Content uploaded by Samir Karasuljic
Author content
All content in this area was uploaded by Samir Karasuljic on Feb 08, 2021
Content may be subject to copyright.
N+ 1 q∈(0,1/2)
λ:= min 2εln N
√m,1
4.
ψ(t) =
4λt, t ∈[0,1/4],
p(t−1/4)3+ 4λt, t ∈[1/4,1/2],
1−ψ(1 −t), t ∈[1/2,1],
p ψ(1/2) = 1/2, p = 32(1 −4λ). ψ ∈C1[0,1]
kψ0k∞6C, kψ00k∞6C. hi=xi+1−xi, i = 0,...N−1
hi=Z(i+1)N
i/N
ψ0(t) d t6CN −1,
|hi+1 −hi|=Zi/N
(i−1)/N Zt+1/N
t
ψ00(s) d s
6CN −2.
ψ(t) =
4λt, t ∈[0,1/4]
λ+ 2(1 −2λ)(t−1/4), t ∈[1/2,1/4]
1−ψ(1 −t), t ∈[1/2,1].
ψ(t) =
µ(t) := aεt
q−t, t ∈[0, α],
µ(α) + µ0(α)(t−α), t ∈[α, 1/2],
1−ψ(1 −t), t ∈[1/2,1],
a q ε, q ∈(0,1/2), a ∈(0, q/ε),
a√m>2. α
(1/2,1/2) µ(t),
α=q−paqε(1 −2q+ 2aε)
1+2aε .
ψ(t) =
c1εk((1 −dt)−1/a −1),06t61/4,
c1[εkan/(1+na)−εk+d1
aεka(n−1)/(1+na)(t−1/4)
+1
2d21
a(1
a+ 1)εka(n−2)/(1+na)(t−1/4)2
+c0(t−1/4)3],1/46t61/2,
1−ψ(1 −t),1/26t61,
d= (1 −εka/(1+na))/(1/4), a a ≥m1>0
a= 1, c0>0n= 2, k = 1, c0= 0,1
c1
= 2 εkan/(1+na)−εk
+d
4aεka(n−1)/(1+na)+d2
2
1
a(1
a+ 1)εka(n−2)/(1+na)(1/4)2+c0(1/4)3
0 = x0< x1< . . . < xN= 1,
hi=xi+1 −xi, i = 0,1, . . . , N −1.
β
sinh(βhi−1)yi−1−β
tanh(βhi−1)+β
tanh(βhi)yi+β
sinh(βhi)yi+1
=1
ε2"Zxi
xi−1
uII
i−1ψ(s, y) d s+Zxi+1
xi
uI
iψ(s, y) d s#,
i= 1,2, . . . , N −1, y0=yN= 0,
ψ(s, y) = f(s, y)−γ y, β =√γ
ε,
uI
i, uII
i
ε2u00
i−γui= 0 (xi, xi+1),
ui(xi)=1, ui(xi+1 )=0,
i= 0,1, ..., N −1,
ε2u00
i−γui= 0 (xi, xi+1),
ui(xi)=0, ui(xi+1 )=1,
i= 0,1, ..., N −1,
y
ψ ψ
ψ−
i= (1 −t)ψ(xi−1, y(xi−1)) + tψ(xi, y(xi)), x ∈[xi−1, xi],
ψ+
i=tψ(xi, y(xi)) + (1 −t)ψ(xi+1 , y(xi+1)), x ∈[xi, xi+1], t ∈[0,1].
Zxi
xi−1
uII
i−1ds=cosh(βhi−1)−1
βsinh(βhi−1),
Zxi+1
xi
uI
ids=cosh(βhi)−1
βsinh(βhi),
(1 −t) cosh(βhi−1) + t
sinh(βhi−1)(yi−1−yi)−(1 −t) cosh(βhi) + t
sinh(βhi)(yi−yi+1 )
−(1 −t)fi−1+tfi
γ·cosh(βhi−1)−1
sinh(βhi−1)−tfi+ (1 −t)fi+1
γ·cosh(βhi)−1
sinh(βhi)= 0,
i= 1,2, . . . , N −1fk=f(xk, y k), k ∈ {i−1, i, i + 1}, t ∈[0,1].
T,
T u = (T u0, T u1, . . . , T uN)T,
T u0=−u0,
T ui=γ
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
·(1 −t) cosh(βhi−1) + t
sinh(βhi−1)(ui−1−ui)−(1 −t) cosh(βhi) + t
sinh(βhi)(ui−ui+1 )
−(1 −t)fi−1+tfi
γ·cosh(βhi−1)−1
sinh(βhi−1)−tfi+ (1 −t)fi+1
γ·cosh(βhi)−1
sinh(βhi)
= 0,
i= 1, . . . , N −1,
T uN=−uN, fk=f(xk, uk), k ∈ {i−1, i, i + 1}.
