DataPDF Available
J Food Proce ss Preserv. 2018;42:e13723. wileyonlinelibrary.com/journal/jfpp ©2018WileyPeriodicals,Inc. 
|
 1 of 10
htt ps://doi.org /10.1111/jfpp.13723
1 | INTRODUCTION
Sea cucumbers belonging to Holothuroidea class of Echinodermata
live on muddy and sandy grounds, especially on the ocean and sea
shores and consume organic materials such as protozoa, diatom, and
detritusasnutrients(Cakli,Cadun,Kişla,&Dincer,2004;Duan,Zhang,
&Mujumdar,2007).Seacucumbershavebecomeoneofthemostim
portant seafood products consumed in many countries (Li, Li, Guo, Li,
&Zhu, 2018).They arewidelyfoundin the Mediterranean,Aegean
Sea,andMarmaraSeainourcountry(Aydin,2008;Bilgin&İzci,2016).
Sea cucumbers are an important food product with high protein and
low fat content and containing vitamins and minerals such as vitamin
A,thiamine,riboflavin,niacin,calcium,iron,magnesium,andzinc(Cakli
etal.,2004;Chen,2005;Fredalinaetal.,1999;Vergara&Rodríguez,
2016).Thesespeciesareeffective on asthma, rheumatism,andcon
stipation; also they have antimicrobial and antioxidant properties as
wellasapreventiveeffectagainstcancerandhypertension(Bordbar,
Anwar,&Saari,2011;Fredalinaetal.,1999;Liuetal.,2012).
Received:24November2017 
|
  Revised:24A pril2018 
|
  Accepted:29May2018
DOI:10.1111/jfpp.13723
ORIGINAL ARTICLE
The effect of different drying methods on chemical
composition, fatty acid, and amino acid profiles of sea
cucumber (Holothuria tubulosa Gmelin, 1791)
Fatma Öztürk | Hatice Gündüz
Faculty of Fisheries, Izmir Katip Celebi
University,Izmir,Turkey
Correspondence
Fatma Öztürk, Faculty of Fisheries,
DepartmentofFishProcessingTechnology,
IzmirKatipCelebiUniversity,Izmir,Turkey
Email: fatma.ozturk@ikc.edu.tr
Abstract
Thisstudywascarriedouttodeterminetheeffectsofdifferentdryingmethods(hot
air, microwave, and freeze dr ying) on the rehydrat ion rate, drying time , chemical
composition, fatty acid, and amino acid profile of sea cucumber (Holothuria tubulosa
Gmelin,1791).SeacucumbersdriedbyFD,HAD,andMDmethodswerefoundtobe
ofsamequalityintermsofrehydrationrateandsensorycharacteristics.But,itwas
determinedthatMDismoreeffectivefortheprotectionofspecialessentialamino
acids.The dryingtime was24hr in FDand 14hrinHAD,while this timewasonly
4mininMD.Asaresult,therewasasignificantdifferenceinnutritionalvalueofsea
cucumbersdependingonthedryingmethod.ItwasdeterminedthatMDisthemost
suitable method for drying sea cucumbers in terms of amino acid, fatty acid content,
and drying time.
Practical applications
Sea cucumbers have a high protein and low fat content and can be regarded as a di‐
etetic food in terms of nutrition. Since the sea cucumber can easily autolysis after
removalfromseawater,itisdifficulttopreserveandtransportit.Therefore,itisim
portant to choose a drying method that will protect nutritive and bioactive sub‐
stancesinseacucumbers,aswellimprovingthequalityofproducts.Thisstudygives
valuable information about the effect of different drying methods on rehydration
rate, drying time, chemical compositions, fatty acid and amino acid profiles of sea
cucumber (H.tubulosa).Asaresult,itwasdeterminedthattherearesignificantdiffer
ences in the nutritive and functional components of sea cucumbers depending on the
applied drying method.
2 of 10 
|
   ÖZTÜRK and GÜNDÜZ
Sea cucumbers quickly autolize after they have been caught,
for this reason they must be stored using various processing meth
ods.Thedryingmethodisusedforthepreservationof80%ofthe
seacucumbersharvested all overthe world.Mostoftheseacu
cumbers are dried using traditional sun drying (Cakli et al., 2004;
Li et al., 2018). They are cleaned, gutted, cooled and sun dried:
traditionaldryingprocess (Cakliet al.,2004).Thisprocessis car
riedoutat18°C–25°Cfor72–96hr(Lietal.,2018).However,this
traditional method leads to problems such as long processing time,
loss of many active compounds, inadequate removal of water, and
contamination during the process (Duan, Zhang, Mujumdar, &
Wang,2010;Moon,Kim,Chung,Pan,&Yoon,2014).Hotairdry
ing, microwave drying, and freeze drying are alternatives to sun
drying method.
Hot air drying is a process in which the product is exposed
to a continuous stream of hot air to remove the water present in
the food. Hot air dryers provide a faster, homogenous, and hy
gienic drying thansundryingmethod(Doymaz & Pala,2002;Li
etal.,2018).Buthotairdryingcausesmajorproductdeteriora
tions(Moonetal.,2014;Ratti,2001).Microwaveenergyiswidely
usedinthe drying offood products.Becausemicrowave drying
provides fast heating and efficient use of energy, it is safe to use,
harmlesstohealth,andeasytocontrol(Duan,Jiang,Wang,Yu,&
Wan g,2011).Thel owte mperaturea ndtheremovalofwaterfro m
the medium during the freeze drying process provides a high‐
quality dried product by stopping most of the microbial reactions
(Duan,Zhang,Mujumdar,&Wang,2010;Ratti,2001;Zhang,Pu,
&Sun,2016).Comparedtootherdryingmethods,freezedrying
method is the best method for preserving nutrients, color, struc
ture,and taste.Duetotheporousstructureofthefreeze‐dried
products, the rehydration ability is good. However, this method
requiresatleast18hrfordr yingandthistimeisveryhigh(Duan,
Zhang,Li,&Mujumdar,2008;Duan,Zhang,Mujumdar,Huang,&
Wang, 2010). Proce ssing metho ds have an import ant effec t on
the nutritive and functional components of sea cucumbers (Li et
al.,2018).Chang‐Lee,Price,andLampila(1989,Caklietal.(200 4,
andZhong,Khan,andShahidi(2007reportedtheeffectsofpro
cessing and cooking methods on nutrient composition and fatty
acid profile of sea cucumbers. For this reason, it is important to
choose a dr ying method that will protect nutritive and bioactive
substances in sea cucumbers, as well improve the quality of prod
ucts (Li et al., 2018). In additionto these methods, researchers
haveuseddryingmethodssuchasmicrowavefreezedrying(Duan
etal.,2008),dielectricdrying(Duan,Zhang,Mujumdar,&Wang,
2010),combinedelectrohydrodynamicandvacuumfreezedrying
(Bai,Ya ng,&Hua ng,2012),an dfarinf raredrad ia tion(Mo onetal. ,
2014)todryseacucumbers.
