoughtful action: The role of" placebic" information in
interpersonal interaction”, Journal of Personality and
Social Psychology, 36(6), 1978, pp. 635-642.
[48] J. Y. Chen, “Human-autonomy teaming and agent
transparency”, Companion Publication of the 21st
International Conference on Intelligent User Interfaces,
March 2016, pp. 28-31.
[49] C. S. Calhoun, et al., (2019). “Linking precursors of
interpersonal trust to human-automation trust: An
expanded typology and exploratory experiment”,
Journal of Trust Research, 9(1), 2019, pp. 28-46.
[50] E. S. Vorm, “Assessing Demand for Transparency in
Intelligent Systems Using Machine Learning”, 2018
Innovations in Intelligent Systems and Applications,
July 2018, pp. 1-7.
[51] G. Du and G. Ruhe, “Does explanation improve the
acceptance of decision support for product release
planning?”, In 2009 3rd International Symposium on
Empirical Software Engineering and Measurement,
October 2009, pp. 56-68. IEEE.
[52] R. F. Kizilcec, “How much information? Effects of
transparency on trust in an algorithmic interface”,
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, May 2016, pp. 2390-
[53] H. Wallach, “Computational social science≠ computer
science+ social data”, Communications of the ACM,
61(3), 2018, pp. 42-44.
[54] J. Buolamwini and T. Gebru, “Gender shades:
Intersectional accuracy disparities in commercial
gender classification”. Conference on Fairness,
Accountability and Transparency, January 2018, pp.
[55] M. Yin, et al., Understanding the effect of accuracy
on trust in machine learning models”, In Proceedings of
the 2019 chi conference on human factors in computing
systems May 2019, pp. 1-12).
[56] E. J. de Visser et al.,. “Learning from the slips of
others: Neural correlates of trust in automated agents”.
Frontiers in Human Neuroscience, 12(309), 2018, pp.
[57] A. Freedy, et al., “Measurement of trust in human-
robot collaboration”. 2007 International Symposium on
Collaborative Technologies and Systems, May 2007,
pp. 106-114.
[58] S. Moran et al., “Team reactions to voiced agent
instructions in a pervasive game”, In Proceedings of the
2013 international conference on Intelligent user
interfaces, May 2013, pp. 371-382.
[59] M. Salem et al., “Would you trust a (faulty) robot?
Effects of error, task type and personality on human-
robot cooperation and trust”, 10th ACM/IEEE
International Conference on Human-Robot Interaction,
March 2015, pp. 1-8.
[60] S. Raisch and S. Krakowski, “Artificial Intelligence
and Management: The Automation-Augmentation
Paradox”, Academy of Management Review. 2020, in
[61] V. Diebolt et al., “Artificial intelligence: Which
services, which applications, which results and which
development today in clinical research? Which impact
on the quality of care? Which recommendations?”
Therapie, 74(1), 2019, pp. 155-164.
[62] K.T. Chui et al., Big data and IoT solution for patient
behaviour monitoring”, Behaviour & Information
Technology, 38(9), 2019, pp. 940-949.
[63] A.C. Valdez et al., “Recommender systems for health
informatics: state-of-the-art and future perspectives”, In
Machine Learning for Health Informatics, 2016, pp.
391-414. Springer, Cham.
[64] C. Longoni et al., “Resistance to medical artificial
intelligence”. Journal of Consumer Research, 46(4),
2019, pp. 629-650.
[65] A. Lui A and G.W. Lamb, Artificial intelligence and
augmented intelligence collaboration: regaining trust
and confidence in the financial sector”, Information &
Communications Technology Law., 27(3), 2018, pp.
[66] E. de Visser E and R. Parasuraman, “Adaptive aiding
of human-robot teaming: Effects of imperfect
automation on performance, trust, and workload”,
Journal of Cognitive Engineering and Decision
Making, 5(2), 2011, p.209-231.
[67] T. Rinta-Kahila et al., “Consequences of
Discontinuing Knowledge Work Automation-Surfacing
of Deskilling Effects and Methods of Recovery”, In
Proceedings of the 51st Hawaii International
Conference on System Sciences, January 2018, pp.
[68] S.G. Sutton et al., “How much automation is too
much? Keeping the human relevant in knowledge
work”, Journal of Emerging Technologies in
Accounting, 15(2): 2018, pp. 15-25.
[69] A.K. Heid, “Trust in Homo Artificialis: Evidence from
Professional Investors”, 2018 American Accounting
Association Annual Meeting, August 2018,
Washington USA.
