Content uploaded by Abdullah Abdulhameed Bagasi
Author content
All content in this area was uploaded by Abdullah Abdulhameed Bagasi on Jan 21, 2021
Content may be subject to copyright.
Content uploaded by Abdullah Abdulhameed Bagasi
Author content
All content in this area was uploaded by Abdullah Abdulhameed Bagasi on Jan 21, 2021
Content may be subject to copyright.
Available via license: CC BY 4.0
Content may be subject to copyright.
Energies2021,14,530.https://doi.org/10.3390/en14030530www.mdpi.com/journal/energies
Article
EvaluationoftheIntegrationoftheTraditionalArchitectural
ElementMashrabiyaintotheVentilationStrategyforBuildings
inHotClimates
AbdullahAbdulhameedBagasi
1,2,
*,JohnKaiserCalautit
2
andAbdullahSaeedKarban
1
1
DepartmentofIslamicArchitecture,UmmAl‐QuraUniversity,MakkahP.OBox715,SaudiArabia;
Askarban@uqu.edu.sa
2
DepartmentofArchitectureandBuiltEnvironment,UniversityofNottingham,NottinghamNG72RD,UK;
John.calautit1@nottingham.ac.uk
*Correspondence:Aabagasi@uqu.edu.sa;Tel.:+966‐5555‐63252
Abstract:Thispaperreviewedrelatedresearchworksanddevelopmentsonthetraditionalarchi‐
tecturalelement“mashrabiya”focusingonitshistory,designandstructure,typology,andfunctions
inhotclimates.Moreover,thepaperassessedtheeffectofthetraditionalmashrabiyaontheindoor
thermalenvironmentandthermalcomfortinaselectedcasestudybuilding.Forthispurpose,two
similarroomswereinvestigatedinaselectedhistoricbuildingwithabundantmashrabiyaslocated
intheMakkahRegion,specificallyinOldJeddah,SaudiArabia.Thefieldtestswereconducteddur‐
ingatypicalhotsummermonthwithtwodifferentconfigurations.Thestudydemonstratedthat
openingthemashrabiyaallowedmoreairflowintotheroomduringthedayandreducedtheindoor
temperaturebyupto2.4°Cascomparedtotheclosedmashrabiya.Besides,thebuildingenvelope
playedanimportantroleinpreventingthehighfluctuationoftheindoorairtemperature,where
thefluctuationoftheroomsairtemperaturerangedbetween2.1°Cand4.2°Ccomparedtothe
outdoortemperaturewhichrecordedafluctuationbetween9.4°Cand16°C.Thedatapresented
herecanbeusedforthefuturedevelopmentofthemashrabiyaconceptandthepotentialincorpo‐
rationwithpassivecoolingmethodstoimproveitsdesignaccordingtotherequirementsofmodern
buildingsinhotclimates.Moreover,furtherstudiesandtestsonmashrabiyasunderdifferentcli‐
maticconditionsarerequired.Also,thedifferentstrategiesormaterialscanbeincorporatedwith
mashrabiyasinordertoimproveitsthermalperformance.
Keywords:mashrabiya;roshan;thermalperformance;thermalmass;passiveventilation;thermal
comfort;daylight;indoorthermalenvironment;SaudiArabia
1.Introduction
TheaccelerateddevelopmentofSaudiArabiaduringthelastdecadesledtomajor
changesintheeconomic,social,andbuildingsfieldsandexperiencedahighincreasein
energydemand.ThehightemperaturesthroughouttheyearinSaudiArabiamakecool‐
ingsystemsanecessitytoachievehumancomfort [1].Ingeneral,alargeportionofenergy
isconsumedgloballytokeeptheindoorairtemperatureofbuildingswithintherequired
comforttemperature[2].
Forahundredyears,severalarchitecturalelementswereemployedeffectivelyand
widelyonthetraditionalhousingintheArabGulfregionsuchasmashrabiyas,court‐
yards,andwindcatchersthathavedemonstratedtomeettheneedsofthepopulationand
havestronglocalclimatecompatibility.
InanumberofoldcitiesintheMiddleEastsuchasJeddah,Makkah,Yanbu,Bagh‐
dad,Cairo,Damascus,andTunis,mashrbabiyasstillexistasoneofthemostprominent
traditionalarchitecturalelements[3].Mashrabiyashavealsobeenfoundandadopted
Citation:Bagasi,A.A.;Calautit,J.K.;
Karban,A.S.Evaluationofthe
IntegrationofMashrabiyaintothe
VentilationStrategyforBuildingsin
HotClimates.Energies2021,14,530.
https://doi.org/10.3390/en14030530
Received:7December2020
Accepted:14January2021
Published:20January2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti‐
tutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(http://cre‐
ativecommons.org/licenses/by/4.0/).
Energies2021,14,5302of34
widelyindifferentcountriesaroundtheworldfromtheFarEasttoSouthAmericasuch
asIndia,Japan,China,Portugal,andSpain.
AmashrabiyawasdescribedbyFathy[4]asaspacecoveredincantileverswitha
woodengrid,inwhichsmalljarsofwaterwerepositionedtocooltheairthroughthe
aperturesbytheinfluenceofevaporation.Itcanalsobedefinedasawoodenframecov‐
eringawindowopeninganddecoratingthebuildingfaçade.Mashrabiyasaretradition‐
allycharacterisedbytheirfunctions,allowingairanddaylighttopenetrateandproviding
privacybesidetheaestheticpurpose(Figure1).
Figure1.ExampleofMashrabiyademonstratingtheprincipalfunctions.ReproducedfromBagasi
andCalautit[3].
Thebuilding’sthermalmassplaysanimportantpartinenhancingthermalefficiency
inhotclimatesalongsidethefunctionofthemashrabiya.Inwarmseasons,wallsand
floorsabsorbheatontheirsurfaces,conductedinternallyandemittedastheairgetscolder
atnight[5,6].Ventilationatnightthroughamashrabiyacanminimisethecoolingloadin
buildings[7].Furthermore,highthermalmasseslikeheavybricksandstonescaneffec‐
tivelyreducetemperaturevariationswithinaspaceovertime[8].
Inthepastdecades,manyresearchershavestudiedvariousaspectsofmashrabiyas.
Asfarasweknow,moststudiestendtofocusoneithertheirhistoryorondeveloping
mashrabiyaswithouttestingorconsideringtheactualperformanceandinfluenceonthe
indoorthermalenvironment.
Therefore,thisstudyaimstoreviewmashrabiyasandrelatedresearchworkandde‐
velopmentsfromtheenvironmentalsideinresidentialbuildingsinhotclimates.Also,
assesstheeffectoftraditionalmashrabiyasontheindoorthermalenvironmentinaresi‐
dentialbuildinginhotclimates.Theworkalsoassessestheeffectofthermalmassand
evaluatestheeffectivenessofthemashrabiyainachievingthermalcomfort.
Overall,thepaperpresentsanoverviewofthemashrabiya;itshistory,functions,
structureanddesign,andrelatedresearchworksaswellasthemostprominentapplica‐
tionsanddevelopments.Furthermore,acasestudybuildingwithmashrabiyaslocatedin
ahotclimatewasselectedandtested.
2.TraditionalMashrabiya
Amashrabiyacanbedefinedasawoodenframecoveringawindowopeningand
decoratingthebuildingfacade.Mashrabiyasisknownunderdifferentnamesbasedon
thereign,itisknownasshanasheelinIraqandIran,mushabakinIran[9],roshaninSu‐
dan,takhrimameans“fullofholes”inYemen,andmoucharabiehinAlgeria[10].While
inSaudiArabia,mashrabiyaiscalledeithermashrabiyaorroshan.
Theword“mashrabiya”isofArabicorigin,buttherearesomedifferencesinthein‐
terpretationofitssource.MashrabiyainArabicisderivedfrommashrabah,meaningthe
placefromwhichtodrink[11].Inanotherinterpretationmashrabiyalinguisticallytakes
itsoriginfrom“mashrafiya”thenounoftheverb“ashrafa”whichmeanstheplacetolook
Energies2021,14,5303of34
outorobservefromtheupperlevel[12,13].Withtimeandasaresultoftheaccentsand
effectofthenon‐Arabspeakers,mashrafiyabecametheutteringmashrabiya[10].Onthe
otherhand,Fathy[4]saidthatthewordmashrabiyaoriginatesfromtheArabicword
‘sharbah’meaning“drink”andoriginallyreferringto“adrinkingplace”.Healsomen‐
tionedthattheword(mashrabiya)cametorefertoawoodengridscreenwithcircular
balustradesthatarepartiallysmallandarrangedinregularspacesdelineatedbyanintri‐
catedecorativegeometricpattern. MashrabiyasweredefinedbyKamal[14]as“projecting
windowswithwoodenlatticeworkfornaturalventilationandprivacy”.