The purp ose of this stud y is determine t he effect of d ifferent
drying methods on rehydration rate, drying time, chemical compo‐
sitions, fatty acid, and amino acid profiles of sea cucumber (H. tub-
ulosa),and to determine theproper drying method to improve the
quality of dried sea cucumbers.
2 | MATERIALS AND METHODS
2.1 | Materials and equipment
Theseacucumber (H. tubulosa Gmelin, 1791) originatingfrom the
Aegea nregio n(İzm ir‐Tu rkey) wer eob tainedf rom acomme rci alcom
pany.Inthisstudy,120seacucumberswereused.Theseacucumber
sampleswere49.9ginweight(average)and14.03cminlength(av
erage).Dryingoven(Excalibur,4,926T),microwaveoven(Optimus,
OP50K), andfreeze dryer (XO Instrument‐12B)were usedduring
the drying process of the sea cucumber.
2.2 | Pretreatment
Se a cucum b e r swe r ebrou g htto t hela b o r ato r yi nsea w ate r.T h eint e r
nal organs of each sample were removed and the body wall washed.
Seacucumberswereboiledfor45minat100°Cin3.5%salt‐contain
ingwater(Caklietal.,2004;Lietal.,2018).Thesamplesweredivided
intothreegroups(40specimen)fordryingprocessing.Freeze‐dried
sampleswerefrozenat−18°Cbeforefreezedr yingprocess.
2.3 | Drying process
Hot air drying (HAD):Theboiledsampleswereplacedonthedrying
tray.Hotairwasappliedatarateof1.5m/sand20%relativehumid
ityat60°C.Thesamplesweredehydratedtoamoisturecontentof
6%(Duan,Zhang,Mujumdar,&Wang,2010).
2.3.1 | Microwave drying (MD)
In this study, a conveyor‐type industrial microwave drying oven with
a frequency of 2.45 GHz, 3,000 W was used. Sea cucumbers were
placed on the conveyor belt to leave a 1 cm space bet ween them and
200Wmicrowavepowerwasusedfordrying.Thetimerequiredto
achieveamoisturelevelof6%wasdeterminedbypreliminarytests.
Asaresultofpreliminarytests,thetotaldryingtimewasdetermined
as 240s. The moisture content of the final prod uct was verified
using a moisture meter.
2.3.2 | Freeze drying (FD)
Frozen sea cucumbers were placed in trays and placed in freeze dryer.
Thepressureandtemperatureweresetat50Paand−80°Cinthedry
ingprocess.Again,thisprocesscontinueduntilthemoisturecontent
ofthesamplesreached6%(Duan,Zhang,Mujumdar,&Wang,2010).
2.4 | Chemical composition
Moisturecontent,protein,and crude fat amount of rawand dried
seacucumbersweredeterminedaccordingtoovenmethod(AOAC,
1984),Kjeldahlmethod(AOAC,1984),andmethodofBligh&Dyer,
1959, respectively. The ash amount s of the samples were deter
mined by burning in muffule furnace at 550°C for 24 hr.
    
|
 3 of 10
ÖZTÜRK and GÜNDÜZ
2.5 | Amino acid analysis
In determining the samples’ free amino acid composition, the
methods(HPLCmethod) reported by Aristoy&Toldra,1991and
Antoine, Wei, Littell, &Marshall,1999wereemployed.First, the
samples were homogenized, and then 5 g of sample was weighed
andhydrolyzedwith6NHClfor24hrat110°C.Single‐detector
(UV) and ZorbaxEclipse‐AAA 4.6 x 150mm, 3.5μm HPLC were
used to determine the free amino acid composition of the sam
ples.FMOC(9‐fluorenylmethylchloroformate)with OPA(ortho‐
phthalaldehyde)wereusedasthederivatizationreagentand0.4N
Borate(pH10.2)wasusedasthebuffersolutionforaminoacids.
2.6 | Fatty acid analysis
Fatty acids were extracted and then the fatty acid methyl esters
(FAMEs)werepreparedinaccordancewiththeISO5509method
(2000).Firstly,thelipidofsample,fattyacidanalysisofwhichis
to be performed, was extracted. For this purpose, a portion of
samples was put into a soxhlet setup and the lipid was extracted
usingpetroleumether.Andthen,theetherwasevaporatedusing
anevaporator.About100mg of the obtained lipidwasweighed
in a capped centrifuge tube and then 10‐ml n‐hexane was added
intothetube.Andthen,10‐ml2NKOHsolutionwasadded;the
mixture was centrifuged, and the superior phase was filtered
and analy zed in gas chromatog raphy (GC) device. G C was per
formed using Agilent Technologies 6,890 gas chromatograph
equipped with an HP‐5 cross‐linked methyl silicone fused‐silica
capillarycolumn(30m×0.25mmI.D.,0.25‐μmfilmthicknesses).
Hydrogenwasusedasthecarriergas.Oventemperaturewasset
between180and250 ˚C. Gas chromatography–massspectrom
etry (G C‐MS) was pe rformed using A gilent Technologies 5 ,973
device. Individual components were identified using mass spec
tral data and by comparing the retention time data with those ob
tained from authentic and laboratory standards. Peak area was
quantified and expressed as percentage of total fatty acids (Wen,
Hu,&Fan,2010).
2.7 | Rehydration ratio (RR)
The drie d sea cucumber s were soaked in 25°C di stilled water fo r
2hr. Afterw ards samples w ere left on the f ilter paper fo r 30s to
removetheirfreewaterandweighed(Duanetal.,2007).
where Wd is the weight of samples before rehydration and Wr is the
weight of samples after rehydration.
2.8 | Sensory evaluation
The sensory evaluation of the dried samples was carried out by
seven panelists. The color, odor, appearance, texture, aroma/fla
vor, and overall acceptability criteria were taken into consideration.
Thescoringwereratedas1–2“dislikeverymuch,”3–4“dislike,”5–6
“neutral,”7–8“like,”and9–10“likeverymuch.”
2.9| Statistical analysis
Theobt ainedda tawereana lyzedus ingANOVA(analy si sofv ariance).
The resul ts were evaluate d by Duncan Multip le Comparison Test .
TheSPSSstatistic alpa ck ageprogramwasusedtotestwh et hert here
isanydifferencebetweentheapplicationgroups(IBMSPSS2012).
3 | RESULT AND DISCUSSIONS
3.1 | Chemical composition
In the study, it was determined that raw sea cucumbers (H. tubulosa)
had 84.0 4% moisture, 10. 33% protein, 0.2 0% fat, and 6.6 3% ash
content(Table1).Similarly,Caklietal.,2004determinedthatrawsea
cucumbers (H. tubulosa) contained 87% m oisture, 8% pr otein, and
0.2% fat.Itwasobservedthatsea cucumbers of commercial value
existinginTurkishseashaveahighproteinandlowfatcontentand
can be regarded as a dietetic food in terms of nutrition (Culha et al.,
2017).Similarresultshave beenobtainedin studies conductedon
Actinopyga mauritiana, Holothuria arenicola, Holothuria leucospilota,
Holothuria scabra, Holothuria parva, Holothuria spinifera, Stichopus
naso, and Thelenota anax (Haider,Sultana,Jamil,Tarar,&Afzal,2015;
Ketharani&Sivashanthini,2017;Salarzadehetal.,2012).
