PreprintPDF Available

Pseudowissenschaftliche Kritik an einem von der Berliner Charité veröffentlichten Coronavirus (SARS-CoV-2)-Test, publiziert von Peter Borger und Koautoren / Pseudoscientific criticism on a Coronavirus (SARS-CoV-2) test published by Peter Borger and coauthors-PCR-Borger-Report.pdf

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract

There is plenty of pseudoscientific claims and conspiracy theory on Corona. One example is the text of Borger et al (Nov. 27th 2020), dealing with the first published qPCR test on SARS-CoV-2 (Corman et al. Jan 23rd 2020). This publication analyses the Borger Text showing that the criticism flawed, full of blemish including beginners errors.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Background: To curb the spread of the COVID-19 (coronavirus disease 2019) pandemic, the world needs diagnostic systems capable of rapid detection and quantification of the novel coronavirus (SARS-CoV-2). Many biomedical companies are rising to the challenge and developing COVID-19 diagnostics. In the last few months, some of these diagnostics have become commercially available for healthcare workers and clinical laboratories. However, the diagnostic technologies have specific limitations and reported several false-positive and false-negative cases, especially during the early stages of infection. Aim: This article aims to review recent developments in the field of COVID-19 diagnostics based on molecular technologies and analyze their clinical performance data. Key concepts: The literature survey and performance-based analysis of the commercial and pre-commercial molecular diagnostics address several questions and issues related to the limitations of current technologies and highlight future research and development challenges to enable timely, rapid, low-cost, and accurate diagnosis of emerging infectious diseases.
Preprint
Full-text available
We report the results of a review of the evidence from studies comparing SARS-CoV-2 culture with reverse transcriptase polymerase chain reaction (rt-PCR), as viral culture represents the best indicator of current infection and infectiousness of the isolate. We identified fourteen studies succeeding in culturing or observing tissue invasion by SARS-CoV in sputum, naso or oropharyngeal, urine, stool and environmental samples from patients diagnosed with Covid-19. The data are suggestive of a relation between the time from collection of a specimen to test, copy threshold, and symptom severity, but the quality of the studies was moderate with lack of standardised reporting and lack of testing of PCR against viral culture or infectivity in animals. This limits our current ability to quantify the relationship between viral load, cycle threshold and viable virus detection and ultimately the usefulness of PCR use for assessing infectiousness of patients. Prospective routine testing of reference and culture specimens are necessary for each country involved in the pandemic to establish the usefulness and reliability of PCR for Covid-19 and its relation to patients’ factors such as date of onset of symptoms and copy threshold, in order to help predict infectivity.
Article
Full-text available
The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription–PCR (RT–qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer–probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT–qPCR analytical efficiency and sensitivity, we show that all primer–probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer–probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes. This is a comparative analysis of the performance of the primer–probe sets from four open-source molecular diagnostic assays for SARS-CoV-2 recommended by the World Health Organization.
Article
Full-text available
Laboratory preparedness with quality-assured diagnostic assays is essential for controlling the current coronavirus disease (COVID-19) outbreak. We conducted an external quality assessment study with inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) samples to support clinical laboratories with a proficiency testing option for molecular assays. To analyse SARS-CoV-2 testing performance, we used an online questionnaire developed for the European Union project RECOVER to assess molecular testing capacities in clinical diagnostic laboratories.
Article
Full-text available
It was common knowledge that some strain of coronavirus-sooner or later-was going to cause a pandemic. It was known since the SARS-CoV-outbreak in 2003. In 2013 and 2015, the world was informed that a variant of SARS-CoV in bats was emerging as a threat for humans. Why was no action taken by our governments and the World Health Organization (WHO)? The Corona crisis was not only conceivable and foreseeable, but the world could have been prepared. We could have had medication and we could have had a vaccine long ago. That is, when there had been visionary medical-political global leadership." Unlike the other coronaviruses, both the SARS-CoV strain of 2003 and SARS-CoV2 (COVID19-virus) do not contain the HE protein [9,10]. Further, a short lysine-rich region (KTFPPTEPKKDKKKKTDEAQ) in the N-protein was reported to be unique to SARS-CoV [10]. Intriguingly, an almost identical sequence (KTFPPTEPKKDKKKKADETQ) is found in the N-protein of SARS-CoV2 [11]. Both characteristics prove that we are dealing with a variant of the same virus of 2003."