2.1.HistoryofMashrabiya
Whenandwheremashrabiyasoriginatedthuscannotbeconfirmed,duetothecon‐
flictingresearchers’opinions.Thefollowingisabriefreviewofsomeresearchers’state‐
mentsabouttheemergenceofthemashrabiya. Khan[15]statedthattheoriginsof
mashrabiyamightdatebacktotheancientcastlesorfortsofthepastthatwerebuiltwith
distinctivebaywindowsthatwereusedfordefensivepurposesbycastinghotwateror
oilontheenemiesbelowthroughsmallopeningsinthebottomofthebay[16].Khan[15]
alsoaddedthatmashrabiyaswereknownanddominantintheIslamicworldarchitecture
duringtheMamlukandOttomaneras.Sudy[17]mentionedthatthemashrabiyawascre‐
atedinthethirteenthcenturyAD,whereitwasdevelopedbyMuslimbuildersduringthe
MamlukErainCairo.Abdelgelil[18]statedthemashrabiyafirstappearedinEgypt(1517–
1905)duringtheMamlukandOttomanperiods.DuringtheMamlukruleera(1248–1516),
mashrabiyawereapredominantarchitecturalelementwheremaybetheoldest
mashrabiyacanbefoundintheGreatMasjidatQayrawan[19].Alitanyetal.[20]men‐
tioned:“Thetermroshancanbetracedasfarbackas1100ADandinNorthAfrica,Egypt
andYemenhascometobeknownasmashrabiya”.IntheOttomanera,themashrabiya
reachedtheclimaxofitsspreadandwidelyusedacrossalmosttheentiretyofIraq,Syria,
EgyptandtheArabianPeninsula.
InthewesternregionofSaudiArabia,Jeddahhasplayedavitalandsignificantrole
asagatewayforpilgrimsduetoitsseaportwhichisneartheholiestcitiesMakkahand
Medina.Thus,thesecitiesbenefitedfromtheexchangeofcultureswiththecaravansof
theHajjpilgrimage,whichcamefromdifferentcountriesbringingtheirskills,exchanging
ideaswiththedomesticpeopleandenrichingthearchitecturalart,includingthe
mashrabiyasinHijaz[21].
However,themashrabiya“interlacedwoodenscreen”isnotlimitedtoArabcoun‐
tries,butratherexistsandhasbeenadoptedinnumerousregionsaroundtheworldrang‐
ingfromtheFarEasttoSouthAmerica.Asaresult,mashrabiyahasseveralnamesand
variationsinspelling(Figure2).Forexample,inIndia,itiscalled“Jali,Jaali,Jaalis,or
Jalis”,whichmeansthelatticeworkscreen.
Energies2021,14,5304of34
Figure2.TraditionalMashrabiyaaroundtheworldanditslocalnames.
2.2.MashrabiyaDesignandStructureDetails
Mashrabiyadesignsvaryfromregiontoregiondependingonseveralphysicalvari‐
ables.Thesevariablescanbeitssize,constructionmaterial,patternsandornamentation,
andopenings.Themostinfluencingfactorsaffectingtheperformanceofthemashrabiyas
aretheirshape,aperturesandprojection.
Moreover,theregularconstructionmaterialusedinthemashrabiyastructureis
wood.Manytypesofwoodareusedforthesestructures,butthemostcommononesused
inSaudiArabiaareteak,ebony,oakandmahogany[16].Anothermaterialhistorically
usedinsomecountriessuchasIranandIndiaforstructuredlatticedscreensisso‐called
“terracotta”[22].
Mostly,thestructureofamashrabiyacomprisesthreemajorparts:theupper,middle,
andthelowerpart.Eachparthasseveralcomponentsthatareeitherfunctional,aesthetic
orboth.Alitany;etal.[23]definedthesepartsasthehead“crownortajj”,thebody“sud‐
dir”,andthebase“qaida”(Figure3).Al‐Shareef[16]describedthedivisionoftheexternal
detailsofmashrabiyasintofiveelements:crown,firsthorizontalpanel,openingsashes,
secondhorizontalpanelandbrackets.Inaddition,therearesomeotherelementsthatcan
beadoptedasadditionsbasedontheprevailingclimatesuchaswoodenscreens(sheesh)
andwaterjars[16].
Energies2021,14,5305of34
Figure3.MainpartsofamashrabiyainJeddah.ReproducedfromAlitanyetal.[23].
Typicalmashrabiyapartscanbedividedbroadlyintothreemainstructuralcompo‐
nents—thehead,thebody,andthebase—eachwithseveralelements(Figure4).The
crownintheupperpartworkasacanopyforthemiddlepartofthemashrabiya,while
thepearlisinthemiddleofthecrown.Theupperbeltconnectstheupperpartwiththe
middlepart.Undertheupperbelt,thesashesareinthemiddlepartofmashrabiyathat
canbedesignedaslouvres,shutters,orscreens[24].Thesashesareconsideredtheessen‐
tialpartduetotheirsignificantroleinmostofthemashrabiya’sfunctionsforallowing
penetratingairanddaylightandprovidingprivacy.
Thesashescoveranapertureandusuallydividedhorizontallyintotwoequalsec‐
tions.Vertically,themiddlepartusuallycontainsthreetofivesashes.Eachsashhassev‐
eralhorizontalslidingslatsor“louvreblades”[25].Theprimarypurposeofmovablelou‐
vresistocontroltheentryoflightandairintoaroomasdesiredbytheoccupant[19].
Overthelowersasheswithaoverhangof0.5mfromtheexternalpart,awoodenscreen
locallynamed“sheesh”wasplacedinsomemashrabiyaswhereitprovidesaplacefor
waterjars,whichworktocooltheairbyevaporation[25].Thebottompartofamashrabiya
consistsoftwosections:thelowerbeltandbrackets.Thebracketsworkasthemainsup‐
portofthewholemashrabiyastructure.
2.3.MashrabiyaTypology
Mashrabiyasdifferintheirformsfromoneregiontoanotherduetoseveralfactors.
Thesedifferencesweremainlyduetotheclimatetype,theskillofthelocalcraftsmen,the
accuracyofthedetailsandthewoodwork,anddependontheclient’srequestandfinan‐
cialability.Anabundanceofinscriptionsandanincreaseindetailingdetailsandthesize
ofamashrabiyaandthequalityofthewoodusedinitsconstructionareindicativeofthe
wealthandsocialstatusoftheownerofthehouse.
Energies2021,14,5306of34
Figure4.DetailedviewofpartsandcomponentsforamashrabiyainJeddah,amendedfrom
Alitanyetal.[20].
Salloum[26]dividedthemashrabiyaintothreesortstakingintoconsiderationthe
size:(1)simplewoodenscreensorlouvrescoveringtheopenings;(2)thecantilevered
mashrabiyaasanexpansionpartoftheinteriorspaces;(3)woodenlouvresontwoorthree
sidessurroundingaroomlocatedontheuppermostfloorofapropertynamed“almabit”
wheretheoccupantssleepduringhotdays.Aljofi[27]alsodividedthemashrabiyainto
threetypes:(1)cantilevered,(2)screenpanels,(3)louvredtimberwallsandlouvredwin‐
dows.InJeddah,mashrabiyacomeinmanydifferentshapesandsizes;themostcommon
shapescanbeclassifiedintothreegroups:mashrabiyas,plainmashrabiyas,andprojected
mashrabiya,asshowninFigure5.
2.4.Dimensions
Duetothedifferentshapesandsizesofmashrabiyas,therehavenofixedsize.How‐
ever,someresearchershaveoutlinedthetypicaldimensionsofmashrabiyas.Greenlaw
[28]describedthemaininternaldimensionsofthetraditionalmashrabiyabysaying:“The
sizeofaroshanisrelatedtothedimensionsofthehumanbody;itiswideenoughtolie
downincomfortably,thatisjustovertwometers,2.40musually;highenoughtostand
in,about3m,andprojectingabout60cmintothestreet”.Atypicalmashrabiyawasde‐
scribedbyAlitanyetal.[23]andAdas[29].Itswidthis2.4–2.8manditsinternalheight
2.7–3.5m.Itcanprotrudeexternallyabout0.4–0.7m.Byaddingthethicknessoftheex‐
ternalwallwiththeprojectionoftheMashrabiya,itmayresultinawidththatrangesup
to1.2m,andthiscanbeconvenientlyusedasaseatingarea.Hariri[30]statedthefloorof
amashrabiyawaseitheranextensionoftheflooroftheroomorhigherthanafloorlevel
byaround0.5m.Al‐Shareef[16]stated,“Theusualdimensionsofasingletraditional
roshanunitare3minheight,2.3minwidthand1.1–1.9mindepth,toallowsufficient
spaceforasleepingadult.Someroshansarebuiltwithadepthof1.9mtoaccommodate
amanandhiswife”.
Energies2021,14,5307of34
Figure5.DifferentshapesofMashrabiyainHistoricJeddah.