Previous studies have shown that drying methods cause differ
enteffectsonnutritionalcompositionof foods.After the MD,FD,
andHADprocesses,fordriedseacucumbers,themoisturecontent
ra n g edbe t w e en6.0 0% and6. 8 6%,pr o tein conte n tbet w e e n56 .12%
and62.70%,fatconten tb etw een1. 36%and1.93%,andashcon te nt
ranged between30.39and38.16(Table 1).Chang‐Leeetal.(1989
RR=Wr/Wd(kg/kg)
Raw Freeze drying Hot air drying Microwave dr ying
Moisture(%) 84.0 4 ± 1.45a6.00±1.75b6.86±1.10b6.04±0.52b
Protein(%) 10.33 ± 3.55b62.70±9.03a56.12±1.17a59.79±5.76a
Fat(%) 0.20 ± 0.03b1.93 ± 0.71a1.36±0.05a1.65±0.51a
Ash(%) 6.63±0.87b30.39 ± 2.91a38.16±4.07a32.78±6.44a
Note. Theresultsaretheaverageoftworeplications.
a, b, c(→)The difference between the averages with the same letters is not statistically significant
(p>0.05).
TABLE 1 Chemical composition of raw
and dried sea cucumber
4 of 10 
|
   ÖZTÜRK and GÜNDÜZ
reportedthat raw sea cucumbershad89%–91%moisture, 5%–6%
protein, 0.3%fat, 3% ash,and 0.3% carbohydrate, whiledried sea
cucumbers had 2%–6% moisture, 61%–70% protein, 2%–3% fat,
16%–24% ash, an d 2%–3%c arbohydrate s. Guiné, Henr iques, and
Ba rro ca(2014re port edt hatth emo ist ureconte ntsand ashco ntent s
ofsea cucumbers dried by drying chamber (40°C‐60°C), in drying
tunnel(60°C)andinfreezedryerrangedfrom6.57%to11.64%and
9.66%to14.9%,respectively.Bilginandİzci(2016determinedthat
rawsea cucumbers had87% moisture,12%protein, 0.3%fat, and
0.7% ash and sea cucumbers dried in room conditions (24°C) had
10%moisture,61%protein,0.9%fat,and27%ash.
Whilemoisturecontentinrawseacucumberswas84.04%,itwas
determined that moisture content of dried samples with different
dryingmethodswas6.00%–6.86%.Lietal.(2018reportedthatthe
moisture content of raw samples and dried samples with different
dryingmethodswas 91.24%and 3.99%–6.39%, respectively. High
moisture content is a limiting factor in the trade of sea cucumbers.
Therefore,itisimportanttoremovemoisturecontentoftheseacu
cumbers through appropriate drying methods.
Theprotein,themaincomponentofdriedseacucumbers,canbe
used as a quality index since it can be a sign of physical and chemical
changesinsamplesduringdrying(Baietal.,2012;Gao,Xu,&Yang,
2011).Itwasdeterminedthatamountofproteininrawseacucum
berswas10.33%andamountofproteinindr iedsampleswithdiffer
entdryingmethods was56.12%–62.70%. Similartotheresultswe
haveobtained,Telahigue,Hajji,Imen,andSahbi(2014reportedthat
the drying process increased protein content in dried samples com‐
paredtorawsamples.Thehighestproteincontentwasdetectedin
FDsamples.Similartotheresultswehaveobtained,Baietal.(2012
found that the highest protein content was in sea cucumbers dried
byFD. The reasonforthisisthatthelowtemperatureusedduring
dryingwithFDhelpspreservetheproteincontent(Baietal.,2012).
Amino acid type
Drying methods
Raw Freeze drying Hot air drying Microwave dr ying
Aspartate 4.05 ± 0.07a3.6±0.02c3.66±0.01c3.89 ± 0.02b
Glutamate 14.65±0.06a5.11 ± 0.01c5.39 ± 0.25bc 5.73 ± 0.04b
Asparagine 1.65±0.01aND ND ND
Serine 2.57 ± 0.03a1.95 ± 0.04c2.04 ± 0.02c2.16±0.05b
Glutamine 1.13 ± 0.02aND ND ND
Proline 2.44 ± 0.03c4.37 ± 0.03b4.42 ± 0.04b5.34 ± 0.03a
Hydroxyproline 7.74 ± 0.05a3.12 ± 0,03d3.25 ± 0.04c4.03 ± 0.04b
Alanine 3.25±0.06aND ND ND
Tyrosine 9.93 ± 0.03a2.11 ± 0.03c2.2 ± 0.03b2.17 ± 0.02bc
Cystiene 2.26±0.02a1.15 ± 0.02c1.49 ± 0.02b2.29 ± 0.03a
Glycine 14.53 ± 0.05a10.99 ± 0.04c11.82 ± 0.01bc 12.72±0.68b
∑NEAA 58.18 ± 0.37a32.38 ± 0.03d34.24 ± 0.24c38.31 ± 0.86b
Histidine 1.22 ± 0.03aND ND ND
Trypthophan 5.95 ± 0.07aND ND 5.86±0.03a
Phenylalanine 1.76±0.00a0.82 ± 0.02b0.84 ± 0.02b0.84±0.06b
Isoleucine 1.71 ± 0.02aND ND ND
Lycine 2.33 ± 0.03a1.17 ± 0.02c1.29 ± 0.03b1.22 ± 0.02c
Leucine 6.06±0.05a1.05 ± 0.04b1.5±0.69b1.13 ± 0.02b
Arginine 10.71 ± 0.02a7.00 ± 0.04d7.47 ± 0.04c8.22 ± 0.01b
Valine 1.14 ± 0.01c0.99 ± 0.01d1.23 ± 0.02b1.34 ± 0.02a
Methionine 6.28±0.02a3.61±0.02c4.4 ± 0.01bND
Theronine 3.84 ± 0.03a2.75 ± 0.02c3.1 ± 0.02b3.15 ± 0.03b
∑EAA 40.98 ± 0.01a17.36 ± 0.01d19.81 ± 0.71c21.74 ± 0.01b
∑AA 99.16 ± 0.39a49.74 ± 0.04d54.05 ± 0.47c60.05 ± 0.88b
EAA/NEAA 0.70 ± 0.04a0.54 ± 0.00c0.58 ± 0.02b0.57 ± 0.01bc
Note. EA: Essential amino acids; NEAA: Non‐essentialaminoacids;EA A: Total essen tial amino
acids; NEAA:Totalnon‐essentialaminoacids;AA:Totalaminoacids.
*Theresultsaretheaverageoft woreplications.
a, b, c(→)The difference between the averages with the same letters is not statistically significant
(p>0.05).
TABLE 2 Aminoacidprofileofrawand
dried sea cucumbers
    
|
 5 of 10
ÖZTÜRK and GÜNDÜZ
Whilefatcontentinrawseacucumberswas0. 20%,itwasdeter
mined that fat content of dried samples by different drying methods
was1.36%–1.93%.Lietal.(2018reportedthatthehighestfatcon
tentwasdetectedinthesamplesdriedbyFD,HAD,andinsun,re
spectively. Similar to result of Li et al. (2018, the highest fat content
wasdetectedinthesamplesdriedbyFDandthelowestfatcontent
wasdeterminedinsamplesdriedbyHADinthisstudy.