[70] X. Fan X et al., The influence of agent reliability on
trust in human-agent collaboration”, In Proceedings of
the 15th European conference on Cognitive
ergonomics: the ergonomics of cool interaction,
January 2008, pp. 1-8.
[71] J. M. Logg et al., “Algorithm appreciation: People
prefer algorithmic to human judgment”. Organizational
Behavior and Human Decision Processes, 151, 2019,
[72] A. Waytz, et al., “The mind in the machine:
Anthropomorphism increases trust in an autonomous
vehicle”. Journal of Experimental Social Psychology,
52, 2014, pp. 113-117.
Page 5471
[73] K. E Culley and P. Madhavan, “A note of caution
regarding anthropomorphism in HCI agents”.
Computers in Human Behavior, 29(3), 2013, pp. 577-
[74] A. L. Baker et al., “Toward an Understanding of Trust
Repair in Human-Robot Interaction: Current Research
and Future Directions”. ACM Transactions on
Interactive Intelligent Systems, 8(4), 2018, Artilce 30.
[75] A. Salles et al., “Anthropomorphism in AI”, AJOB
Neuroscience, 11(2), 2020, pp. 88-95.
[76] F.M. Verberne et al., “Trusting a virtual driver that
looks, acts, and thinks like you”, Human factors, 57(5),
2015, pp. 895-909.
[77] K. Kim et al., Does a digital assistant need a body?
The influence of visual embodiment and social
behavior on the perception of intelligent virtual agents
in AR”, In 2018 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), October
2018, pp 105-114. IEEE.
[78] W.A. Bainbridge et al., “The effect of presence on
human-robot interaction’, InRO-MAN 2008 The 17th
IEEE Internationhal Symposium on Robot and Human
Interactive Communication, August 2008, pp. 701-706.
[79] B. Huynh et al., “A study of situated product
recommendations in augmented reality”, In 2018 IEEE
International Conference on Artificial Intelligence and
Virtual Reality (AIVR), December 2018, pp. 35-43.
[80] J. Złotowski et al., “Appearance of a robot affects the
impact of its behaviour on perceived trustworthiness
and empathy”, Paladyn, Journal of Behavioral
Robotics, 7, 2016, 55-66.
[81] S. Gupta et al., “Big data with cognitive computing: A
review for the future”, International Journal of
Information Management, 42, 2018, pp. 78-89.
[82] S. Zuboff, “Big other: surveillance capitalism and the
prospects of an information civilization”, Journal of
Information Technology, 30(1), 2015, pp. 75-89.
[83] E. Osnos, “Can Mark Zuckerberg fix Facebook before
it breaks democracy?”, The New Yorker, 10 September
2018, Retrieved from
[84] S. Kokolakis, “Privacy attitudes and privacy
behaviour: A review of current research on the privacy
paradox phenomenon. Computers & Security, 64, 2017,
[85] J. Andrew & M. Baker, The General Data Protection
Regulation in the Age of Surveillance Capitalism”,
Journal of Business Ethics, in press.
[86] J. Vallverdú and D. Casacuberta, “Ethical and
technical aspects of emotions to create empathy in
medical machines”, In Machine Medical Ethics, 2015,
pp. 341-362. Springer, Cham.
[87] I.R. Kerr and M. Bornfreund, “Buddy bots: How
turing's fast friends are undermining consumer
privacy”, Presence: Teleoperators & Virtual
Environments, 14(6), 2005, pp. 647-655.
[88] T. Braun, B.C. Fung, F. Iqbal and B. Shah, “Security
and privacy challenges in smart cities”, Sustainable
cities and society, 39, 2018, pp. 499-507.
[89] K. Kaur and G. Rampersad, “Trust in driverless cars:
Investigating key factors influencing the adoption of
driverless cars”. Journal of Engineering and
Technology Management, 48, 2018, pp. 87-96.
[90] S. Reig et al., “A field study of pedestrians and
autonomous vehicles”, In Proceedings of the 10th
international conference on automotive user interfaces
and interactive vehicular applications. September 2018,
pp. 198-209.
[91] N.L. Tenhundfeld et al.,”Calibrating trust in
automation through familiarity with the autoparking
feature of a Tesla Model X”, Journal of Cognitive
Engineering and Decision Making, 13(4), 2019, pp.
[92] C.W. Ho et al., “Governance of automated image
analysis and artificial intelligence analytics in
healthcare”, Clinical Radiology, 74(5), pp. 329-337.
[93] A.F. Winfield and M. Jirotka, “Ethical governance is
essential to building trust in robotics and artificial
intelligence systems”, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 376(2133), 2018, 20180085.