T y = 0,
y= (y0, y1, . . . , yN)T
y γ >fy.
v, w ∈RN+1
kv−wk6CkT v −T wk.
T y = 0 k(T0y)−1k6C, T 0
T. H := T0(y)
H= [hij ].
h1,1=hN+1,N+1 =−1<0,
hi,i−1=Λ·"(1 −t) cosh(βhi−1) + t
sinh(βhi−1)−
∂f
∂yi−1
γ·(1 −t)(cosh(βhi−1)−1)
sinh(βhi−1)#,
hi,i+1 =Λ·"(1 −t) cosh(βhi) + t
sinh(βhi)−
∂f
∂yi+1
γ·(1 −t)(cosh(βhi)−1)
sinh(βhi)#,
hi,i =−Λ·(1 −t) cosh(βhi−1) + t
sinh(βhi−1)+(1 −t) cosh(βhi) + t
sinh(βhi)
+t
∂f
∂yi
γ·cosh(βhi−1)−1
sinh(βhi−1)+t
∂f
∂yi
γ·cosh(βhi)−1
sinh(βhi)#, i = 2, . . . , N,
Λ=γ
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
.
hi,i−1>0, hi,i+1 >0, hi,i <0,
|hi,i|−|hi,i−1|−|hi,i+1 |>m,
H M
kH−1k61
m.
T
RN+1 0T,
T v −T w = (T0ξ)−1(v−w)
ξ= (ξ0, ξ1, . . . , ξN)T∈RN+1. v −w= (T0ξ)−1(T v −T w )
kv−wk=k(T0ξ)−1(T v −T w)k61
mkT v −T wk.
(1 −t)cosh(βhi−1)−1
sinh(βhi−1)(yi−1−yi)−cosh(βhi)−1
sinh(βhi)(yi−yi+1 )
+yi−1−yi
sinh(βhi−1)−yi−yi+1
sinh(βhi)
−(1 −t)fi−1+tfi
γ·cosh(βhi−1)−1
sinh(βhi−1)−tfi+ (1 −t)fi+1
γ·cosh(βhi)−1
sinh(βhi)= 0,
i= 1, . . . , N −1.
ε6C
N.
xi, xi±1∈[xN/4−1, λ]∪[λ, 1/2],
i=N/4, . . . , N/2−1
cosh(βhi−1)−1
sinh(βhi−1)(y(xi−1)−y(xi)) −cosh(βhi)−1
sinh(βhi)(y(xi)−y(xi+1))
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
6C
N2.
ε6C
N.
xi, xi±1∈[xN/4−1, λ]∪[λ, 1/2],
y(xi−1)−y(xi)
sinh(βhi−1)−y(xi)−y(xi+1 )
sinh(βhi)
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
6C
N2, i =N/4, . . . , N/2−1.
ε6C
N.
xi, xi±1∈[xN/4−1, λ]∪[λ, 1/2],
γ
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
(1 −t)f(xi−1, y(xi−1)) + tf (xi, y (xi))
γ
·cosh(βhi−1)−1
sinh(βhi−1)−tf (xi, y(xi)) + (1 −t)f(xi+1, y(xi+1))
γ·cosh(βhi)−1
sinh(βhi)
6C
N2, i =N/4, . . . , N/2−1.
ε6C
N, ε2y00(xi) =
f(xi, y(xi)),
γ
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
(1 −t)f(xi−1, y(xi−1)) + tf (xi, y (xi))
γ
·cosh(βhi−1)−1
sinh(βhi−1)−tf (xi, y(xi)) + (1 −t)f(xi+1, y(xi+1))
γ·cosh(βhi)−1
sinh(βhi)
6|(1 −t)f(xi−1, y(xi−1)) + 2tf (xi, y (xi)) + (1 −t)f(xi+1, y(xi+1))|
6ε2[(1 −t) (|r00(xi−1)|+|s00(xi−1)|)
+2t(|s00(xi)|+|r00(xi)|) + (1 −t) (|s00(xi+1 )|+|r00(xi+1)|)]
6C1ε2
(1 −t)
2 + e−xi−1
ε√m
ε2+e−xi+1
ε√m
ε2
+ 2t 1 + e−xi
ε√m
ε2!
6Cε2+1
N2, i =N/4, . . . , N/2−1.