3.2 | Amino acid analysis
Amino acid profiles of sea cucumbers dried by different drying
methodsaregiveninTable2.Totalamountofa mi noac id s( ΣAA)was
significantly different depending on the drying method (p<0.05).In
theseacucumbersdriedbyFD,HAD,andMDmethods,ΣA Awere
observedas49.74, 54.05,and 60.05,respectively,andthe highest
ΣAAwerefoundinMDsamplesamongdryingmethods.Duetothe
short processing time in the microwave drying method, it is thought
thataminoacidlossesare lower.Wuand Mao (2008reportedthat
microwave drying improves protein quality when compared to hot
air drying.
The ΣAA content of FD sampleswas found to besignificantly
lowerthan HAD and MD samples. Similarresultswereobtainedin
the stud y conducte d by (Duan, Zhang , Mujumdar, & Wang, 2010;
they found that the ΣA A content of HAD pr oducts ( 77.00 %) was
higher(73.24%)thanFDproducts(73.24%).
The highest non‐essentialamino acids (NEAA)inthe dried sea
cucumbers were glycine, glutamate, and proline while the essential
aminoacids(EAA)werearginine,methionine,andthreonine.Duan,
Zhang, Mujumdar, & Wang, 2010 achieved similar results in the
study carried out in the species Stichopus japonicus.Theresearchers
determined that the amount of glycine, glutamate, and proline from
NEAAandarginine,thronine,andleucinefromEAAwasdominant.
Similar results have been obtained in studies conducted with raw sea
cucumbers. Wen et al. (2010 found that the most abundant amino
acids in fresh sea cucumbers were glycine, glutamic acid, aspartic
acid,alanine,andarginineforming58.2%–65.9%oftheAAcontent
oftheseaminoacids. Furthermore,in termsofEAA, they detected
threonine, phenylalanine, and tyrosine in high amounts. Sicuro et al.
(2012 have reported that glutamic acid, glycine, and aspartic acid are
the most common amino acids and Haider et al. (2015 pointed out
that glycine amino acid is the most abundant in raw sea cucumbers.
Inthisstudy,theratioofEA AtoNEA AofsamplesdriedbyFD,
HAD,andMDmethodswas0.54, 0.58,and0.57,respectively.The
samplesdriedbyMDmethodhavebeenfoundtohavehighervalues
than other drying methods for arginine and valine essential amino
acids and t ryptophan was found to be completely hydr olyzed in dried
samplesexceptforsea cucumbers driedbyMDmethod (p<0.05).
Tryptophanasanessentialaminoacidhydrolyzedeasily(Cankiriligil
&Berik, 2017). Most industrial microwave systems operate in mi
crowavepowerrangingfrom5.000to100.0 00W.Thefactthatthe
power flow is high for the given mass causes the temperature to in‐
creaserapidly.Asaresultoftheaccelerationofsomereactionswith
effect of rising heat at the beginning, there may not be enough time
forquitecomplexphysicochemicaleventstooccur(Konak,Certel,&
Helh el,20 09).Itisthoug htthatsho r td ryingtim ea pplie dt ot hesam
plesdriedbyMDpreventsthehydrolysisoftryptophan.Methionine
wasfoundtobehigherinHADsamplesamongdriedseacucumbers
(p<0.05) bec ause aliphatic am ino acids such as met hionine have
limitedsolubilityinwaterduetotheirhydrophobicRgroups.Other
amino acids (histidine, phenylalanine, isoleucine, leucine) had no
significant differencesdepending on thedrying method used.The
valueofNEAwashigherinMDsamplesamongdriedseacucumbers
(p<0.05).Itisthoughtthatthisiscausedbythefactthatmostofthe
NEAshaveapolarstructure.
Aspartate, glutamate, glycine, alanine, serine, and proline have
been reported to be responsible amino acids for taste of sea cucum‐
bers (Duan,Zhang, Mujumdar,&Wang,2010).Inthisstudy,itwas
determined that the serine, aspartate, and proline amino acids re
sponsiblefor taste are high in MD products (p<0.05). In contrast
to these results, Duan, Zhang, Mujumdar, & Wang, 2010 found
significantincreasesin serine, glycine,alanine,andprolinein HAD
products. However, researchers stated that they did not detect this
increase in dried samples with FD and Microwave freeze drying
(MFD)andbettertasteofseacucumbersdriedbyHADmaybedue
to this increase.
3.3 | Fatty acid analysis
Althoughmany studies have beendone to determineoffattyacid
profile in different species of sea cucumbers (Fredalina et al., 1999;
Ginger,Santos,&Wolff,2000;Haideretal.,2015;Wenetal.,2010;
Zhongetal.,2007),thereisalimitednumberofstudiesonH. tubu-
losa(Aydin,Sevgili, Tufan, Emre, &Köse, 2011;Sicuroetal.,2012).
Also, the re are very few s tudies on the e ffect of dif ferent dry ing
methodsonnutrientcontentofthisspecies(Aydinetal.,2011).
In this study, the effect of different drying methods on the fatty
acid composition of sea cucumbers was investigated and the results
obtainedinthestudyaregiveninTable3.Intheseacucumbersdried
byFD,HAD,andMDmethods,totalsaturatedfattyacids(∑SFA)was
observedas39.51,14.67,36.18%andtotal unsaturated fatty acids
(∑USFA)wasobservedas52.38%,85.3%,and53.23%,respectively.
WhilefattyacidsinFDandMDproductswerefoundasSFA>PUFA>
MUFA,HADproductswerefoundPUFA>MUFA>SFA.(Aydinetal.,
2011)havedeterminedthatdryingprocessinseacucumberscauses
anincreaseintheamountofMUFAanddecreaseinthe amountof
SFAand PUFA. (Lietal.,2018)reportedthatthehighestfattyacid
amount de tected was in HAD, FD, an d SD samples, respectively.