3.FunctionsofMashrabiya
Althoughmashrabiyawerewidelyusedinmanydifferentcountries,theygenerally
havethesamefunctions.Functionally,amashrabiyaisprimarilyfocusedonenvironmen‐
tal,socialandarchitecturalfactors.Mashrabiyaperfectlyworksasaprotectiondevice
fromdirectsunlightandeffectivelyreducesheatgain,especiallyduringhotseasons.Tra‐
ditionalmashrabiyasaredurabkeanddonotneedfrequentmaintenancewhereexcellent
qualitywoodtypesareusedinthemashrabiya,suchasteakormahoganywood,which
aredurableandcanbeusedforlongperiodswithoutdamageandresistextremeweather
conditionssuchasheatandhumidity[30].AccordingtothearchitectHassanFathy“The
mashrabiyaintersticesbothinterceptthedirectsolarradiationandsoftentheuncomfort‐
ableglare.Besides,consideringthatthemashrabiyaismadeofoutwood,ithelpsregulate
thehumidityinsidethespace.Itisknownthatwoodabsorbs,retainsandreleaseswater.
Whenairpassesthroughtheintersticesoftheporouswoodenmashrabiya,itvaporises
someofthemoisturegatheredinthewoodandcarriesittowardstheinterior”[31].Sabry
andDwidar[32]statedthat“Mashrabiaprovideshadewithinthehousingwithoutcom‐
pleteclosureofwindowsandallowthemovementofair,whichhelpstoreducethetem‐
peratureinthesummer”.AlgburiandBeyhan[33]mentionedthatthelatticeapertureson
mashrabiyasurfacesallowthepassageofnaturalfreshairandhenceprovidethermal
comfort.Mashrabiyasworkperfectlyforsociallifeinhouses.Theyprovideprivacyto
roomoccupantsandgrantsthemfreedomintheiractionsandmovements.Atthesame
time,itallowslookingoutwardwithoutisolationfromthesurroundingenvironment.
Aestheticismisanotherimportantfunctionofthemashrabiya,asitsshapesandde‐
signsadornhouses’facades.Mashrabiyasgenerallyarecharacterisedbyanaesthetic
shapeandprecisiongeometricandbeautywithornamentalinscriptionsofdifferentstyles.
Besides,themashrabiya’soutlineandpartsareinlinewiththeverticalextensionofthe
façades,whichdirectlycontributetomakingthefunctionsofmashrabiyaefficient.Al‐Ban
[34]notedthatthecolours,latticeworks,motifsandfacadesofMashrabiyascontributed
tocreatingadistinctivevisualcharacterinJeddah.Themashrabiyaanditscarvedwood
openingsfosterauniquedialoguebetweentheinteriorandtheexteriorwhilecreatinga
beautifulandpleasantlinkbetweenprivacyandpublicityforthehome[34].Moreover,
Ashour[35]said:“Regardingpsychologicalneeds,onecaninvestigatehowthe
mashrabiyaenhancesthefeelingsofconfidence,bliss,andquietrelaxationexperienced
bytheoccupantsandhowmuchitarousesandinspirescreativeenergy”.
Energies2021,14,5308of34
4.MashrabiyaStatus
Withtherapiddevelopmentinthepastdecades,climatechangeandincreasinghu‐
manitarianneeds,someissueshaveemergedintheuseofmashrabiya.Duetotheperim‐
eterofadjustablelouvres,itisnotpossibletocloseMashrabiyatightly.Thelouvresneed
aslidingpath,andastheygodown,thefrictionwiththewoodincrease,andflippingis
neitherpossiblenordifficult.Allofthatcanleadtodustpermeabilityandpenetrationof
insects,includingnoisedisturbance[30].Inaddition,continuousairleakageisnotcom‐
patiblewithoneoftheessentialneedsofmodernhousesinSaudiArabia(aircondition‐
ing),whichdependsontheisolationofexternalairtocontroltheinternalairtemperature
effectivelyandeconomically.
Moreover,thecostofthemashrabiyaisseveraltimeshigherthanthatofregularwin‐
dowsmadeofwoodoraluminium.Batterjee[24]mentionedthat“Roshanismadefrom
expensivewoodssuchasteak,ebony,oak,andmahogany.Thesewoodsaredifficultto
findlocallyandexpensivetoimport.Thatraisesthecostofconstructionandmaintenance
considerably”.Inadditiontothat,theperiodrequiredtoimplementamashrabiyaislong
wherethemanufactureandinstallationofonemashrabiyamaytakeuptotwomonthsor
morebasedonthesizeanddesign.
Otusanya,etal.[36]stated“Newpassivecoolingtechnologiesarebeingdiscovered
everyday,butundeniablytheinternalthermalcomfortofbuildingscannotbeattained
utilisingonlyonepassivecoolingmethod”.Also,newtechnologiessuchasfansandair
conditionersprovidealternativesolutionsthataddressthedrawbacksofmashrabiyas.
Thesetechnologieshavereplacedthemajorityofmashrabiyas’essentialfunctions,suchas
naturalventilationandcoldair,asfasterandmoreactiveefficiencytomeetthermalneeds
inthehotclimates.[37].However,inviewoftheneedtoreducetheemissionsofgreenhouse
gases,passivetechniquesshouldbeappliedinbuildingsandintegratedwithactivetech‐
niques[38].Alothman[39] statedthatairconditionershavefailedinsomewaycompared
tomashrabiyas,duetothefacttheyrequirealotofenergyandareexpensivetorun.
4.1.PreviousStudiesonTraditionalMashrabiya
Sinceseveralstudieshavestudieddifferentaspectsofmashrabiyas,inthefollowing
sectionwewillreviewanddiscusssomerelatedstudies,especiallyconcerningventilation,
daylight,andintegrationwithpassiveevaporativecooling.In1996,Al‐Shareefstudied
themashrabiyaasanelementtocontroldaylightforenergyconservationintropicalar‐
chitectureconsideringtheHejazarchitectureusedinthewestofSaudiArabiaasacase
study.Thetypeofmashrabiyaconsideredconsistsofmovablehorizontallouvresineight
sashesarrangedinseveralcolumnsandrows.Thesashesweretestedwithslatdeclination
anglesof30°,45°and60°.Al‐Shareefconcludedthattheflatmashrabiyaproducesvery
highinternalilluminancecomparedtotheprojectedone,andasthemashrabiya’ssizeis
increased,theilluminanceincreasestoo.Also,adjustmentoftheslatdeclinationangles
playsasignificantroleinthelevelanddistributionofilluminanceontheworksurface[16].
In2002,Maghrabi[25]studiedmodulatedlouverwindowswithreferencetoJed‐
dah’smashrabiyastoexaminetheventilationefficiencythroughmodelingandsimula‐
tion.Thestudyrevealedthatthemainreasonsforpoorventilationintheroomswere
whentheslideswereadjustedinanacuteinclinationposition.Also,theventilationopen‐
ingsandfreespaceinthemashrabiyawereaffectedwiththeslatstiltedto±60°resulting
inadecreaseinthemainpressure.Maghrabistatedthattheformofthemashrabiya
playedanimportantroleintheflowpatterninsidetheroomsincetheflatmashrabiya
allowedmoreairflowinitscentrecomparedtoprominentmashrabiyas.Inaddition,in
Jeddahthebestoptionwastousewindowsneartheroof,whichincreasesairflownear
thefloorandmakestheatmosphereathomemorecomfortable.
AccordingtoAljofi[27]“Orientation,timesofthedayplayanimportantroleinthe
amountoflightingpassingthemashrabiya”.In2005,Aljofitestedsixscreenpanelsof
differentregularshapes.Theilluminationvaluesofroundedscreencellswerethelowest
Energies2021,14,5309of34
incomparisonwithotherscreenpaneltypes.Comparedtothedarkoakwoodscreen,the
lightoakcontributedmorelightbyanaverageDFof17%.Besides,itwasfoundasthe
diameterofthescreencellincreasesthereflectedlightincreasestoo.Al‐Hashimiand
Semidor[40]studiedmashrabiyas’effectsondaylightvaluesinJeddah’sresidentialbuild‐
ings.ThestudyexaminedaroomwithawoodenmashrabiyaasshowninFigure6.Three
designcaseswereexamined:aroomwithmainopeningsclosedbyVenetianblinds,a
roomwithopenopenings,andaroomwithasingleglazedwindowfacingnorthduring
daytime[40].Thestudyfoundthemostmassivedaylightvalueduringdaytimecorre‐
spondedtoamashrabiyawithaopenedVenetianblind.Althoughthespacewithaclosed
Venetianwasdark,somesmallquantityofdaylight(<1%)alwaysentersfromthetopof
mashrabiya.In2020,Alwetaishi,etal.[41]investigatedthethermalcomfortinahistorical
buildingwithmashrabiyalocatedinTaif(SaudiArabia).Thestudyusedanevaporative
coolingtechniquetoenhancethethermalcomfortbyincreasingtheindoorairspeed.It
wasfoundthatthe“evaporativecoolingtechniquehasaconsiderableimpactonreducing
indoorairtemperaturewitha4°Cdrop,improvingthethermalcomfortsensation
level”[41].