[94] S. Lockey et al., “Trust in Artificial Intelligence:
Australian Insights”, The University of Queensland and
KPMG Australia, October 2020.
[95] M. Guihot et al., “Nudging robots: Innovative
solutions to regulate artificial intelligence”, Vand. J.
Ent. & Tech. L., 20, 2017, p3p. 385-456.
[96] B. Zhang and A. Dafoe, “Artificial intelligence:
American attitudes and trends”. Available at SSRN
3312874. 2019.
[97] Centre for Data Ethics and Innovation, “AI and
Personal Insurance”, CDEI Snapshot Series, September
[98] X. Xhang, “Information Asymmetry and Uncertainty
in Artificial Intelligence”, Medium, 9 September 2017,
Retrieved from
[99] P. Nemitz, “Constitutional democracy and technology
in the age of artificial intelligence”, Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2133), 2018,
[100] S.A. Wright and A.E. Schultz, “The rising tide of
artificial intelligence and business automation:
Developing an ethical framework”, Business Horizons,
61(6), 2018, pp. 823-832.
[101] M. Hengstler et al., “Applied artificial intelligence
and trustThe case of autonomous vehicles and
medical assistance devices”. Technological Forecasting
and Social Change, 105, 2016, pp. 105-120.
[102]E.J. de Visser et al., “Towards a Theory of
Longitudinal Trust Calibration in Human-Robot
Teams”, International Journal of Social Robotics, 12,
2020, pp. 459-478.
*Due to space constraints, we present selected references
from our review. Contact SL for a full reference list.
Page 5472
... In particular, increasing efforts have been made recently to investigate trust in the relationships between humans and machines. Despite multiple studies on trust in automation, conceptualizing trust over time and reliably modelling and measuring it remains a challenging issue Andras et al. (2018); Jacovi et al. (2021); Lockey et al. (2021). Likewise, there is a lack of a systematic perspective on how trust changes across different moments of an interaction and how it is influenced by different behaviors by artificial agents. ...
... To this extent, someone who is a domain-expert in one field (e.g., a clinician or military personnel) will likely be a non-expert user in other situations. Perhaps more importantly, non-expert users' lack of knowledge about artificial agents' inner workings makes them a more vulnerable category (compared to domain experts and expert practitioners) (Lockey et al. 2021). Here, 'interaction' is generally intended as any social encounter between users and artificial agent, with particular attention being paid to 'long term' interactions. ...
... Andras et al. (2018) refer to the work of Luhmann (2018) and define trust towards artificial agents as the willingness to take risks amid uncertain conditions. Accordingly, Lockey et al. (2021) highlight how such conditions of risk and uncertainty requires people to take a 'leap of faith' and expose themselves to vulnerability. In line with these positions, Lee and See (2004, p. 51) define trust as "the attitude that an agent will help achieve an individual's goals in a situation characterized by uncertainty and vulnerability". ...
Full-text available
Strategies for improving the explainability of artificial agents are a key approach to support the understandability of artificial agents’ decision-making processes and their trustworthiness. However, since explanations are not inclined to standardization, finding solutions that fit the algorithmic-based decision-making processes of artificial agents poses a compelling challenge. This paper addresses the concept of trust in relation to complementary aspects that play a role in interpersonal and human–agent relationships, such as users’ confidence and their perception of artificial agents’ reliability. Particularly, this paper focuses on non-expert users’ perspectives, since users with little technical knowledge are likely to benefit the most from “post-hoc”, everyday explanations. Drawing upon the explainable AI and social sciences literature, this paper investigates how artificial agent’s explainability and trust are interrelated at different stages of an interaction. Specifically, the possibility of implementing explainability as a trust building, trust maintenance and restoration strategy is investigated. To this extent, the paper identifies and discusses the intrinsic limits and fundamental features of explanations, such as structural qualities and communication strategies. Accordingly, this paper contributes to the debate by providing recommendations on how to maximize the effectiveness of explanations for supporting non-expert users’ understanding and trust.
... Human engagement with intelligent machines depends critically on perceptions that the machine is trustworthy (Glikson and Woolley, 2020;Lockey et al., 2021). Influences on trust may differ somewhat in autonomous systems compared to conventional automation . ...
... Review of social humanrobot interactions of Lewis et al. (2018) cites additional humanlike qualities that elevate trust such as physical presence, matched speech, and empathetic language and physical expression. Anthropomorphic design features such as simulated personality and a naturalistic communication style also tend to increase trust in systems that utilize AI such as robot assistants (Kiesler and Goetz, 2002) and virtual assistants (Lockey et al., 2021). However, the advent of more human-like robots does not imply that humans will always trust social robots; attributes such as unreliability (Lewis et al., 2018) or undesired personality features (Paetzel-Prüsmann et al., 2021) will tend to diminish trust. ...