Researchersreportedthatrawanddried(bydifferentdr yingmeth
ods) sea cucu mbers were fou nd to have significa nt difference s in
allfattyacids(SFA,MUFA,PUFA,n3PUFA,n6PUFA,FA,andn3/
n6PUFAs)andthattheydidnotdetectC12andC14fattyacidsin
HADsamples.Inour study,whileC12fattyacidwasnotdetected
inMDsamples,thisfattyacidwas detected inFD(3.48) andHAD
(0.13)samples.C14fattyacidwasdetectedinseacucumbersdried
bythree dryingmethods(FD, HAD, andMD) and thehighest C14
valuewasobtainedinMDsamples(4.10).(Bilgin&İzci,2016)stated
6 of 10 
|
   ÖZTÜRK and GÜNDÜZ
TABLE 3 Fatty acid profile of raw and dried sea cucumbers
Fatty acid (%)
Drying methods
Raw Freeze drying Hot air drying Microwave dr ying
C4:0 0.16±0.10aND ND ND
C6:0 0.18 ± 0.01aND ND ND
C8:0 0.23 ± 0.04b0.37 ± 0.02aND ND
C10:0 0.34±0.06b0.32 ± 0.02b0.45 ± 0.03aND
C11:0 0.81 ± 0.01aND ND ND
C12:0 4.78 ± 0.00a3.48 ± 0.03b0.13 ± 0.03cND
C13:0 1.11 ± 0.08aND ND ND
C14:0 6.25±0.02a3.14 ± 0.02d3.28 ± 0.01c4.10 ± 0.01b
C15:0 1.39 ± 0.11a0.17 ± 0.02bND ND
C16:0 5.09 ± 0.03c23.33 ± 0.02a0.22 ± 0.01d14.75 ± 0.04b
C17:0 1.65±0.01aND ND 0.31 ± 0.03b
C18:0 8.91 ± 0.15c8.24 ± 0.03d9.77 ± 0.03b15.43 ± 0.02a
C20:0 0.99 ± 0.00aND ND 0.60±0.02b
C21:0 2.12 ± 0. 20a0.43 ± 0.04d0.83 ± 0.02c1.01 ± 0.02b
C22:0 1.11±0.06a0.23 ± 0.01bND ND
C23:0 2.33 ± 0.01aND ND ND
C24:0 1.18 ± 0.01aND ND ND
∑SFA 38.63 ± 0.01b39.51 ± 0.16a14.67 ± 0.09d36.18 ± 0.00c
C14:1 1.34 ± 0.01a0.32 ± 0.02d0.53 ± 0.03c0.90 ± 0.00b
C15:1 14.75 ± 0.04aND 8.12 ± 0.03bND
C16:1 1.59 ± 0.01a 0.44 ± 0.01d0.52 ± 0.03c0.72 ± 0.03b
C17:1 1.72 ± 0.03a0.40 ± 0.00c0.29 ± 0.01d0.58 ± 0.03b
C18:1 9.22 ± 0.0 4a1.40 ± 1.37c3.25 ± 0.02bc 3.54 ± 0.01b
C18:1 n9 1.82±0.06c10.50 ± 0.01a1.92 ± 0.03b1.72 ± 0.01d
C20:1 2.03 ± 0.02a0.60±0.02d1.27 ± 0.01c1.75 ± 0.02b
C22:1 n9 2.24 ± 0.04c2.10 ± 0.02d4.76±0.01a4.48 ± 0.03b
C24:1 1.24 ± 0.03c2.31 ± 0.01b6.27±0.03a6.31±0.01a
∑MUFA 35.95 ± 0.06a18.06 ± 1.29d26.93 ± 0.04b19.99 ± 0.00c
C18.2n6 1.89 ± 0.09a0.64±0.0 0b0.52 ± 0.02cND
C18:3n6 2.01 ± 0.01c1.98 ± 0.04c4.03 ± 0.04b4.54 ± 0.02a
C20:3n6 2.23 ± 0.04a0.11 ± 0.01cND 0.33 ± 0.03b
C20:4n6 2.28 ± 0.07a1.05 ± 0.04c1.20 ± 0.02b1.05 ± 0.01c
∑PUFA n6 8.41 ± 0.05a3.78 ± 0.08d5.75 ± 0.04c5.92 ± 0.01b
C20:3 n3 22.82 ± 0.12ab 17.59 ± 0.13b33.76±0.07a12.24 ± 11.00b
C20:5 n3 2.44±0.06b6.59±0.16a1.48 ± 0.01cND
C22:6n3 2.57 ± 0.00aND ND ND
∑PUFA n3 27.83 ± 0.01ab 24.18 ± 0.28ab 35.24 ± 0.06a12.24 ± 11.00b
C18:2 1.92 ± 0.01aND 0.36±0.02bND
C18:3 2.06±0.04aND 1.22 ± 0.02c1.46±0.01b
C20:2 2.15 ± 0.01c1.91 ± 0.01d4.14±0.06a3.12 ± 0.03b
C22:2 2.34 ± 0.01d4.46±0.02c11.69±0.02a10.51 ± 0.02b
∑ Other PUFAs 8.47 ± 0.01c6.37 ± 0.04d17.40 ± 0.08a15.09 ± 0.04b
∑PUFA 44.71 ± 0.01b34.33 ± 0.33b58.39 ± 0.10a33.24 ± 11.03b
∑PUFA/ ∑SFA 1.16±0.03b0.87 ± 0.01b3.98 ± 0.03a0.92 ± 0.30b
(Continues)
    
|
 7 of 10
ÖZTÜRK and GÜNDÜZ
that sea cu cumbers drie d at room temper ature containe d 17.79%
saturated fatty acids (ΣSFA), 23.78%monounsaturated fatty acids
(ΣMUFA), 34.37% polyunsaturated fatty acid (ΣPUFA), and 1.83%
C14 fatty acid.
Inthis study,itwasdetermined that C16:0 (Palmitic acid)from
ΣSFAs and C20 :3 n3 (Eicosatrieno ic acid) from ∑USFAs have t he
highest content in dried sea cucumbers (H. tubulosa).Instudiescar
ried out on H. tubulosa(Aydin et al., 2011), Apostichopus japonicus
(Lietal.,2018),andHolothuria forskali(Bilgin&İzci,2016;Telahigue
etal.,2014),similar resultswere obtained as in this studyinterms
of saturated fatty acids but the researchers obtained different re‐
sults with reagrd to the results obtained for unsaturated fatty acids.
(Aydinetal., 2011)and(Bilgin & İzci, 2016)determined that C20:4
n6 (Ar achidonic Acid ) had the highe st value for uns aturated fat ty
acids, (Li et al.,2018)and(Telahigue et al.,2014)foundthatC18:1
n9(ElaidicAcid)andC18:3n3(EicosatrienoicAcid)hadthehighest
value for t hese fatt y acids, respe ctively. Becau se of the differ ent
drying methods used in our study, it is thought that different results
have been reached.
Inthisstudy,thetotalMUFAdetectedinFD,HAD,andMDsam
pleswas18.06%,26.93%,and19.99%,respectively,anditwasfound
tobethe highesttotal inMUFAof HADsamplesamong driedsea
cucumbers (p<0.05).ThehighestvaluesofMUFAsinFD,HAD,and
MDsampleswereidentifiedasC18:1n9(elaidicacid),C15:1(cis‐10‐
pentadecenoicacid),andC24:1(nervonicacid),respectively.
ItisknownthatEicosapentaenoicacid(EPA)andDocosahexaenoic
acid(DHA)reducetheriskofcoronaryheartdiseaseandcancer(Köse,
Koral, Özoğul,&Tufan, 2010). In thisstudy, the EPA ratiowasdeter
minedas6.59%and1.48%intheFDandHADsamples,respectively,
butit wasnotdetectedinMDsamples.WhileDHAwasnotdetected
in any of the dr ied samples in t his study, (Bilgin & İzci , 2016)d eter
minedthatDHAwas3.66%andEPAwas9.92%.Asreportedby(Liet
al.,2018),thisstudyalsofoundthatEPAandDHAdecomposeduring
processing of sea cucumbers and this decomposition may have been
determined to considerably depend on the drying method.