Figure6.Theevaluatedroomandmashrabiyadimensions.ReproducedfromAl‐Hashimiand
Semidor[40]
Energies2021,14,53010of34
4.2.ContemporaryMashrabiya“MashrabiyaDevelopment”
Inthecurrentera,variousshapesderivedfrommashrabiyacanbefoundonthefa‐
çadesofbuildingsinvariouscountriesaroundtheworld.Also,severalstudiesandappli‐
cationshavesubmittednewdesignsorproposalsforthedevelopmentofmashrabiyaei‐
therusingdifferentmaterialsinsteadofwoodsuchasaluminium,steel,ceramic,orglass
fibrereinforcedconcrete(GRC),incorporatinginteractivetechniquesforopeningand
closing,orwithintegrationofevaporativecoolingsystemsinanattempttoboostthein‐
doorthermalandenergyconsumptionconditions.In2010,Batterjeeproposedasolution
foramashrabiyainJeddahbydevelopingitsdaylightpenetrationperformanceandde‐
creasingtheenergyconsumption.Batterjeedesignedfivemodelswithdifferentparame‐
tersandexaminedthedaylightlevelsusingEcotectandRadiancesoftware(Figure7).The
dimensionsofthemashrabiyamodelswere2.4m(w)×3m(h)×0.4m(prominentdepth).
Thebestcasewasadesigned10cm×10cmopeningtilted45°upwardontheinteriorside
usingstainlesssteelanddoublelow‐Eglazingwithanaluminiumframe.Thisreduced
thecoolingloadbyupto49%andprovedtobethebestoverallsolutionsuggestedexcept
fortheeastorientationduetothelowpositionoftheSunduringthatperiod.
Figure7.SimulationviaRadianceforevaluatinglightinglevel.ReproducedfromBatterjee[24].
Benedettietal.[42]investigatedtheevaporativecoolingpotentialofmashrabiya
screensinstalledinBolzanoItaly,testingtwotypesoflocalhardwoods(oakandchestnut)
andtwosoftwoods(spruce,andlarch)todeterminetheirwaterreleaserate.Thestudy
recommendedspruceformashrabiyascreensduetoitsgreatercoolingpotentialanda
higherpermeabilityand,consequently,abetterevaporativecoolingeffect.Thestudycon‐
cludedthatlarchwoodcouldbethemostappropriatespeciesformashrabiyascreensin
Bolzanogivenitscoolingefficiencyandconstructionfeatures.
IntheGibsonDesertofAustralia,Samuels[43]proposedanewconceptfora
mashrabiya,whichisconstructedasaspraydevicethatsprays0.2mmdiameterwater
dropletsfromtheconnectingholes.Thestudyindicatedthatthesystemestablishedan
effectiveandsufficientcoolingtechniqueforthestructure,butnoresultsormeasurements
ofthermalefficiencyandperformanceweregiven.
Karamata,etal.[44]proposedanewsysteminspiredbythemashrabiyaconcept
comprisingashapevariablemashrabiya(SVM)andspecifiedAbuDhabiasacasestudy.
TheSVMwasmadefromthreeidenticalperforatedopaqueshields;thefirstisfixedwhile
thesecondandthethirdonecansinglymovealongtheverticalandlateralaxis.There‐
sultsofannualdaylightperformancesimulationsshowedthatSVMprovidesadequate
andwell‐balancedillumination(mostofthetimeacrossthewholespace).Incontrast,the
SVMshieldsdecreaseandscattertheamountofdiffuselight.
In2015,theSVMwasstudiedagainbyKaramata[45]whoshowedthattheSVM
minimisedoverheatingproblemsandconsequentlythevaluesoftheprimaryenergyde‐
mandforcooling(−17.2%and−9.9%comparedtoselectiveglazing=41%andVenetian
blinds,respectively).Italsominimisedtheprimaryenergyrequiredforlighting(−65.7%
and−30.7%comparedtoreflectiveglazing=%16andVenetianblinds,respectively)and
Energies2021,14,53011of34
theefficiencyoflightingandglobalprimaryenergy(−27%and−16.3%comparedtoRG16
andV.B.,consecutively).
Sabryetal.[46]designedseveralsolarscreensinanattempttoachievevisualcomfort
andreduceenergyuseinresidentialdesertenvironment.Thestudyassumedaresidential
livingroomspaceof4.30m×5.20minJeddahwithdifferentscreendesigns.Itconcen‐
tratedontheinfluenceofvaryingtheaxialrotationofthesolarscreenandtheaspectratio
ofitsopeningsbeneaththecleardesertsky.Thestudyconcludedthatthesolarscreens
couldprovide66–97%daylitareasintheinspectedspacesreduceenergyconsumptionto
25%incomparisonwithastandardglazedwindow.
KhadraandChalfoun[47]attemptedtoimproveanintegratedfaçadetechnology
thatinteractswithandadaptstoclimatechangeinhotaridareas,specificallyinTucson
(Arizona,USA).Thestudyaimedtooptimisethermalcomfortforoccupantsinmixed‐
modeofficebuildingsusingpassiveventilationandevaporativecoolingmethodsinorder
toreducemechanicalcoolingenergyloads.Thecasewasatypicalofficespacefacingsouth
by6m(w)7.6m(d)2.7m(h),anda33%windowtowallratio.Thestudytestedthree
differentoperatingsystems:amechanicalcoolingsystem,passiveventilationandan
evaporativecoolingsystem.Theproposedmodeldemonstratedthatthecoolingloadde‐
creasedbynearly70%throughouttheyearwhiletheheatingloadincreasedslightlyin
thewintermonths.
Batool[48]estimatedtheimpactofarangeofperforationratios(30%,40%and50%)
ofhexagonaljaliscreensonenergysavingsanddaylightperformanceinamodernoffice
buildinglocatedinLahore(Pakistan).Thestudycompriseddatacollectionandanalysis
usingtheIESVEsimulationsoftwareforthefieldmeasurementsandenergymodelling.
Theresultsindicatedthepositiveimpactofjaliscreensoncoolingloadsandimproved
visualconvenience.The50%voidratioinwindowsfacingsouthwasalsofoundtobea
betterwayofachievingabalancedcoolingandlightingenergystrategy.
Anewsystemofwoodenlatticeopeningswasproposed byDiTuriandRuggiero[49],
inordertocontrolthedaylightthatentersabuilding.Thestudywascarriedoutforan
isolatedtestroomusingcomputationalfluiddynamics(CFD)asasimulationtool,show‐
ingthatthiscouldprovidebetterindoorconditions,increasedairspeedandimprovedair
changerateintheroom.Alrashedetal.[50]integratedamashrabiyawithasimulated
buildinginSaudiArabiaandconcludedthatitcouldreduceannualdemandforelectricity
andmaximumpowerneedby4%and3%,sequentially.AnotherstudybyAlgburiand
Beyhan[33]simulatedanair‐conditionedhouseinIraqwithaproposedmashrabiyaand
demonstratedthattheuseofamashrabiyacouldsave12.56%ofthetotalcoolingload.
TalebandAntony[51]simulatedanofficebuildinginDubaitoevaluatetheperformance
ofamashrbiayaanddifferenttypesofchosenglazing.Theproposedmashrabiyahada
hexagonalpatternwith40%coverageoftheglazingunit.Thestudyfoundthattheuseof
mashrabiyaastintedglazingcouldreducethecoolingloadby23%.
Theintegrationofevaporativecoolingelementswithmashrabiyashasbeendis‐
cussedorinvestigatedinsomestudies.In2004,Schiano‐Phan[52]proposedanevapora‐
tivecoolingsystemthatwasderivedfromthemashrabiyaconceptusingaporousceramic
mediumcalled“Evapcosystem”developedbyCain,etal.[53]andtheaimwastoaddress
someofthecoolingneedsofresidentialbuildingsinhot‐dryregions.Incomparisontothe
useofairconditioning,thetotalannualenergysavingswereabout3.08MWhforthese‐
lectedapartments.
In2015,aninnovativedesigninspiredbyatraditionalmashrabiyaandwater‐filled
ceramicvesselsbywasreportedbyRaelandFratello[54].Theformconsistsof3Dim‐
pressedporousceramicbricks,whereeachbrickabsorbswaterandenablesairtopass.The
designusedtheevaporativecoolingprinciple,wheretheairpassesthroughtheformand
evaporatesthewaterinthepores,refractingairandreducingtheinternaltemperature.
Table1summarisesmostofthosestudiesinsomecriticalcriteriaforthispaper.Asa
summaryofthissection,mostofthestudiesaddressedeitherthedaylightorventilation
aspectsofthemashrabiyaandafewincludedevaporativecooling.AlthoughSamuels[43]
Energies2021,14,53012of34
consideredallaspects,thestudydidnotcoveranyanalysisandmeasurementsorsimu‐
lationdemonstratetheeffectivenessoftheproposedMashrabiya.
Table1.Reviewsomeprimaryresearchonmashrabiyasanddifferentaspects.