Article
Full-text available
Nearly 400,000 people worldwide are known to have been infected with SARS-CoV-2 beginning in December 2019. The virus has now spread to over 168 countries including the United States, where the first cluster of cases was observed in the Seattle metropolitan area in Washington. Given the rapid increase in the number of cases in many localities, the availability of accurate, high-throughput SARS-CoV-2 testing is vital to efforts to manage the current public health crisis. In the course of optimizing SARS-CoV-2 testing performed by the University of Washington Clinical Virology Lab (UW Virology Lab), we evaluated assays using seven different primer/probe sets and one assay kit. We found that the most sensitive assays were those that used the E-gene primer/probe set described by Corman et al. (Eurosurveillance 25 (3), 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045 ) and the N2 set developed by the CDC (Division of Viral Diseases, Centers for Disease Control and Prevention, 2020, https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf ). All assays tested were found to be highly specific for SARS-CoV-2, with no cross-reactivity with other respiratory viruses observed in our analyses regardless of the primer/probe set or kit used. These results will provide valuable information to other clinical laboratories who are actively developing SARS-CoV-2 testing protocols at a time when increased testing capacity is urgently needed worldwide.
Article
Full-text available
Coronavirus disease 2019 (COVID-19) is an acute respiratory tract infection that emerged in late 20191,2. Initial outbreaks in China involved 13.8% cases with severe, and 6.1% with critical courses³. This severe presentation corresponds to the usage of a virus receptor that is expressed predominantly in the lung2,4. By causing an early onset of severe symptoms, this same receptor tropism is thought to have determined pathogenicity, but also aided the control, of severe acute respiratory syndrome (SARS) in 2003⁵. However, there are reports of COVID-19 cases with mild upper respiratory tract symptoms, suggesting the potential for pre- or oligosymptomatic transmission6–8. There is an urgent need for information on body site-specific virus replication, immunity, and infectivity. Here we provide a detailed virological analysis of nine cases, providing proof of active virus replication in upper respiratory tract tissues. Pharyngeal virus shedding was very high during the first week of symptoms (peak at 7.11 × 10⁸ RNA copies per throat swab, day 4). Infectious virus was readily isolated from throat- and lung-derived samples, but not from stool samples, in spite of high virus RNA concentration. Blood and urine never yielded virus. Active replication in the throat was confirmed by viral replicative RNA intermediates in throat samples. Sequence-distinct virus populations were consistently detected in throat and lung samples from the same patient, proving independent replication. Shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (14 days in all), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild upper respiratory tract illness. Active virus replication in the upper respiratory tract puts the prospects of COVID-19 containment in perspective.
Article
Full-text available
Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
Article
SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic. Although the SARS-CoV-2 genome was reported recently, its transcriptomic architecture is unknown. Utilizing two complementary sequencing techniques, we present a high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome. DNA nanoball sequencing shows that the transcriptome is highly complex owing to numerous discontinuous transcription events. In addition to the canonical genomic and 9 subgenomic RNAs, SARS-CoV-2 produces transcripts encoding unknown ORFs with fusion, deletion, and/or frameshift. Using nanopore direct RNA sequencing, we further find at least 41 RNA modification sites on viral transcripts, with the most frequent motif, AAGAA. Modified RNAs have shorter poly(A) tails than unmodified RNAs, suggesting a link between the modification and the 3′ tail. Functional investigation of the unknown transcripts and RNA modifications discovered in this study will open new directions to our understanding of the life cycle and pathogenicity of SARS-CoV-2.