The n3/n6 ratio is a n importa nt index of the fat ty acid which
plays an important role in human health. It has been reported that
byincreasingtheratio of n3/n6 in humandiets, itcanprevent the
diseases of coronary, shock syndrome, and cardiomyopathy and re
ducetheriskofcancer(Gaoetal.,2011;Guler,Kiztanir,Aktumsek,
Citil,&Ozparlak,2008).
ItissuggestedbyWHOthatthe n3/n6ratio shouldbe greater
than 0.1. (Sánchez‐Machado, López‐Cervantes, Lopez‐Hernandez,
& Paseiro‐ Losada, 200 4). The highest n3 va lue (35.24%) was de
terminedin HAD samples,but thisdifference wasnot statistically
significant. Then6value varied between 3.78 and5.92depending
on the drying method (p<0 .05). The rates of n3/n6 were dete r
mined as 6.41%, 6.14%, and 2.07% in FD,HAD, and MD samples,
respectively, and these values were found to be in accordance with
WHO recommended standards. (Li et al., 2018) reported that n3/
n6 values varied between 0.55and 1.01 depending onthe drying
method u sed to dry sea c ucumbers: H AD, FD, and sun and th ese
valueswerefoundtobeincompliancewiththestandard.(Telahigue
etal.,2014)reportedthatthevalueofn3/n6variedbetween1.4and
5.8insamplesdriedbysunandHAD(differenttemperatures);(Bilgin
&İzci,2016)pointedoutthatthisratiowasdeterminedas0.67insea
cucumbersdriedatroomtemperature(24°C).
It has been determined that the drying methods applied during
the processing of sea cucumbers have a significant effect on the
fatty acid composition. In this study, C14:0, C17:0, C18:0, C20:0,
C21:0, C14:1,C16:1,C17:1,C20:1,C18:3, C18:3n6, andC20:3 n6
fattyacidswerefoundtobebetterinMDsamples;itisthoughtthat
this may be due to the polymerization‐oxidation reactions of fatty
acids.
3.4 | Characteristics of drying methods
Figure 1a showed the drying time of sea cucumbers under differ‐
entdryingmethods.IthasbeendeterminedthatFDprocesshasthe
longestdryingtime(24hr).ThisisbecauseFDundervacuumcondi
tions prov ides sublimat ion heat throug h transmissio n. The rate of
heat transfer is slow and therefore the dr ying process takes a long
time(Duan,Zhang,Mujumdar,&Wang,2010).InHAD,itwasdeter
mined that thedrying time(14hr)was shorterthan FD. Compared
tobothmethods,MDprocesshasthelowestdryingtime(4min)be
cause microwave drying is achieved by the difference in water vapor
Fatty acid (%)
Drying methods
Raw Freeze drying Hot air drying Microwave dr ying
∑PUFA/∑MUFA 1.24 ± 0.01b1.91 ± 0.12ab 2.17 ± 0.01a1.66±0.55ab
EPA+DEHA 5.01 ± 0.02b6.59±0.16a1.48 ± 0.01cND
∑n3 27.83 ± 0.12b24.18 ± 0.28c35.24±0.06a12.24 ± 11.00d
∑n6 8.41 ± 0.01a3.78 ± 0.08d5.74 ± 0.04c5.92 ± 0.01b
∑n3 / ∑n6 3.31 ± 0.07c6.41±0.06a6.14±0.05b2.07±1.86d
∑n6 / N3 0.30 ± 0.04a0.16±0.16a0.16±0.00a0.48±0.06 a
Note. ND,Not detected; DHA, Docosahexaenoicacid; EPA,Eicosapentaenoic acid; SFA, Saturatedfatt y acids;MUFA, Monosaturated fattyacids;
PUFA,Polyunsaturatedfattyacids.
*Theresultsaretheaverageoft woreplications.
a,b,c(→)Thedifferencebetweentheaverageswiththesamelettersisnotstatisticallysignificant(p>0.05).
TABLE 3 (Continued)
8 of 10 
|
   ÖZTÜRK and GÜNDÜZ
pressures(ininnerzoneandsurface)providingthepropulsionforce
formoisture transfer.Briefstartuptimes and internalheating, due
to penetration of microwaves, improve performance, and reduce
process times (Konaket al., 2009). Similar to ourstudy,(Baiet al.,
2012) determinated that the total drying times for vacuum freeze
drying(VFD), combinationdryingofEHD‐FD (EHFD), andelectro
hydrodynamicdrying(EHD)were20.5,17.5,and12hr,respectively;
thedryingrateoftheFDprocesswastheslowest.(Duanetal.,2007)
determinatedthatthetotaldryingtimesforADandFDwere8and
18hr,respectively.(Duan etal., 2007) determinatedthat thetotal
dryin g times for AD and FD we re 8 and 18hr. In addition, th ese
researc hers state d that total dr ying times fo r MD and microwave
vacuum dryingwere150and120min, respectively.Theyreported
thatFDtreatment maintained productquality,but required a very
long drying time.
The rehydration properties of the dried product are used as a
quality index since they can show physical and chemical changes
duringdrying(Baietal.,2012).Asaresultofthisstudy,itwasdeter
minedthattherehydrationrateofFDproductswashigherthanHAD
andMDproducts(Figure1b),butthesedifferenceswerenotstatis
tically significant (p>0.05).Similar results were obtained in other
studies in which the effect of drying on the rehydration properties
ofseacucumberswasinvestigated.(Duanetal.,2007)reportedthat
seacucumbersdriedbyFDhadthehighestrehydrationrate,butsea
cucumbersdriedbyHADandMDhadapoorrehydrationrate.(Duan
etal.,2008)alsofoundthatseacucumbersdriedbyFDmethodhad
a better rehydration rate. In our study, it was also found that the
rehydrationrateofseacucumbersdriedbyFDwasbetterthansea
cucumbersdriedbyHADandMD,anditwasalsofoundthatFDhad
the longest drying process.
3.5 | Sensory evaluation
Theeffectofdifferentdryingmethodsonthesensoryproperties
ofseacucumbers is showninFigure 2.MDsampleswere found
to be bett er than HAD and FD pr oducts in ter ms of odor, tex
ture, taste, and overal acceptability, but these differences were
not statistically significant (p>0.05). Samples d ried by MD had
the highest score of taste because aspartate and proline amino
acids responsible for taste are high in microwave‐dried sea cucum
bers (p>0.05).Inthestudy,thesamplesdriedbyHADhadhigh
estscoreofcolorandappearancethansamplesdriedbyFDand
MD;thesedifferenceswerenotstatisticallysignificant(p>0.05).
Duan,Zhang,Mujumdar,&Wang,2010reportedthatseacucum
bersdriedbyHADhadadarkercolorandlowersensoryqualities
thanFDandMFDproducts.