Full-text available
Effective human–robot teaming (HRT) increasingly requires humans to work with intelligent, autonomous machines. However, novel features of intelligent autonomous systems such as social agency and incomprehensibility may influence the human’s trust in the machine. The human operator’s mental model for machine functioning is critical for trust. People may consider an intelligent machine partner as either an advanced tool or as a human-like teammate. This article reports a study that explored the role of individual differences in the mental model in a simulated environment. Multiple dispositional factors that may influence the dominant mental model were assessed. These included the Robot Threat Assessment (RoTA), which measures the person’s propensity to apply tool and teammate models in security contexts. Participants ( N = 118) were paired with an intelligent robot tasked with making threat assessments in an urban setting. A transparency manipulation was used to influence the dominant mental model. For half of the participants, threat assessment was described as physics-based (e.g., weapons sensed by sensors); the remainder received transparency information that described psychological cues (e.g., facial expression). We expected that the physics-based transparency messages would guide the participant toward treating the robot as an advanced machine (advanced tool mental model activation), while psychological messaging would encourage perceptions of the robot as acting like a human partner (teammate mental model). We also manipulated situational danger cues present in the simulated environment. Participants rated their trust in the robot’s decision as well as threat and anxiety, for each of 24 urban scenes. They also completed the RoTA and additional individual-difference measures. Findings showed that trust assessments reflected the degree of congruence between the robot’s decision and situational danger cues, consistent with participants acting as Bayesian decision makers. Several scales, including the RoTA, were more predictive of trust when the robot was making psychology-based decisions, implying that trust reflected individual differences in the mental model of the robot as a teammate. These findings suggest scope for designing training that uncovers and mitigates the individual’s biases toward intelligent machines.
... Inspired by human intelligence, artificial intelligence (AI) systems are becoming increasingly adept in their ability to learn, reason, self-correct and emulate human decisions in some domains (Russell et al., 2016;Watson, 2019). AI is ubiquitous in modern life, enabling smart technologies and applications such as smart home devices, fitness trackers, autonomous driving systems, and social media platforms (Gorwa et al., 2020;Lockey et al., 2021). Further, AI technologies are equipped with varying degrees of autonomy that minimize the need for human control or oversight, and many AI-enabled devices are imbued with anthropomorphic features and natural language processing capabilities, turning them into social actors (Watson, 2019). ...
... Many recent studies on trust in AI have focused on exploring factors that contribute to trustworthy AI (Gillath et al., 2021;Lockey et al., 2021;Rheu et al., 2020). Through a series of studies, Shin identified and empirically examined key factors that contribute to trustworthy AI systems and the role of trust in shaping people's perceptions of AI attributes (e.g., usefulness, performance, accuracy, credibility) in algorithm-driven technologies (Shin, 2020b(Shin, , 2021b. ...
Full-text available
As AI-enhanced technologies become common in a variety of domains, there is an increasing need to define and examine the trust that users have in such technologies. Given the progress in the development of AI, a correspondingly sophisticated understanding of trust in the technology is required. This paper addresses this need by explaining the role of trust on the intention to use AI technologies. Study 1 examined the role of trust in the use of AI voice assistants based on survey responses from college students. A path analysis confirmed that trust had a significant effect on the intention to use AI, which operated through perceived usefulness and participants' attitude toward voice assistants. In study 2, using data from a representative sample of the U.S. population, different dimensions of trust were examined using exploratory factor analysis, which yielded two dimensions: human-like trust and functionality trust. The results of the path analyses from Study 1 were replicated in Study 2, confirming the indirect effect of trust and the effects of perceived usefulness, ease of use, and attitude on intention to use. Further, both dimensions of trust shared a similar pattern of effects within the model, with functionality-related trust exhibiting a greater total impact on usage intention than human-like trust. Overall, the role of trust in the acceptance of AI technologies was significant across both studies. This research contributes to the advancement and application of the TAM in AI-related applications and offers a multidimensional measure of trust that can be utilized in the future study of trustworthy AI.
... An important social aspect of human-human interaction that also plays a role in workplace acceptance of AI is trust (Brown et al., 2015;Lockey et al., 2021). Workplace performance is favoured in environments where employees enjoy the trust of their superiors (Brown et al., 2015). ...