ε
max
i|y(xi)−yi|6C
ln2N/N2, i = 0, . . . , N/4−1,
1/N2, i =N/4,...,3N/4,
ln2N/N2, i = 3N/4+1, . . . , N,
y(xi)yi
xi, C > 0
N ε.
06i < N/4−1. hi−1=hihi=O(εln N/N ),
(T y)i=γ
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
(1 −t) cosh(βhi−1) + t
sinh(βhi−1)(y(xi−1)−y(xi))
−(1 −t) cosh(βhi) + t
sinh(βhi)(y(xi)−y(xi+1 ))
−(1 −t)f(xi−1, y(xi−1)) + tf (xi, y (xi))
γ·cosh(βhi−1)−1
sinh(βhi−1)
−tf(xi, y(xi)) + (1 −t)f(xi+1 , y(xi+1 ))
γ·cosh(βhi)−1
sinh(βhi)
=γ
2(cosh(βhi)−1) {t[y(xi−1)−2y(xi) + y(xi+1 )
−2f(xi, y(xi))
γ(cosh(βhi)−1)
+ (1 −t) [cosh(βhi) (y(xi−1)−2y(xi) + y(xi+1 ))
−f(xi−1, y(xi−1)) + f(xi+1, y(xi+1 ))
γ·(cosh(βhi)−1)
=γ
2(cosh(βhi)−1)
ty(xi−1)−2y(xi) + y(xi+1)−2ε2y00(xi)
γ(cosh(βhi)−1)
+ (1 −t) [cosh(βhi) (y(xi−1)−2y(xi) + y(xi+1 ))
−ε2y00(xi−1) + y00(xi+1)
γ·(cosh(βhi)−1).
y(xi−1)−2y(xi) + y(xi+1) = y00(xi)h2
i+y(iv)(ξ−
i) + y(iv)(ξ+
i)
24 h4
i,
y00(xi−1) + y00(xi+1)=2y00(xi) + y(iv )(η−
i) + y(iv)(η+
i)
2h2
i,
cosh(βhi) = 1 + β2h2
i
2+Oβ4h4
i,
ξ−
i∈(xi−1, xi), ξ+
i∈(xi, xi+1), η−
i∈(xi−1, xi), η+
i∈(xi, xi+1),
(T y)i=γ·t
β2h2
i+ 2O(β4h4
i)y00(xi)h2
i+y(iv)(ξ−
i) + y(iv)(ξ+
i)
24 h4
i
−2ε2y00(xi)
γβ2h2
i
2+O(β4h4
i)
+γ·(1 −t)
β2h2
i+ 2O(β4h4
i)y00(xi)h2
i+y(iv)(ξ−
i) + y(iv)(ξ+
i)
24 h4
i
·1 + β2h2
i
2+O(β4h4
i)
−ε22y00(xi) + y(iv )(η−
i)+y(iv)(η+
i)
2
γβ2h2
i
2+O(β4h4
i)
=γ·t
β2h2
i+ 2O(β4h4
i)y(iv)(ξ−
i) + y(iv)(ξ+
i)
24 h4
i−2ε2y00(xi)
γO(β4h4
i)
+γ·(1 −t)
β2h2
i+ 2O(β4h4
i)y(iv)(ξ−
i) + y(iv)(ξ+
i)
24 h4
i
+β2h2
i
2+O(β4h4
i)y00(xi)h2
i+y(iv)(ξ−
i) + y(iv)(ξ+
i)
24 h4
i
−2ε2y00(xi)
γ· O(β4h4
i)
+ε2y(iv)(η−
i) + y(iv)(η+
i)
2γh2
iβ2h2
i
2+O(β4h4
i),
|(T y)i|6Cln2N/N 2, i = 0,1, . . . , N/4−1.
N/46i < N/2.
|(T y)i|6γ
cosh(βhi−1)−1
sinh(βhi−1)+cosh(βhi)−1
sinh(βhi)
·(1 −t)
cosh(βhi−1)−1
sinh(βhi−1)(y(xi−1)−y(xi))
−cosh(βhi)−1
sinh(βhi)(y(xi)−y(xi+1 ))
+
y(xi−1)−y(xi)
sinh(βhi−1)−y(xi)−y(xi+1 )
sinh(βhi)
+
(1 −t)f(xi−1, y(xi−1)) + tf (xi, y (xi))
γ·cosh(βhi−1)−1
sinh(βhi−1)
+
tf(xi, y(xi)) + (1 −t)f(xi+1 , y(xi+1 ))
γ·cosh(βhi)−1
sinh(βhi),
|(T y)i|6C/N2, i =N/4, . . . , N/2−1.