4 | CONCLUSIONS
As a resul t of this study, it was determined that the rehydr ation
rate, drying time, chemical composition, fatty acid and amino acid
profiles of sea cucumber (H. tubulosa) change depending on the
drying method. It was determined that the rehydration rate and sen‐
sory ch aracter istics of MD pr oducts we re similar to HAD a nd FD
FIGURE 1 Effectofdifferentdryingmethodsondryingtimeandrehydrationrateofdehydratedseacucumbers.Differentletters
indicate a significant difference (p <0.05)
FIGURE 2 Effect of different drying methods on sensory
qualitiesofdriedseacucumbers.Differentlettersindicatea
significant difference (p <0.05)
    
|
 9 of 10
ÖZTÜRK and GÜNDÜZ
products. But MDwasmore effective for the protectionof special
essentialaminoacidsandfattyacids.Also,MDprocesshadthelow
estdryingtime.Forthesereasons,itwasdeterminedthatMDisthe
most suitable method for dr ying sea cucumbers.
CONFLICT OF INTEREST
Theauthorsdeclarenoconflictsofinterest
ORCID
Fatma Öztürk http://orcid.org/0000‐0003‐4763‐3801
Hatice Gündüz http://orcid.org/0000‐0002‐9899‐8635
REFERENCES
Antoine,F.R.,Wei,C.I.,Littell,R .C.,& Marshall, M.R.(1999).HPLC
method for analysis of free amino acids in fish using o‐phthaldi
aldehyde precolumn derivatization. Journal of Agricultural and
Food Chemistry, 47(12), 5100–5107. htt ps://doi.org/10.1021/
jf990032+
AOAC.(1984).Official methods of analysis. A ssociation of official analytical
chemist(14thed).Washington,DC:Arlington.
Aristoy,M.C.,&Toldra,F.(1991).DeproteinizationtechniquesforHPLC
amino acid analysis in fresh pork muscle and dr y‐cured ham. Journal
of Agricultural and Food Chemistry, 39(10), 1792–1795.  htt ps://doi .
org/10.1021/jf 00 010a020
Aydin,M. (2008).The commercial seacucumberfisheryinTurkey.SPC
Beche De Mer Information Bulletin, 28, 4 0–41.
Aydin, M.,Sevgili,H., Tufan,B., Emre, Y.,& Köse, S.(2011). Proximate
composition and fatty acid profile of three different fresh and
dried commercial sea cucumbers from Turkey. International
Journal of Food Science & Technology, 46(3), 50 0–508. htt ps://doi.
org /10.1111/j.1365‐2621.2010.02512.x
Bai, Y., Yang, Y., & Huang, Q. (2012). Combined electrohydrody
namic (EHD) a nd vacuum free ze drying of sea c ucumber. Drying
Technology, 30(10), 1051–1055. https://doi.org/10.1080/0737393
7.201 2 . 6 6 3 4 35
Bilgin, Ş. , & İzci, L. (2016). Kur utma ve haşl ama işleml erinin Holothuria
forskali (Dell e Chiaje, 1823)’nin besi n bileşenleri ne etkisi. Journal
of Food and Health Science, 2(1), 1–8. https://doi.org/10.3153/
JFH S16001
Bligh,E.G.,&Dyer,W.J.(1959).Arapidmethodoftotallipidextraction
and purification. Canadian Journal of Biochemistry and Physiology,
37(8),911–917.https://doi.org/10.1139/o59‐099
Bo rdb a r,S. ,Anw ar,F. ,&S aar i ,N . (2011). Hig h‐v alu eco mpon ent s and bio
actives from sea cucumbers for functional foods—a review. Marine
Drugs, 9(10),1761–1805.https://doi.org/10.3390/md9101761
Cakli,Ş.,Cadun,A.,Kişla,D.,&Dincer,T.(2004).Determinationofqual
itycharacteristicsofHolothuriatubulosa,(Gmelin,1788)inTurkish
sea (Aeg ean Region) dep ending on sun d rying pro cess step use d
inTurkey.Journal of Aquatic Food Product Technology, 13(3),69–78.
https://doi.org/10.1300/J030v13n03_07
Ca nki ril igi l,E.C . ,& Ber ik,N.(20 17 ). Ef f ect sof dee p‐fryi ngtos ard inecr o
quettes’ chemical composition. Ege Journal of Fisheries and Aquatic
Sciences, 34(3),293–302.https://doi.org/10.18864/TJAS201704
Chang‐Lee,M.V.,Price,R.J.,&Lampila,L.E.(1989).Effectofprocessing
on proximate composition and mineral content of sea cucumbers
(Parastichopusspp.).Journa l of Food Science, 54(3),567–568.https://
doi.org/10.1300/J030v13n03_07
Chen,J.(20 05).Present statusandprospectsofseacucumberindustry
in China. FAO Fisheries Technical Paper, 1, 25–38.
Culha,S.T.,Çelik,M.Y.,Karaduman,F.R.,Dereli,H.,Culha,M.,Ozalp,H.B.,
… Al p a r s l a n ,M . ( 2 0 17 ) . I nf l u e n c e of s e a s o na l e n v i ro n m e n t a lc h a n g e s
on the biochemical composition of sea cucumber (Holothuria tubu-
losaGmelin ,1791)inTheDardanellesSt rait.Ukrainian Food Journal,
6(2),291–301.https://doi.org/10.24263/2304‐974X‐2017‐6‐2‐10
Doymaz, I., & Pala, M. (2002). Hot‐air drying characteristics of red
pepper. Journal of Food Engineering, 55(4), 331–335. https://doi.
org/10.1016/S 0260‐8774(02)00110‐3
Duan,Z.H.,Jiang,L.N.,Wang,J.L.,Yu,X.Y.,&Wang,T.(2011).Drying
and quality characteristic s of tilapia fish fillets dried with hot air‐mi‐
crowave heating. Food and Bioproducts Processing, 89(4),472–476.
https://doi.org/10.1016/j.fbp.2010.11.005
Duan,X.,Zhang,M.,Li,X.,&Mujumdar,A.S.(2008).Microwavefreezedry
ing of sea cu cumber coated wit h nanoscale sil ver. Drying Technology,
26(4),413–419.https://doi.org/10.1080/07373930801929136
Duan, X., Zhang,M.,&Mujumdar,A.S. (2007).Studyonacombination
drying technique of sea cucumber. Drying Technology, 25(12), 2 011–
2019. 0.1080/07373930701728497
Duan, X.,Zhang, M.,Mujumdar, A. S.,Huang, L.L .,&Wang, H. (2010).
A novel dielectric drying method of sea cucumber. International
Journal of Food Science & Technology, 45(12), 2538–2545. ht tps://
doi.org/10.1111/j.1365‐2621.2010.02419.x
Duan, X ., Zhang, M., M ujumdar, A. S., & Wa ng, S. (2010). Microw ave
freeze dr ying of sea cucumber (Stichopus japonicus). Journal of
Food Engineering, 96(4), 491–497. https://doi.org/10.1016/j.
jfoodeng.2009.08.031
Fredalina,B.D.,Ridzwan,B.H.,Abidin,A.Z.,Kaswandi,M.A.,Zaiton,H.,
Zali,I.,…Jais,A.M.(1999).Fattyacidcompositionsinlocalseacu
cumb er. General Pharmacology: the Vascular System, 33(4),337–340.
https://doi.org/10.1016/S0306‐3623(98)00253‐5
Gao,F.,Xu,Q.,&Yang,H.(2011).Seasonalbiochemicalchangesincom
positionofbodywalltissuesofseacucumberApostichopusjapon
icus. Chinese Journal of Oceanology and Limnology, 29(2),252–260.
https://doi.org/10.1007/s00343‐011‐0041‐7
Ginger,M. L.,Santos, V.L., & Wolff,G. A. (2000).Apreliminary inves
tigation of the lipids of abyssal holothurians from the north‐east
Atlantic Ocean. Journal of the Marine Biological Association of
the United Kingdom, 80(1), 139–146. htt ps://doi.org /10.1017/
s0025315499001654
Guiné, R.P.,Henriques,F.,& Barroca, M.J. (2014).Influenceof drying
treatments on the physical and chemical properties of cucumber.