... That becomes more apparent when a workplace process or a specific product is discontinued, and it may cause severe disruptions in workers' daily work and internal organizational processes. Together with this, another societal dimension of safety is that over-reliance on AI in the workplace may lead to knowledge asymmetries such as the inability of workers to understand the inner workings of these machines and how these impact their lives (including what rights they have and what are the obligations they come with such transformation); or the impossibility of experts to anticipate and understand the impact of their work and communicate it to various societal stakeholders and, more importantly, assume responsibility (Lockey et al., 2021). ...
Full-text available
Policymakers need to consider the impacts that robots and artificial intelligence (AI) technologies have on humans beyond physical safety. Traditionally, the definition of safety has been interpreted to exclusively apply to risks that have a physical impact on persons' safety, such as, among others, mechanical or chemical risks. However, the current understanding is that the integration of AI in cyber-physical systems such as robots, thus increasing interconnectivity with several devices and cloud services, and influencing the growing human-robot interaction challenges how safety is currently conceptualised rather narrowly. Thus, to address safety comprehensively, AI demands a broader understanding of safety, extending beyond physical interaction, but covering aspects such as cybersecurity, and mental health. Moreover, the expanding use of machine learning techniques will more frequently demand evolving safety mechanisms to safeguard the substantial modifications taking place over time as robots embed more AI features. In this sense, our contribution brings forward the different dimensions of the concept of safety, including interaction (physical and social), psychosocial, cybersecurity, temporal, and societal. These dimensions aim to help policy and standard makers redefine the concept of safety in light of robots and AI's increasing capabilities, including human-robot interactions, cybersecurity, and machine learning.
... The ethics of artificial intelligence (AI) have been broadly considered for a generation, but interest in the topic has sharply risen in recent years (Ferrario et al., 2020;Glikson & Woolley, 2020;Lockey et al., 2021) as AI has transitioned from an exploratory stage to mainstream reality. AI refers to machine-based systems which collect information and make decisions autonomously, mimicking human intelligence (OECD, 2019;Siau & Wang, 2018). ...
Full-text available
The use of artificial intelligence (AI) in hiring entails vast ethical challenges. As such, using an ethical lens to study this phenomenon is to better understand whether and how AI matters in hiring. In this paper, we examine whether ethical perceptions of using AI in the hiring process influence individuals' trust in the organizations that use it. Building on the organizational trust model and the unified theory of acceptance and use of technology, we explore whether ethical perceptions are shaped by individual differences in performance expectancy and social influence and how they, in turn, impact organizational trust. We collected primary data from over 300 individuals who were either active job seekers or who had recent hiring experience to capture perceptions across the full range of hiring methods. Our findings indicate that performance expectancy, but not social influence, impacts the ethical perceptions of AI in hiring, which in turn influence organizational trust. Additional analyses indicate that these findings vary depending on the type of hiring methods AI is used for, as well as on whether participants are job seekers or individuals with hiring experience. Our study offers theoretical and practical implications for ethics in HRM and informs policy implementation about when and how to use AI in hiring methods, especially as it pertains to acting ethically and trustworthily.
... Trust and its function in AI differ from those in other technologies. AI systems can manipulate humans' trust attitudes by giving false information or manipulating mental states [21]. Furthermore, AI agents are considered to be semi-agents or autonomous, self-governed, and selfguided decision-makers. ...
Full-text available
In this paper, I argue for a probabilistic theory of trust, and the plausibility of “trustworthy AI” in which we trust (as opposed to mere reliance). I show that the current trust theories cannot accommodate trust pertaining to AI, and I propose an alternative probabilistic theory, which accounts for the four major types of AI-related trust: an AI agent’s trust in another AI agent, a human agent’s trust in an AI agent, an AI agent’s trust in a human agent, and an AI agent’s trust in an object (including mental and complex objects). I draw a broadly neglected distinction between transitive and intransitive senses of trust, each of which calls for a distinctive semantical theory. Based on this distinction, I classify the current theories into the theories of trust and theories of trustworthiness, showing that the current theories fail to model some of the major types of AI-related trust; while the proposed conditional probabilistic theory of trust and theory of trustworthiness, unlike the current trust theories, is scalable, and they would also accommodate major types of trust in non-AI, including interpersonal trust, reciprocal trust, one-sided trust, as well as trust in objects—e.g., thoughts, theories, data, algorithms, systems, and institutions.
... Risk is linked to trust. In fact, trust considerations are only relevant under conditions of risk and uncertainty [1]. By incorrectly placing trust, the results can lead to loss or harm [2]. ...