RefAuthor,DateDesignDaylightVentilationEvaporativeCoolingAnalysis
[24]Batterjee,2010TXX
[25]Maghrabi,2000TXX
[27]Aljofi,2005TXX
[30]Hariri,1990S.T. XX
[30]Hariri,1992TXX
[40]Al‐HashimiandSemidor,2013T XX
[43]Samuels,2011AX
[46]Sabryetal.,2014STXX
[47]KhadraandChalfoun,2014AX
[55]Schiano‐Phan,2010STX
[44]Karamataetal.,2014AXX
[56]NermineandNancy,2014S.T.X
[57]Faggal,2015AXX
[58]Headleyetal.,2015S.T.X
[59]Alsharif,2016AXX
[60]ElkhatiebandSharples,2016AXX
[Design:T=Traditional][S.T.=SemiTraditional][A=Advance]
Table2brieflyhighlightssomeoftheapplicationsfromtheresearchers’viewpoint
basedontwoaspects:(1)mashrabiyaimprovementsthroughdesignandmaterials;(2)
designofinnovativemashrabiyas,whichgenerallyhaveanideainspiredbythedesign
conceptandfunctionsoftraditionalmashrabiya.
Table2.DifferentapplicationsofMashrabiya[42,43].
Project|Built|LocationApproachConcept
ArabWorldInstitute
1987
Paris,France
‐Interactive
‐Kinetic
Eachunitinthemashrabiyaperformsasa
cameralens.Thesouthfacadewascovered
b
yavastmashrabiyaof30×80msize
madeupofhundredsoflight‐sensitivedia‐
phragmsthatadmitacertainamountof
lightintothebuildingandgoverncooling.
CH2MelbourneCityCouncil
House2
2006
Melbourne,Australia
‐Innovative
‐Kinetic
Thebuilding’sfaçadewasinspiredbyNa‐
ture,whilethemicro‐ventilationductsare
integratedwithdaylightstrategiesandthe
walledconcretefloorstructureplaysacen‐
tralroleinheatingandcoolingthebuild‐
ing.
Energies2021,14,53013of34
PearlAcademyofFashion
2008
Jaipur,India
‐NewFixedDe‐
sign
‐Improved
Thedoubleskinisdesigned4maway
fromtheexteriorwalls,actsasathermal
b
arrierthatreducesdirectheatgain
throughthewindows.Thedrippingchan‐
nelsalongthejaaliinternalfaceallowpas‐
siveevaporativecooling,hencereducing
theairflowtemperature.
PaulValeryHighSchool
2009
Menton,France
‐NewFixedDe‐
sign
‐Improved
Thewoodenlouvresonthefacadeacttolet
daylightpassandinteractwiththeexterior
spaces.Thedesigntookintoconsideration
visualunitywhileensuringthermalcom‐
fortboundtosolarprotection.
MasdarcityResidentialBuild‐
ings
2010
AbuDhabi,UAE
‐NewFixedDe‐
sign
‐Improved
Themashrabiyawasbuilttobeaesthetic
andintegratedwiththesurroundingdesert
b
yusingdevelopedGRCcolouredwithlo‐
calsandinasustainableway.Theconcept
oflightandshadowaperturesisbasedon
typicalIslamicarchitecturepatterns.
TheQ1Headquarters
2010
Essen,Germany
‐Interactive
‐Kinetic
InresponsetotheSun’smovment,theki‐
neticfaçadeconsistsofabout400,000stain‐
lesssteellamellasthatallowlighttobere‐
directedwithoutobstructingtheview.
Privatehouse
2011
NewDelhi,India
‐NewFixedDe‐
sign
‐Improved
‐Themashrabiyaisstructuredfrom
mouldedredbrick.Thebrickactsasaveil
inthescreensthatshadethewestfacadeof
thebuilding.
AlBahrTowers
2012
AbuDhabi,UAE
‐Interactive
‐Kinetic
Thisadaptivemashrabiyalookslikeatri‐
anglewhenitexpands.Everysixunitscon‐
nectfromajointpointlooksliketherhom‐
b
usshape.Itismadefromstainlesssteel
supportingframes,dynamicaluminium
framesandfibreglassmesh.
Energies2021,14,53014of34
DohaTower
2012
Doha,Qatar
‐Fixed
‐Interactive
Thefacadeconsistsoffouraluminium
“butterfly”componentsofvarioussizes,
whichprotectagainstthedirectsunlight.
Theshapevariesdependingontheorienta‐
tionandthesolarprotectionthatindividu‐
alsrequire:25%northward,40%south‐
ward,60%eastwardandwestward.
VishranthiOffice
2014
Chennai,India
‐NewFixedDe‐
sign
‐Improved
Thebuilding’stotalfaçadeisdividedinto
600mmtransparentpanelswithwhitealu‐
miniummullionsthatshapetheframes.
Twodifferenttypesofskinbetweenthe
mullionswereadded:alightingpaneland
ajaliscreenpanel.
CommunityCenter
2015
Roses,Spain
‐NewFixedDe‐
sign
‐Improved
Thefacadedesignallowstheviewtowards
theseawithrespectingtheenvironment
andtheprivacyofthesurroundingbuild‐
ings.Theventilatedfacadeconsistsofper‐
foratedpanelsinthesamepatternasthe
originalgeometricmosaiccoveringtheold
floorofthebuilding.
5.TheCaseStudy
ThebuildingofthisstudyislocatedintheheartofhistoricJeddah“Al‐Balad”. His‐
toricJeddahhasthemostabundantareaofbuildingscharacterisedbytraditional
mashrabiyasorroshansinSaudiArabia. Itshouldbepointedoutthat“Al‐Balad”isone
ofthemostimportanthistoricalareasthattheSaudigovernmenthasbeenkeentosponsor
andsupportinordertopreserveitasaUNESCOheritagesite,aswellasbeingoneofthe
Vision2030initiativesthatconsidersuchsitesaspartoftheheritageandcivilisationof
theKingdomofSaudiArabia.
“BaeshenHouse”whichistheselectedcasestudybuildingforthiswork,isshown
inFigure8.ThehousewasconstructedbyMohammedSalehAliAbdullahBaeshenabout
200yearsagoduringtheOttomanera[3].Thebuildingwasbuiltfromapproximately60–
80cmthickload‐bearingwallscontainingthreetypesofstones:limestone,coral,marine
andcoralreef[3].AsillustratedinFigure9,theconstructionwallswereprotectedfrom
thehumidity,heatandsalinitybycoveringthemwithwhiteplaster.
Energies2021,14,53015of34
Figure8.Thebuildingfromoutside.
Figure9.Cross‐sectionviewoftheexternalwall.
Thebuildingwasdesignedinsuchawaythatallowseffectiveuseofnaturalventila‐
tionanddaylight,whilethefaçadeopeningsarecoveredwithmashrabiyasofdifferent
shapesandsizesthataddedadistinctiveaestheticcharactertothebuilding (Figure10).
Basedonseveralcriteria:validityandconditionofmashrabiyas,functionsandtime,the
availabilityofdrawings,experimentalpossibilitiesandtheaccesstothebuilding,the
buildingwasselectedasacasestudy.Theresultsofthecasestudygenerallyprovidea
clearframeworkforthemashrabiyaeffectandabetterunderstandingofitsactualinflu‐
enceontheindoorthermalcomfortofoldhouseswithload‐bearingwallsinJeddahin
particularandthusfeedthestudyscopewithmorerealisticdataabouttheperformance
ofthemashrabiya.
Energies2021,14,53016of34
Figure10.Westernfaçade(left)andacrosssectionwithageneralperceptionoftheairflow(right).
5.1.Methods
Thefieldworkwascarriedoutinselectedhistoricbuildingwithmashrabiyaslocated
inOldJeddah inthesummerof2018from4Augustto1September.Theexperimentalin‐
vestigationsusedcalibrateddigitalinstrumentstomonitorairtemperature,relativehumid‐
ity,airvelocity,andglobetemperaturefortwoselectedroomsandthecourtyard(Table3).
Inthisstudy,thecourtyardisanopenlandareaadjacenttothebuildingfromthewest,as
showninFigure11.
Figure11.A3Dperspectiveofthebuildingandthecourtyard.
Alltemperaturesandrelativehumidityvalueswerecontinuouslymonitoredfor28days
fromthefirsttothelastdaytheexperiment,whiletheothermeasurements;airvelocity,globe
temperatures,andsurfacetemperature,weretakeninspecificdaysandperiods.
Energies2021,14,53017of34
Table3.Overviewofthebuildingandmeasurementequipment.
City|LocationJeddah|21°29’12.8”N39°11’11.5”E
ClimatezoneHotarid
BuildingTypeHistoricalResidentialBuilding
CurrentuseExhibitionandGallery(Groundand1stfloor)
Instruments(Intervals)
HotWireAnemometer1min
WBGTDatalogger1min
TinytagPlus2DualChannel1h
TinytagView21h
DualLaserInfraredThermometer1h
Indoor,Out
Indoor
Indoor,Out
Indoor,Out
Indoor,Out
MeasurementsAirTemperature,GlobeTemperature,RelativeHumidity,
AirVelocity,SurfaceTemperature.