Journal of Food Measurement and Characterization, 8(3), 195–206.
https://doi.org/10.1007/s11694‐014‐9180
Guler,G.O.,Kiztanir,B.,Aktumsek,A.,Citil,O.B.,&Ozparlak,H.(2008).
Determination oftheseasonalchanges ontotal fattyacidcompo
sition and ω3/ω6ratiosof carp(Cyprinus carpioL.)musclelipidsin
BeysehirLake (Turkey). Food Chemistry, 108(2), 689–694. https://
doi.org/10.1016/j.foodchem.2007.10.080
Haider, M. S., Sultana, R., Jamil, K., Tarar,O. M.,& Afzal, W.(2015). A
study on proximate composition, amino acid profile, fatty acid pro‐
file and some mineral contents in two species of sea cucumber.
JAPS: Journal of Animal & Plant Sciences, 25(1),168–175.
ISO,P.(2000).Animalandvegetablefatsandoils–preparationofmethyles
tersoffattyacids.PolishStandardMethodPN‐ENISO,5509,2000.
Ketharani, U., & Sivashanthini, K. (2017). Nutritional composition of
selected species of sea cucumbers from waters around Jaffna
Peninsula, Sri Lanka. Vingnanam Journal of Science, 13(1–2).https://
doi.org/10.4038/vingnanam.v13i1‐2.4123
Konak,Ü.İ., Certel,M.,& Helhel,S.(20 09).Applications ofmicrowaves
in the food industry. Electronic Journal of Food Technologies, 4(3),
20–31.
Köse,S., Koral,S.,Özoğul, Y.,&Tufan,B.(2010).Fatty acidprofile and
proximatecompositionofPacificmullet(Mugilso‐iuy)caughtinthe
10 of 10 
|
   ÖZTÜRK and GÜNDÜZ
BlackSea.International Journal of Food Science & Technology, 45(8),
1594–1602.https://doi.org/10.1111/j.1365‐2621.2010.02309.x
Li, C.,Li, H., Guo,S., Li,X., &Zhu, X. (2018). Evaluationof processing
methods on the nutritional quality of sea cucumber (Apostichopus
japonicusSelenka).Journ al of Aquatic Food Pro duct Technology, 27(4):
406–417.ht tps://doi.org/10.1080/10 498850.2013.803271
Liu,X.,Sun,Z.,Zhang,M.,Meng,X.,Xia,X.,Yuan,W.,…Liu,C.(2012).
Antioxidant and antihyperlipidemic activities of polysaccha
rides from sea cucumber Apostichopus japonicus. Carbohydrate
Polymers, 90(4), 1664–1670. https://doi.org/10.1016/j.
carbpol.2012.07.047
Moon, J.H., Kim,M.J.,Chung, D.H.,Pan, C. H.,& Yoon, W.B.(2014).
Dr yi n g char a c t e r istic sofse a c ucumb e r (Stichopus japonicasSelenka)
using far infrared radiation drying and hot air drying. Journal of
Food Processing and Preservation, 38(4), 1534–1546. https://doi.
org /10.1111/jfpp.12113
Ratti,C.(2001).Hotairandfreeze‐dryingofhigh‐valuefoods:Areview.
Journal of Food Engineering, 49(4) , 311– 319. h t t p s : //d o i . o r g /10 .10 16/
S0260‐8774(00)00228‐4
Salarzadeh,A.,Afkhami,M.,Bastami,D.K.,Ehsanpour,M.,Khazaali,A.,
&Mokhlesi,A.(2012).Proximatecompositionoftwoseacucumber
species Holothuria pavra and Holothuria arenicola in Persian Gulf.
Annals of Biological Research, 3(3),1305–1311.
Sánchez‐Machado, D. I., López‐Cervantes, J., Lopez‐Hernandez, J., &
Paseiro‐Losada, P.(2004).Fattyacids,total lipid, protein and ash
contents of processed edible seawee ds. Food Chemistry, 85(3),439–
444.https://doi.org/10.1016/j.foodchem.2003.08.001
Sicuro, B ., Piccinno, M ., Gai, F., Abete, M. C ., Danieli , A., Dapr a, F.,&
…Viella, S. (2 012). Food quali ty and safet y of Mediterr anean sea
cucumbers Holothurio tubulosa and Holothuria polii in Southern
AdriaticSea. Asian Journal of Animal and Veterinary Advances, 7(9),
851–859. https://doi.org/10.3923/ajava.2012.851.859
Telahigue, K., Hajji, T., Imen, R., & Sahbi, O. (2014). Effects of dry
ing methods on the chemical composition of the sea cucumber
Holothuria forskali. The Open Food Science Journal, 8(1).https://doi.
org /10. 2174/18742564014 08 010 001
Vergara,W.,&Rodríguez,A.(2016).Nutritional composition ofseacu
cumber Isostichopus sp. Natural Resources, 7(03), 130. ht tps://doi.
org/10.4236/nr.2016.73013
Wen, J., Hu, C., & Fan, S. (2010). Chemical composition and nutri
tional quality of sea cucumbers. Journal of the Science of Food and
Agriculture, 90(14),2469–2474.https://doi.org/10.1002/jsfa.4108
Wu, T., & Mao, L. (20 08). Influences of hot air drying and micro
wave drying on nutritional and odorous properties of grass carp
(Ctenopharyngodon idellus)fillets.Food Chemistry, 110 (3),647–653.
https://doi.org/10.1016/j.foodchem.2008.02.058
Zhang, K.,Pu, Y.Y.,&Sun, D.W.(2016).A briefreview: Effectsofdif
ferent dr ying methods on quality changes of fruits. Biosystems and
Food Engineering Research Review, 21, 80–83.
Zhong, Y.,Khan,M.A., &Shahidi,F.(20 07).Compositionalcharacteris
tics and antioxidant properties of fresh and processed sea cucum‐
ber (Cucumaria frondosa).Journal of Agricultural and Food Chemistry,
55(4),1188–1192.https://doi.org/10.1021/jf063085h
How to cite this article:ÖztürkF,GündüzH.Theeffectof
different drying methods on chemical composition, fatty
acid, and amino acid profiles of sea cucumber (Holothuria
tubulosaGmelin,1791).J Food Process Preserv.
2018;42:e13732. ht tps://doi.org/10.1111/jfpp.13723

File (1)

Content uploaded by Hatice Gündüz
Author content
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.