Full-text available
Incorporating ethics and values within the life cycle of an AI asset means to secure, under these perspectives, its development, deployment, use and decommission. These processes must be done safely, following current legislation, and incorporating the social needs towards having greater well-being over the agents and environment involved. Standards, frameworks and ethical imperatives—which are also considered a backbone structure for legal considerations—drive the development process of new AI assets for industry. However, given the lack of concrete standards and robust AI legislation, the gap between ethical principles and actionable approaches is still considerable. Different organisations have developed various methods based on multiple ethical principles to facilitate practitioners developing AI components worldwide. Nevertheless, these approaches can be driven by a self-claimed ethical shell or without a clear understanding of the impacts and risks involved in using their AI assets. The manufacturing sector has produced standards since 1990’s to guarantee, among others, the correct use of mechanical machinery, workers security, and environmental impact. However, a revision is needed to blend these with the needs associated with AI’s use. We propose using a vertical-domain framework for the manufacturing sector that will consider ethical perspectives, values, requirements, and well-known approaches related to risk management in the sector.
... The use of algorithms and machine learning to calculate data and risks and eliminate the threat of mistakes made by human errors can add a remarkable amount of trust to consumers in their participation in financial services. One study found by Lockey et al. (2021) concluded that investors could trust fully-computerized artificial financial advisors more than human, financial advisors. With that being said, the second survey being studied would highlight whether or not the minor occurrence of human errors would encourage the respondents to make more transactions financially. ...
Full-text available
Financial inclusion has been an economic drawback for many countries, including Indonesia. Developing countries struggle with financial inclusion due to various factors. This paper aims to provide evidence on expanding Indonesia's financial inclusion through the utilization of Fintech. Studies from previous researchers as secondary data were conceptualized, and to provide complete research, primary data were also gathered to study Indonesian's response to the theories being hypothesized. This paper elaborates on how Fintech is an alternative in improving accessibility to financial services. It educates and raises awareness to its citizens, eliminates negligence and vulnerability of scams, facilitates credit activities and scores through advanced analytics. It also encourages the efficiency of asset allocation and economic growth and innovation-all of which ultimately leads to the expansion of financial inclusion.
... Human factors play an important role in the diagnosis, and they must be taken into account to increase the reliability of the models induced and to extend human-AI collaboration. The concept of Trust arises in this context, defined as the intention to accept vulnerability based on positive expectations [13]. Currently, a lack of trust in AI systems is a significant drawback in the adoption of this technology in healthcare [14]. ...
Full-text available
In the automatic diagnosis of ocular toxoplasmosis (OT), Deep Learning (DL) has arisen as a powerful and promising approach for diagnosis. However, despite the good performance of the models, decision rules should be interpretable to elicit trust from the medical community. Therefore, the development of an evaluation methodology to assess DL models based on interpretability methods is a challenging task that is necessary to extend the use of AI among clinicians. In this work, we propose a novel methodology to quantify the similarity between the decision rules used by a DL model and an ophthalmologist, based on the assumption that doctors are more likely to trust a prediction that was based on decision rules they can understand. Given an eye fundus image with OT, the proposed methodology compares the segmentation mask of OT lesions labeled by an ophthalmologist with the attribution matrix produced by interpretability methods. Furthermore, an open dataset that includes the eye fundus images and the segmentation masks is shared with the community. The proposal was tested on three different DL architectures. The results suggest that complex models tend to perform worse in terms of likelihood to be trusted while achieving better results in sensitivity and specificity.
Full-text available
The crafting of machine learning (ML) based systems requires statistical control throughout its life cycle. Careful quantification of business requirements and identification of key factors that impact the business requirements reduces the risk of a project failure. The quantification of business requirements results in the definition of random variables representing the system key performance indicators that need to be analyzed through statistical experiments. In addition, available data for training and experiment results impact the design of the system. Once the system is developed, it is tested and continually monitored to ensure it meets its business requirements. This is done through the continued application of statistical experiments to analyze and control the key performance indicators. This book teaches the art of crafting and developing ML based systems. It advocates an "experiment first" approach stressing the need to define statistical experiments from the beginning of the project life cycle. It also discusses in detail how to apply statistical control on the ML based system throughout its lifecycle.
