The modelling of ordinary beams and thin-walled beams is rigorously obtained from a formal asymptotic analysis of three-dimensional linear elasticity. In the case of isotropic homogeneous elasticity, ordinary beams yield the Navier-Bernoulli beam model, thin-walled beams with open profile yield the Vlassov beam model and thin-walled beams with closed profile the Navier-Bernoulli beam model. The
... [Show full abstract] formal asymptotic analysis is also extensively performed in the case of the most general anisotropic transversely heterogeneous material (meaning the heterogeneity is the same in every cross-section), delivering the same qualitative results. We prove, in particular, the non-intuitive fact that the warping function appearing in the Vlassov model for general anisotropic transversely heterogeneous material, is the same as the one appearing in the isotropic homogeneous case. In the general case of anisotropic transversely heterogeneous material, the analysis provides a rigorous and systematic constructive procedure for calculating the reduced elastic moduli, both in Navier-Bernoulli and Vlassov theories. © 2019 American Institute of Mathematical Sciences. All Rights Reserved.