MashrabiyaOrientation:West/Mode:open‐closed
Materials
Wall:calcareousandcoralstones
Celling:StonesandTimber
Mashrabiyas:Wood
ThedevicesusedformonitoringtheexperimentaredetailedinTable4.Duringthe
entireinvestigationperiod,eachinstrumentwasplacedinaparticularposition.Theob‐
servedroomsandcourtyardduringtheexperimentwerenotoccupied,exceptformo‐
mentsofsettingthedataloggersorcarryingoutsomeinstantaneousmeasurements.
Table4.Theequipmentusedinthefieldwork.ReproducedfromBagasiandCalautit[3].
NumberInstrumentParametersandRangeAccuracyandResolution
3HotWireAnemometerwithReal‐
TimeDataLogger#HHF2005HW
‐Airvolumeandvelocity
‐Range0.2to20m/s
±(10%+lsd)FullScale
±0.8°C
2WBGTDataLoggerPCE‐WB20SD
‐WetBulbGlobeTemperature
‐Blackglobetemperature(TG)
‐Range0to59°C
WBGT:±1to1.5°C
TG:±0.6°C
2TinytagPlus2DualChannelTemper‐
ature/RelativeHumidity#TGP‐4500
‐Temperaturerange−25to+85C°
‐Relativehumidityrange0to100%.
‐Suitableforoutdooruse.
T:0.01°Corbetter.
RH:±3.0%at25°C
1TinytagView2Temperature/Relative
HumidityLogger#TV‐4500
‐Temperaturerangefrom−25to+50C°
‐Relativehumidityrange0to100%.
‐Suitableforindooruse.
T:0.02°Corbetter.
RH:Betterthan0.3%RH
1DualLaserInfraredThermometer
‐SurfaceTemperature
‐Rang−50°C~550°Ctemperature
‐Emissivity0.10to1.0.
+/−1%ofreading
Theselectedroomsofthisstudylocatedinthewestpartofthebuildingwherethe
firstroom(R1)locatedonthefirstfloorandthesecondroom(R2)inthesecond,asshown
Figure12.Bothroomshavethesameconditions,withtheexceptionofthedifferencein
heightfromgroundleveltoeachfloor.Eachroomhasonemashrabiyaonthewestwall
andoverlooksthecourtyard,exposedtotheprevalentwindandtheRedSeabreeze.Be‐
sides,eachroomhasthreeopeningsineachwallthatwereblockedtoisolateandprevent
theinfluencefromadjacentrooms.
Energies2021,14,53018of34
Figure12.Firstandsecond‐floorplanswiththedataloggerslocations.
Theroomdimensionsare4mlong,3.6mwide,and3.9mhigh,andthemashrabiya
is2.4mwide×3.1mhigh.Fourdataloggerswereusedineachroomformonitoringthe
airtemperature,velocity,relativehumidity,andtheglobetemperature.Inadditionto
that,aduallaserthermometerwasusedtomeasurethesurfacetemperatureofthe
mashrabiyaandtheadjacentwalls.Inordertomeasurethesurfacetemperature,grid
pointswereplacedinspecificspotsonthemashrabiyaanditsadjacentwallsofR1,as
showninFigure13.
Figure13.ThemashrabiyaandgridsinRoom1.
Thedataloggersfortheairandglobetemperaturesinbothroomswereat0.6min
heightand2mawayfrommashrabiyaonthebasisofASHRAEsuggestions[61].Atthe
internaledgeofeachmashrabiyaatalevelofabout1.1m,airflowvelocitydataloggers
wereplaced.Duringthetestperiod,eachroomwasmonitoredforairandrelativehumid‐
ityandtheglobaldataloggersandanemometersrecordedduringcertaintimesoftheday.
Threemetersapartfromtheexteriorwallinthecourtyard,twotypesofdataloggers
havebeeninstalled:TinytagPlusandaanemometer.TheTinytagwasrecordingoutdoor
TaandRHfrom4Augustto1September2018atalevelofaround1.7mbasedononeof
thelevelsrecommendedbythe2010ASHRAEstandards.Theanemometerwasrecording
Energies2021,14,53019of34
specificperiodsofdaysandwasplacedat0.1mheightandwasshadedbyatable.On
specificdaysandperiodsofthefieldwork,aduallaserinfraredthermometerwasusedto
measurethesurfacetemperaturesoftheopenmashandclosedmashfrominsideand
outsideincludingtheadjacentwallofthemashrabiyas.
Figure14presentsthetimelineoftheexperimentindicatingthedaysofmeasure‐
mentsfromthefirstday“Setup”tothelastday.Thechartshowsthattheexperiments
monitoredtheoutdoorandindoorairtemperature”Ta”andrelativehumidity“RH”for
theentireperiod.Also,thegraphdisplaysthemonitoringdaysfortheothermeasure‐
ments;airvelocity“AV”,globetemperature“Tg”,andsurfacetemperature“Ts”.
Figure14.Timelineoftheexperiment.
5.2.ResultsandDiscussion
Thissectionpresentstheindoorandoutdoormeasurementsdatacollectedinthis
work.Theresultsoftheairtemperature,airvelocity,humidity,andsurfacetemperatures
willbepresentedandanalysedindetail.
5.2.1.IndoorAirTemperatureandRelativeHumidityResults
Figure15presentsthemeasurementsofindoorandoutdoorairtemperaturefrom5
to31August.Asobserved,thethermalmassandthemashrabiyaplayedaanimportant
roleinregulatingtheindoortemperatureduringthehighfluctuationswherethetemper‐
atureofRoom1rangedbetween32.2and38.5°C,Room2from32.5to38.4°C,whilstthere
wasarecordedhighvariationinthecourtyardtemperaturesbetween30.9and48.7°C.The
thermalmassandclosedmashrabiyadelayedtheheatfluxintoRoom2uptothreehours
perdaywhiletheopenmashrabiyainRoom1reducedthetimelagtoonehourasshown
inFigure16.However,theopenmashrabiyaallowedmoreairflow,whichmostlylowered
theRoom1temperature,especiallyduringtheafternoonbyupto2.4°Ccomparedto
Room2.AsobservedinFigure16,bothroomswereabletokeepthetemperaturebelow
38°Cwhentheoutdoortemperaturepeakedat43.6–45.4°C.Thiseffectisagainmainly
attributedtotheroleofthebuilding’stotalthermalmass.Itcanalsobeobservedthatnight
ventilationeffectdecreasedtheindoorairtemperatureupto34°Candcontributedto
loweringtheexcessheatandcoolthebuildingfabric.Also,ithelpedtoreduceanddelay
thepeaktimeoftheindoortemperatures.
Energies2021,14,53020of34
Figure15.Indoorandoutdoorairtemperaturefrom5to31August2018.
Theaverageairtemperatureandrelativehumidityresultsfromthefieldworkmeas‐
urementsfortheoutdoorandselectedroomsareshowninTable5.Themeasurements
werecarriedoutfrom4Augustuntil1September2018foreachspace.Allairtemperature
andrelativehumiditydatawererecordedfor24hinalldatesexceptthefirstandlastday
duetothedataloggers’setup.AsshowninTable,5Augustrecordedthehighestaverage
airtemperatureinbothroomswhentheoutdoorrecordedthehottestby37.62°C.Incon‐
trast,thelowestindoorairtemperatureaverageswererecordedon29Augustwhenthe
averageoutdoorairtemperaturereachesthelowestby37.62°C.Asoccurredtotheindoor
airtemperaturefromtheinfluenceoftheoutdoorairtemperature,theroomswereclearly
affectedbytheoutdoorrelativehumidity.Thehighestrelativehumidityinallspaceswas
on31Augustandtheloweston23Augustwithvariationrateslessthan3%.
Figure16.Hourlyindoorandoutdoorairtemperatureon11,12&13August2018.
Energies2021,14,53021of34
Table5.Dailyaverageairtemperature(Ta)andrelativehumidity(RH)fortheselectedspaces.
Room1Room2Outdoor
DateTaRHTaRHTaRH
4
AUG36.7639.9136.7238.0741.6833.59
5AUG36.1148.2136.4146.8837.6247.12
6AUG35.1855.0135.5853.0536.5153.73
7AUG34.7161.6835.3156.6636.1358.12
8AUG34.5663.4235.0160.7836.0560.84
9AUG35.2348.9635.3147.8236.6047.40
10AUG35.5347.7235.6048.5937.0548.73
11AUG35.4753.5835.9649.3637.0649.48
12AUG35.0858.9935.6555.2836.6856.83
13AUG34.9656.6335.1955.9835.9356.79
14AUG35.0451.9135.1849.7536.8848.80
15AUG34.4353.0234.8150.2134.8253.49
16AUG34.9052.7135.1550.4436.4849.79
17AUG34.9548.9035.1048.4235.5550.68
18AUG34.5057.0435.0253.9435.5154.90
19AUG34.6459.5135.0356.4336.5055.63
20AUG35.3549.9235.6149.9236.3748.91
21AUG35.6148.9635.7847.6037.4646.07
22AUG35.3846.1935.5845.1836.6646.06
23AUG35.0143.5335.0742.8736.2643.02
24AUG34.7645.3434.8744.0135.8444.85
25AUG34.5554.9334.8452.7035.9353.13
26AUG34.1162.4334.5359.1435.0661.65
27AUG34.2055.7534.3454.4035.4454.77
28AUG33.9253.8034.0952.4235.0653.23
29AUG33.5456.0433.6853.6334.4155.17
30AUG33.7763.5034.0460.9135.1961.36
31AUG33.6667.4233.9164.9734.7165.95
1SEP34.2963.1734.3361.5435.8460.07
Bule:MaximumAverageRelativeHumidity;Pink:MaximumAverageAirTemperature;Orange:
MinimumAverageRelativeHumidity;Green:MinimumAverageAirTemperature.