Full-text available
Taking three recent business books on artificial intelligence (AI) as a starting point, we explore the automation and augmentation concepts in the management domain. Whereas automation implies that machines take over a human task, augmentation means that humans collaborate closely with machines to perform a task. Taking a normative stance, the three books advise organizations to prioritize augmentation, which they relate to superior performance. Using a more comprehensive paradox theory perspective, we argue that, in the management domain, augmentation cannot be neatly separated from automation. These dual AI applications are interdependent across time and space, creating a paradoxical tension. Over-emphasizing either augmentation or automation fuels reinforcing cycles with negative organizational and societal outcomes. However, if organizations adopt a broader perspective comprising both automation and augmentation, they could deal with the tension and achieve complementarities that benefit business and society. Drawing on our insights, we conclude that management scholars need to be involved in research on the use of AI in organizations. We also argue that a substantial change is required in how AI research is currently conducted in order to develop meaningful theory and to provide practice with sound advice.
Full-text available
The introduction of artificial teammates in the form of autonomous social robots, with fewer social abilities compared to humans, presents new challenges for human–robot team dynamics. A key characteristic of high performing human-only teams is their ability to establish, develop, and calibrate trust over long periods of time, making the establishment of longitudinal human–robot team trust calibration a crucial part of these challenges. This paper presents a novel integrative model that takes a longitudinal perspective on trust development and calibration in human–robot teams. A key new proposed factor in this model is the introduction of the concept relationship equity. Relationship equity is an emotional resource that predicts the degree of goodwill between two actors. Relationship equity can help predict the future health of a long-term relationship. Our model is descriptive of current trust dynamics, predictive of the impact on trust of interactions within a human–robot team, and prescriptive with respect to the types of interventions and transparency methods promoting trust calibration. We describe the interplay between team trust dynamics and the establishment of work agreements that guide and improve human–robot collaboration. Furthermore, we introduce methods for dampening (reducing overtrust) and repairing (reducing undertrust) mis-calibrated trust between team members as well as methods for transparency and explanation. We conclude with a description of the implications of our model and a research agenda to jump-start a new comprehensive research program in this area.
Full-text available
Because one of the largest influences on trust in automation is the familiarity with the system, we sought to examine the effects of familiarity on driver interventions while using the autoparking feature of a Tesla Model X. Participants were either told or shown how the autoparking feature worked. Results showed a significantly higher initial driver intervention rate when the participants were only told how to employ the autoparking feature, than when shown. However, the intervention rate quickly leveled off, and differences between conditions disappeared. The number of interventions and the distances from the parking anchoring point (a trashcan) were used to create a new measure of distrust in autonomy. Eyetracking measures revealed that participants disengaged from monitoring the center display as the experiment progressed, which could be a further indication of a lowering of distrust in the system. Combined, these results have important implications for development and design of explainable artificial intelligence and autonomous systems. Finally, we detail the substantial hurdles encountered while trying to evaluate "autonomy in the wild." Our research highlights the need to re-evaluate trust concepts in high-risk, high-consequence environments.
Full-text available
Background: Although complex machine learning models are commonly outperforming the traditional simple interpretable models, clinicians find it hard to understand and trust these complex models due to the lack of intuition and explanation of their predictions. The aim of this study to demonstrate the utility of various model-agnostic explanation techniques of machine learning models with a case study for analyzing the outcomes of the machine learning random forest model for predicting the individuals at risk of developing hypertension based on cardiorespiratory fitness data. Methods: The dataset used in this study contains information of 23,095 patients who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. Five global interpretability techniques (Feature Importance, Partial Dependence Plot, Individual Conditional Expectation, Feature Interaction, Global Surrogate Models) and two local interpretability techniques (Local Surrogate Models, Shapley Value) have been applied to present the role of the interpretability techniques on assisting the clinical staff to get better understanding and more trust of the outcomes of the machine learning-based predictions. Results: Several experiments have been conducted and reported. The results show that different interpretability techniques can shed light on different insights on the model behavior where global interpretations can enable clinicians to understand the entire conditional distribution modeled by the trained response function. In contrast, local interpretations promote the understanding of small parts of the conditional distribution for specific instances. Conclusions: Various interpretability techniques can vary in their explanations for the behavior of the machine learning model. The global interpretability techniques have the advantage that it can generalize over the entire population while local interpretability techniques focus on giving explanations at the level of instances. Both methods can be equally valid depending on the application need. Both methods are effective methods for assisting clinicians on the medical decision process, however, the clinicians will always remain to hold the final say on accepting or rejecting the outcome of the machine learning models and their explanations based on their domain expertise.
