iDistricts. A tool to propose or identify hydraulic sectors
Abstract
Given the scarcity of free tools to address the design and identification of hydraulic sectors in Epanet network models, software based on graph theory search algorithms and the Epanet hydraulic simulator was developed A concise manual which explains how it can be used accompanies this tool.
Files (3)
Content uploaded by Oscar Vegas Niño
Author content
... Previous works oriented to guarantee resilience and optimisation of the service, reliability and equity [1][5] [7] have also used it. Other self-developed tools have been used for the initial analysis of the network [9] [10]. ...
... Sectorisation using district metered areas (DMA) is widely used in the water industry to manage complex networks. The first analysis of the network suggested the interest of identifying hydraulic sectors using algorithms [10] and heuristic approaches obtaining different results. These solutions, or levels of sectorisation, depend on the interpretation of the sectors which in our case was to provide hydraulic sectors able to control flow and pressure. ...
... -Grafana tool for data treatment, graphics and table generation. Other tools used are iDistricts [10] that relies on graph search algorithms (breadth-first and depthfirst ones) to propose or identify hydraulic sector layouts of Epanet network models and SkelEpanet [11] that reduces a model automatically or manually maintaining its original hydraulic behaviour and guaranteeing its connectivity. ...
Our multidisciplinary team focused the challenge of improving the service in an intermittent Water Supply by globally analysing each step of improvement to the service performance together with the indicators related to it and a final rating for the entire network. The strategy of us is to act locally by implementing sectorisation and computing the indicators to diagnose which actions would be optimal. Reduction of leakages, both by means of pressure regulation and repairs, is the first step. The improvement of the water balance would not be enough, however, we increased the available water by means of pumping it from the available sources. Pressure is guaranteed by substitution of pipes, pumps and assuring the level in the tanks. The result, besides the final solution provided, is a set of statements that could become the rules of an expert system.
... EPANET [30] is a computer software application created by the United States Environmental Protection Agency (EPA), used throughout the world to model water distribution systems. Moreover, it is free, as well as the decision support tools developed by the authors and presented in this paper [31,32]. The original EPANET model was conceived for demand-driven analysis, but some extensions and new versions have been added to it that made it possible to run it in demand-driven mode or pressure driven mode. ...
... This will help to better understand the results obtained from the sectorization schemes. With this aim, another tool called iDistricts [32] (see Supplementary Materials iDistricts), was implemented by employing a depth-first graph theory search algorithm, also freely available from ResearchGate for download. ...
... Likewise, the identifiers of the pipes where a flow meter and/or a sectioning valve are to be installed are stored in text files, separately for each scenario. With these text files and the original network model, the hydraulic sectors and/or districts can be identified with the iDistricts tool [32]. ...
Many water supply systems, conceived to operate in centralized manner, face difficulties to adapt to dynamic changes, such as population growth, city extension, and industrial development. Decentralization of these systems may be an effective solution. Known techniques for distribution network sectorization design can help to achieve such a goal, but this has not been recognized in the literature. None of those known techniques considers the conversion of a centralized system to a decentralized one. In this paper, two new distinct yet complementary methodologies for water supply system decentralization by distribution network sectorization are proposed and implemented in a software decision support tool freely available on internet. The first methodology identifies the main flow paths from water sources to some strategic nodes and considers the nodes in these paths as new potential sources for dividing the rest of the network. The second methodology sectorizes the network according to the contribution of sources to the consumption at nodes, based on mass balance equations for the transport of a hypothetical conservative constituent in a steady state. Both methods were applied to two real network models. The results obtained were better, for decentralizing the supply, compared to those obtained by other methodologies proposed in the literature.
Debido a la escasez del recurso hídrico que azota a muchos países del mundo, los gobiernos están implementando políticas públicas para que las entidades gestoras del servicio de agua potable, juntamente con las instituciones públicas y la empresa privada, implementen tecnologías digitales para monitorizar y tener un mejor control de la gestión de las redes hidráulicas. Sin embargo, es posible que las entidades gestoras no posean un modelo matemático que les permita analizar el comportamiento hidráulico de la red ante distintos escenarios como el aumento de la demanda en ciertas zonas, la avería en una tubería principal, la ampliación de la red hidráulica; o tomar decisiones como la ubicación de nuevas fuentes de agua, la ubicación de sensores o elementos que permitan delimitar sectores hidráulicos (caudalímetros y válvulas de corte), entre otras.
El objetivo principal de este trabajo de investigación es desarrollar nuevos métodos basados en el modelo matemático y la topología de la red que ayuden a resolver los retos anteriores. Estos métodos, implementados en aplicaciones informáticas, pretenden ser de gran utilidad a las empresas de agua potable para comprobar la conectividad de la red e identificar las subredes con problemas de suministro o sin demandas de caudal asignadas; analizar la fiabilidad de la red bajo diversas circunstancias; ayudar a ubicar válvulas reductoras de presión, sensores y otros elementos de control, validar el proceso de asignación de las demandas, identificar derivaciones que causen un suministro deficiente en determinadas zonas; delimitar sectores de demanda sin afectar la red arterial de transporte y sectorizar una red hidráulica según el aporte de cada fuente al consumo de cada nodo; simplificar modelos de detalle que permitan minimizar los tiempos de cálculo para optimizar los procesos de toma de decisiones como el diseño de ampliaciones, la mejora energética o para dar una respuesta rápida en la operación en tiempo real; y por último, proporcionar métodos basados en la simulación hidráulica y en unas ecuaciones de tipo potencial-logarítmicas para convertir rugosidades absolutas de Darcy-Weisbach y coeficientes de rugosidad de Chezy-Manning en coeficientes de rugosidad de Hazen-Williams para calibrar el modelo, en otras aplicaciones.
Todos los métodos han sido implementados en aplicaciones informáticas para automatizar el proceso de cálculo. Para ello, se ha utilizado el entorno de programación de Visual Studio 2019 Community (.NET), la librería de EPANET (v2.2) para ejecutar los cálculos hidráulicos, y la librería shapelib para visualizar los resultados de manera gráfica desde cualquier software de Sistema de Información Geográfica. Los resultados obtenidos han sido verificados con profusión, primero porque cada método se ha desarrollado considerando el modelo de una red real y después se ha validado con otros cinco modelos de redes reales de configuraciones diferentes, tamaños, elementos de regulación y leyes de control. Asimismo, dado que todas las herramientas están publicadas en el portal de investigadores de ResearchGate para su libre acceso, han podido ser testeadas por otros muchos usuarios interesados en su uso para analizar y dar solución a los problemas diversos en la gestión de las redes de abastecimiento de agua. Por último, todos estos algoritmos pueden ser implementados en otras plataformas digitales o entornos SIG desde los cuales se puede mejorar la interacción del usuario con la red, permitiendo al modelador u operador de la red tomar las mejores decisiones.
ResearchGate has not been able to resolve any references for this publication.