Figure17ashowstherelationshipbetweenaverageairtemperature(Ta)andrelative
humidity(RH)inRoom1,Room2andthecourtyardbetween5and31August2018.As
expected,therelativehumiditydecreasesastheairtemperatureinbothroomsincreasesand
viceversa.Thehighestrelativehumiditywasrecordedon31Augustwitharangeofabout
65and67.4%whilethelowestwas43%on23August.DuetoairflowintotheRoom1
throughtheopenmashrabiya,Room1reducedmoreheatandallowedmorerelativehu‐
miditythanRoom2.
Theaveragedailyindoorandoutdoorabsolutehumidityfrom5to31August2018
arepresentedinFigure17b.Thegraphdemonstratesthattheabsolutehumidityratesin
theroomswereaffectedbytheoutdoorabsolutehumidity.Therooms’averagesofabso‐
lutehumidityrangedbetween16.8and25gofmoisturepercubicmeterofair(g/m3)and
inthecourtyardfrom18to25.5g/m3.
Energies2021,14,53022of34
(a)
(b)
Figure17.(a).AverageairtemperatureandrelativehumidityforR1andR2from5to31August2018;(b).Thedaily
Absolutehumidityforeachroomandcourtyardfrom5to31August2018.
5.2.2.IndoorAirVelocityResults
Table6demonstratesthefrequencypercentagesandmaximumindoorandoutdoor
airvelocityduringaspecificperiodofdays.Themonitoringdaysincluded4–5,11–12,18,
26Augustand1Septemberduringtheafternoonhours.Itshouldbepointedoutthatthe
roomsairflowvelocitiesweremeasuredataspecificpointateachmashrabiya,asmen‐
tionedearlierinthemethodpart.Moreover,themashrabiyaforRoom2wasnotcom‐
pletelyclosedduetothedifficultyofmovingthetiltingrods,whichcausedtheamountof
naturaldaylighttopassandtheairflowthroughtheopeningsofthesemi‐open
mashrabiyaslats.Asforthecourtyardairvelocity,readingsmaybewereinfluencedby
severalfactorssuchastheanemometersposition,proximitytogroundlevel,andsome
surroundingobstacles.
Thetabledisplaystherangesofindoorandoutdoorairvelocitythatarevaryingfrom
0to8.1m/sincourtyard,0to6.9m/sinRoom1,and0to1.1m/sinRoom2.Accordingto
thetable,thehighestfrequencyvalueofairvelocitywasinRoom1withspeed2m/s
(18.27%),courtyard0.5m/s(28.9%)andinRoom2by0m/s(90.44%).Ingeneral,theair
velocityratesthroughthemashrabiyaofRoom1wasgreaterthancourtyardandRoom2
Energies2021,14,53023of34
duetotheopeningthemashrabiya,whichadmittedmoreairflowwithoutbeingaffected
byobstaclesasinthecourtyardorwhenbeenclosedasthemashrabiyaofRoom2.
Table6.Frequencyofindoorandoutdoorairvelocitymeasurements.
5.2.3.StatisticalAnalysisofIndoorandOutdoorMeasurements
Table7presentsabriefofstatisticalcomparisonsbetweentheairvelocity(Av)and
airtemperature(Ta)for;theopenmashrabiyainR1,theclosedmashrabiyainR2,and
courtyard.Datesincludedinthistablewereonlyrestrictedtodaysthatcoveredthesame
periodformonitoringbothairtemperatureandvelocity.Themeasurementtimesofeach
daycoveredtheperiodfromnoonto3:30p.m.ThemaximumairvelocityvaluesoftheR1
rangefrom4.50to6.90m/s,courtyardfrom1.60to5.20m/s,andR2from0to1.10m/s.
Thisindicatesthattheroomwithopenmashrabiyahashigherairvelocitythanthecourt‐
yard whichisthebenchmarkandtheroomwithclosedmashrabiya.Theloweststandard
deviationvalueswerecalculatedinR2andthehighestinR1,whichmeanthatthereis
inconsistencyinR1inairvelocitycomparedtoR2andthecourtyard.Thismaybedueto
thelowairvelocityinR2andthecourtyard,whichequivalenttozerosomeperiods.
ThemaximumRoom1airtemperaturerangesfrom36.1to39.3°C,R2from40to43.4°C,
andthecourtyardfrom43.2to48.3°C.Theaverageairtemperaturemeasurementsofthe
R1rangefrom33.8to37°C,R2from37to40.9°C,andcourtyardfrom37to41.8°C.The
lowestvalueofminimumairtemperaturewasmonitoredinR132.7°C.Fromthis;itcan
elicitthatthehigherairvelocitycanimprovetheairtemperature.Forexample,thelowest
standarddeviationvalueshavebeencalculatedinR1andthehighestinthecourtyard.
TheloweststandarddeviationvalueshavebeencalculatedinR1andthehighestinthe
courtyard.ThismeansR1havemoreconsistencyinairtemperatureandlowestinthe
fluctuations.However,theroomwithopenmashrabiyashowsbetterairvelocityandair
temperaturethanthecourtyardandRoom2.
Courtyard Room1 Room2
BinFreq% BinFreq% BinFreq%
024.65 01.32 090.44
0.528.90 0.57.64 0.11.97
125.76 115.69 0.22.02
1.512.15 1.517.56 0.31.92
24.35 218.27 0.41.27
2.51.77 2.514.37 0.50.81
30.66 39.41 0.60.76
3.50.46 3.56.98 0.70.30
40.40 44.71 0.80.25
4.50.20 4.52.28 0.90.15
50.05 50.96 10.05
5.50.20 5.50.35 Max 1.10.0504‐Aug‐18
60.10 60.30 2:53
p
m
6.50.10 6.50.10
70.05 Max 6.90.0511‐Au
g
‐18
7.50.05 1:07pm
80.10
Max 8.10.0512‐Au
g
‐18
3:12am
Energies2021,14,53024of34
Table7.Statisticalcomparisonsbetweenindoorandoutdoorairvelocityandtemperature.
SpaceDateAirVelocity(m/s)AirTemperature(°C)
MAXAVGMINS.D.MAXAVGMINS.D.
Room1
04‐Aug‐185.202.370.300.9739.337.0351.0
05‐Aug‐184.502.030.000.8938.137.035.80.5
11‐Aug‐186.901.710.001.1438.435.433.10.8
18‐Aug‐186.402.630.101.1336.634.132.70.7
26‐Aug‐185.302.080.200.7636.134.633.10.6
01‐Sep‐184.802.170.001.0336.734.833.10.8
Room2
04‐Aug‐181.100.270.000.2641.839.336.91.6
05‐Aug‐180.100.000.000.0143.440.938.41.1
11‐Aug‐180.000.000.000.0041.638.135.81.7
18‐Aug‐180.200.010.000.0340.237.034.61.5
26‐Aug‐180.000.000.000.004037.535.01.3
01‐Sep‐180.700.060.000.124037.836.31.0
Courtyard
04‐Aug‐182.800.780.000.6348.341.836.82.2
05‐Aug‐183.200.710.000.584640.737.71.4
11‐Aug‐183.700.450.000.5043.237.034.31.6
18‐Aug‐183.400.800.000.6346.438.934.92.4
26‐Aug‐181.600.510.000.3846.139.635.91.8
01‐Sep‐185.201.020.001.064538.433.42.5
Table8presentstheairtemperature(Ta)andairvelocity(Av)correlationcoefficient
forRoom1andthecourtyardofspecificdatesduringthesameperiod,from12p.m.to
3:30p.m.ItcanbenoticedfromthetablethattherelationshipsbetweenthevariablesAv
andTainbothspacesarenegativecorrelation.InRoom1,thecorrelationcoefficient
rangesfrom−0.19to−0.54,whichcanbeevaluatedasweaktomoderatecorrelation.In
comparison,thecorrelationcoefficientinthecourtyardrangesfrom−0.10to−0.68,which
canbeevaluatedasweaktostrongcorrelation.Itmaybeconcludedfromthistablethat
asairvelocityincreases,theindoorairtemperaturemaydecrease.
Table8.TheairtemperatureandvelocitycorrelationcoefficientforRoom1andthecourtyard.