Full-text available
Artificial intelligence (AI) is revolutionizing healthcare, but little is known about consumer receptivity toward AI in medicine. Consumers are reluctant to utilize healthcare provided by AI in real and hypothetical choices, separate and joint evaluations. Consumers are less likely to utilize healthcare (study 1), exhibit lower reservation prices for healthcare (study 2), are less sensitive to differences in provider performance (studies 3A-3C), and derive negative utility if a provider is automated rather than human (study 4). Uniqueness neglect, a concern that AI providers are less able than human providers to account for their unique characteristics and circumstances, drives consumer resistance to medical AI. Indeed, resistance to medical AI is stronger for consumers who perceive themselves to be more unique (study 5). Uniqueness neglect mediates resistance to medical AI (study 6), and is eliminated when AI provides care (a) that is framed as personalized (study 7), (b) to consumers other than the self (study 8), or (c) only supports, rather than replaces, a decision made by a human healthcare provider (study 9). These findings make contributions to the psychology of automation and medical decision making, and suggest interventions to increase consumer acceptance of AI in medicine.
Full-text available
The hype over artificial intelligence (AI) has spawned claims that clinicians (particularly radiologists) will become redundant. It is still moot as to whether AI will replace radiologists in day-to-day clinical practice, but more AI applications are expected to be incorporated into the workflows in the foreseeable future. These applications could produce significant ethical and legal issues in healthcare if they cause abrupt disruptions to its contextual integrity and relational dynamics. Sustaining trust and trustworthiness is a key goal of governance, which is necessary to promote collaboration among all stakeholders and to ensure the responsible development and implementation of AI in radiology and other areas of clinical work. In this paper, the nature of AI governance in biomedicine is discussed along with its limitations. It is argued that radiologists must assume a more active role in propelling medicine into the digital age. In this respect, professional responsibilities include inquiring into the clinical and social value of AI, alleviating deficiencies in technical knowledge in order to facilitate ethical evaluation, supporting the recognition, and removal of biases, engaging the “black box” obstacle, and brokering a new social contract on informational use and security. In essence, a much closer integration of ethics, laws, and good practices is needed to ensure that AI governance achieves its normative goals.
Artificial Intelligence (AI) characterizes a new generation of technologies capable of interacting with the environment and aiming to simulate human intelligence. The success of integrating AI into organizations critically depends on workers’ trust in AI technology. This review explains how AI differs from other technologies and presents the existing empirical research on the determinants of human trust in AI, conducted in multiple disciplines over the last twenty years. Based on the reviewed literature, we identify the form of AI representation (robot, virtual, embedded) and the level of AI’s machine intelligence (i.e. its capabilities) as important antecedents to the development of trust and propose a framework that addresses the elements that shape users’ cognitive and emotional trust. Our review reveals the important role of AI’s tangibility, transparency, reliability and immediacy behaviors in developing cognitive trust, and the role of AI’s anthropomorphism specifically for emotional trust. We also note several limitations in the current evidence base, such as diversity of trust measures and over-reliance on short-term, small sample, and experimental studies, where the development of trust is likely to be different than in longer term, higher-stakes field environments. Based on our review, we suggest the most promising paths for future research.
As far back as the industrial revolution, significant development in technical innovation has succeeded in transforming numerous manual tasks and processes that had been in existence for decades where humans had reached the limits of physical capacity. Artificial Intelligence (AI) offers this same transformative potential for the augmentation and potential replacement of human tasks and activities within a wide range of industrial, intellectual and social applications. The pace of change for this new AI technological age is staggering, with new breakthroughs in algorithmic machine learning and autonomous decision-making, engendering new opportunities for continued innovation. The impact of AI could be significant, with industries ranging from: finance, healthcare, manufacturing, retail, supply chain, logistics and utilities, all potentially disrupted by the onset of AI technologies. The study brings together the collective insight from a number of leading expert contributors to highlight the significant opportunities, realistic assessment of impact, challenges and potential research agenda posed by the rapid emergence of AI within a number of domains: business and management, government, public sector, and science and technology. This research offers significant and timely insight to AI technology and its impact on the future of industry and society in general, whilst recognising the societal and industrial influence on pace and direction of AI development.
Conference Paper
We address a relatively under-explored aspect of human-computer interaction: people's abilities to understand the relationship between a machine learning model's stated performance on held-out data and its expected performance post deployment. We conduct large-scale, randomized human-subject experiments to examine whether laypeople's trust in a model, measured in terms of both the frequency with which they revise their predictions to match those of the model and their self-reported levels of trust in the model, varies depending on the model's stated accuracy on held-out data and on its observed accuracy in practice. We find that people's trust in a model is affected by both its stated accuracy and its observed accuracy, and that the effect of stated accuracy can change depending on the observed accuracy. Our work relates to recent research on interpretable machine learning, but moves beyond the typical focus on model internals, exploring a different component of the machine learning pipeline.