i=N/2. hN/4−1=hN/4
s
i=N/2,
[λ, 1−λ]
P(x) =
p1(x), x ∈[x0, x1],
p2(x), x ∈[x1, x2],
pi(x), x ∈[xi−1, xi],
pN(x), x ∈[xN−1, xN],
pi(x) =
yi−yi−1
xi−xi−1
(x−xi−1) + yi−1, x ∈[xi−1, xi],
0, x /∈[xi−1, xi],
i= 1,2, . . . , N.
max
x∈[0,1] y(x)−P(x)6Cln2N/N2,
y P
[0, λ],[λ, xN/4+1] [xN/4+1 ,1/2]
[1/2,1].kP−
yk∞6kP−Pk∞+kP−yk∞,
P
P , P
(xi−1, y(xi−1)),(xi, y(xi)), i = 1,2, . . . , N ;
(xi−1, yi−1),(xi, yi+1 ), i = 1,2, . . . , N,
P(x) =
p1(x), x ∈[x0, x1],
p2(x), x ∈[x1, x2],
pi(x), x ∈[xi−1, xi],
pN(x), x ∈[xN−1, xN],
pi(x) =
yi−yi−1
xi−xi−1
(x−xi−1) + yi−1, x ∈[xi−1, xi],
0, x /∈[xi−1, xi],
i= 1,2, . . . , N.
kP−Pk∞6Cln2N/N2, x ∈[0,1].
[0, λ],
i= 1,2, . . . , N/4. hi−1=hi, hi=
O(εln N/N ). hi=O(εln N/N)
|y(x)−pi(x)|6h2
i
8max
ξ∈[xi−1,xi]|y00(ξ)|6C1
ε2ln2N
N2max
ξ∈[xi−1,xi]|s00(ξ) + r00(ξ)|
6C2
ε2ln2N
N2max
ξ∈[xi−1,xi]ε−2e−ξ
ε√m+e−(ξ−1)
ε√m+r00(ξ)
6C2
ε2ln2N
N2(ε−2+C3)6Cln2N
N2, i = 1,2, . . . , N/4.
x∈[λ, xN/4+1]∪[xN/4+1 ,1/2]
i=N/4, N/4 + 1, . . . , N/2,
i=N/4 + 1, . . . , N/2, hi=O(1/N ).
|y(x)−pi(x)|6h2
i
8max
ξ∈[xN/4+1,1/2] |y00(ξ)|6C
N2.
[λ, xN/4+ 1],
y−pi(x) =y−yi−yi−1
xi−xi−1
(x−xi−1) + yi−1
=s−si−si−1
xi−xi−1
(x−xi−1) + si−1+r−ri−ri−1
xi−xi−1
(x−xi−1) + ri−1.
s,
s−si−si−1
xi−xi−1
(x−xi−1) + si−1
6|s|+|si+1 −si|+|si|
6C1e−xi−1
ε√m+e−xi−1−1
ε√m6C
N2.
r,
r−ri−ri−1
xi−xi−1
(x−xi−1) + ri−1
6h2
i−1
8max
ξ∈[xi−1,xi]|r00(ξ)|6C
N2.
C,
C(x) = Ci(x), x ∈[xi, xi+1 ], i = 0,1, . . . , N −1,
Ci
Ci(x) = Mi
(xi+1 −x)3
6hi+1
+Mi+1
(x−xi)3
6hi+1
+yi+1 −yi
hi+1 −hi+1
6(Mi+1 −Mi)(x−xi) + yi−Mi
h2
i+1
6,
Mi:= C00
i(xi), i = 1, N −1
hi
6Mi−1+hi+hi+1
3Mi+hi+1
6Mi+1 =yi+1 −yi
hi+1 −yi−yi−1
hi
, i = 1, . . . , N −1,
M0:= C00
0(x0)=0, MN:= C00
N−1(xN) = 0.
ε2y00 =y+ cos2πx + 2ε2π2cos2πx (0,1) ,
y(0) = y(1) = 0.
y(x) = e−x
ε+e
−(1−x)
ε
1 + e−1
ε−cos2πx.
y0=−0.5
γ= 1.
EN
EN=ky−yNk∞,Ord = ln EN−ln E2N
ln(2k/(k+ 1)) ,(Shishkin),
Ord = ln EN−ln E2N
ln 2 ,(Bakhvalov,Liseikin)
N= 2k, k = 4,5,...,12, y
yN
ε
EN
x= 0
N= 16 N= 32
N= 64
N= 16 N= 32
N= 64
ε
Oln2N/N 2.
C1