4Aug5Aug11Aug18Aug26Aug1Sep
Room1−0.19−0.45−0.5−0.05−0.19−0.54
Courtyard−0.59−0.68−0.62−0.69−0.1−0.67
Table9providesastatisticalsummaryofindoorandoutdooraveragesandrangesof
airtemperature,relativehumidity,airvelocity,andtheindoorglobetemperatures.The
range(RNG)valuesinthetablerefertothedifferencebetweenthemaximumandmini‐
mumreadingsofeachspaceforaday.Thetableonlydisplaysthedayswhenallthermal
measurementsweretakenforallobservedspaces.Itshouldbenotedthatglobetempera‐
ture(Tg)readingsinR2on4&5AugustwerenotlistedduetoanissueintheinsertedSD
cardmemory.
Thehighestaverageoftheoutdoortemperaturewasrecorded41.7°Con4August
witharangeof19.6degreesascanbeobservedfromthetable.Itisworthnotingthatsome
ofthereadingsmayhavebeenaffectedsomewhatbecausethedataloggerwasnotshaded
properlyduringsomeperiodsoftheday.However,theoutdoortemperaturerangefor4
Augustwasreflectedontheindoorvaluesasbothroomsrecordedthehighestaverage
andrangeonthesameday.Ontheaveragesofindoorairtemperature,Room1waslower
by0.5thanRoom2.
Theaverageglobetemperaturevalues(Tg)forbothroomswereclosetotheaverage
airtemperature,indicatingtheabsenceorlowthermalradiation.Furthermore,thevaria‐
tionsbetweenindoorairtemperatureandglobetemperaturemeasurementshavenotex‐
ceededtwodegrees.
Energies2021,14,53025of34
Thehighestrangeofrelativehumiditywas45%inthecourtyardon12August,while
thehighestaveragerelativehumiditywasrecordedonthelastdayoftheexperimentby
63.2%inRoom1,61.5%inRoom2,and60.1%inthecourtyard.Despitethehigherrelative
humidityrangesinthecourtyard,theroomsonaverageswerewetterthanthecourtyard,
whichisbeneficialforthermalcomfort.Thisbehaviourwasattributedtothebuildingen‐
velopethatreducedtemperaturefluctuations,thusleadingtomoremoisturestabilityin‐
sidethebuilding.
ThehighestaveragesandrangesforairvelocityweremostlyrecordedinRoom1due
totheopenmashrabiyafacingairdirectlywithoutbeingaffectedbyobstaclesorclosure.
Table9.Summaryofthermalconditionsduringdifferentdaysoftheexperiment.
DateDESCT(°C)GlobeTemperature(°C)RH(%)Av(m/s)
R1R2OutR1R2R1R2OutR1R2Out
4AUGAVG 36.836.741.737.0n/a39.938.133.62.40.30.8
RNG3.83.919.63.9n/a27.713.829.14.91.12.8
5AUGAVG36.136.437.636.8n/a48.246.947.12.000.7
RNG2.3311.32.9n/a23.117.529.34.50.13.2
11AUGAVG35.536.037.135.035.953.649.449.51.700.4
RNG2.82.610.33.63.231.328.3376.903.7
12AUGAVG35.135.736.734.935.759.055.356.80.800.9
RNG2.9312.23.43.223.919.6452.708.1
18AUGAVG34.535.035.534.435.557.053.954.92.600.8
RNG3.23.314.67.32.234.730.937.46.30.23.4
26AUGAVG34.134.535.134.735.362.459.161.72.100.5
RNG2.62.69.71.71.628.328.835.15.101.6
1SEPAVG34.334.335.835.035.463.261.560.12.20.11.0
RNG3.42.89.41.21.616.29.425.54.80.75.2
Surfacetemperaturevaluesweremeasuredfortheopenmashrabiyaandclosed
mashrabiyafrominsideandoutside,andthecourtyard,asshowninthenexttables.All
averagesofmeasuringpointsatvariouspositions,daysandtimesaredisplayedinTables
10–12.Thepointsrepresenttheaveragesofmeasurementareasfortheopenmashrabiya
(Mash1),closedmashrabiya(Mash2)andwallsbesideeachmashrabiyafrominsideand
outside(Figures18and19).
Themeasurementsweremonitoredon4Augustatabout1:00,2:00,3:00p.m.alsoat
noonon5,11,18,26Augustand1Septemberwhilemonitoredatabout6:00p.m.on13
August2018.Asshownintables,surfacetemperaturemeasurementsincreasedandreach
thehighestvalues,usuallyat3p.m.whiletheentirefacadewasexposedtodirectsunlight.
Energies2021,14,53026of34
Table10.SurfacetemperaturemeasurementsofRoom1,Room2,andthecourtyardon4and5August2018.
4August5August
Time1:00p.m.2:00p.m.3:00p.m.12:00p.m.1:00p.m.2:00p.m.3:00p.m.
AboveMash1AM138.038.939.838.238.238.138.6
MiddleMash1BM138.139.240.239.238.438.839.8
BottomMash1CM137.337.538.837.837.738.038.4
RightWallMash1WAM136.936.738.338.437.737.337.9
LeftWallMash1WBM136.736.738.138.337.837.237.7
AboveMash2AM239.039.441.042.041.040.641.5
MiddleMash2BM240.041.544.043.041.542.043.8
BottomMash2CM237.039.045.842.040.540.241.2
RightWallMash2WRM2
LeftWallMash2WLM2
OutRightWall
Mash1
OWR
M1
OutLeftWallMash1OWL
M1
OAboveMash1AO47.049.051.049.047.049.553.0
OMiddleMash1BO49.050.055.047.049.047.050.0
OBottomMash1CO43.043.045.046.047.049.049.0
OBelowMash1WO 43.042.044.044.045.0
Figure18.Interiormeasurementzonesonthemashrabiyaandabbreviatednames.
Energies2021,14,53027of34
Figure19.MeasurementzonesandabbreviatedontheMash1fromoutside.
Table11.SurfacetemperaturesofRoom1,Room2,andthecourtyardon11,13and18August2018.
11August13August18August
Time12:00p.m.1:00p.m.2:00p.m.3:00p.m.6:00p.m.12:00p.m.1:00p.m.2:00p.m.3:00p.m.
AM136.536.135.435.936.935.035.135.236.3
BM136.435.935.736.535.934.435.136.337.1
CM133.736.637.136.237.235.435.535.736.0
WAM136.536.036.435.236.035.535.435.635.6
WBM136.536.236.535.236.035.635.535.635.6
AM238.037.341.341.435.936.036.039.040.4
BM238.437.540.843.440.036.036.340.042.0
CM237.737.140.540.839.235.835.838.439.3
WRM2
40.039.238.036.235.937.838.0
WLM2
40.039.238.036.135.837.737.9
OWRM138.7539.943.7544.3537.6538.6539.741.9544
OWLM139.439.354344.2537.638.539.841.9543.8
AO42.043.049.052.041.039.546.049.057.0
BO40.043.546.550.038.040.847.047.050.0
CO38.041.044.046.040.041.044.043.052.0
WO37.039.942.543.038.039.041.041.042.0
Energies2021,14,53028of34
Table12.SurfacetemperaturesofRoom1,Room2,andthecourtyardon26Augustand1September2018.
26August1September
Time12:00p.m.1:00p.m.2:00p.m.3:00p.m.12:00p.m.1:00p.m.2:00p.m.3:00p.m.
AM134.835.936.436.036.735.734.735.8
BM134.736.436.737.337.636.035.937.5
CM135.135.736.135.536.135.235.436.3
WAM135.335.435.735.135.934.835.636.1
WBM135.235.535.835.136.034.935.336.1
AM235.536.337.339.237.236.939.940.5
BM236.037.039.741.037.937.540.842.8
CM235.436.137.138.536.736.539.039.7
WRM235.835.836.237.236.335.738.638.3
WLM235.535.736.337.136.235.838.638.1
OWRM139.539.5414240.240.74242.5
OWLM139.539.34141.840.64141.741.5
AO42.743.549.052.043.945.549.851.0
BO41.042.044.050.042.043.847.048.0
CO40.045.049.053.043.046.048.552.0
WO39.039.539.341.038.539.041.040.7
Moreover,Figure20showstheinsideandoutsideaveragesurfacetemperatureinthe
middleareaoftheopenmashrabiyaandadjacentsidewallsduringdifferentdays.Itis
importanttoclarifythatwesternfacade,whichincludestheexteriorframesofthetested
mashrabiyas,isnotexposedtodirectsunlightduringthemeasurementtimesuntilabout
12.30p.m.55°Cthemaximumvaluewasrecordedontheexternalsurfaceoftheopen
mashrabiyaat3:00p.m.on4Augustwhiletheminimumwas34.3°Contheinternalsur‐
faceofmashrabiyaatnoonon18August.Itcanbenoticedthatsurfacetemperaturesof
theexteriorwallaroundtheopenmashrabiyaabsorbedlessheatthantheexteriorsurface
ofthemashrabiyaindicatingthebenefitofthepropertiesandcolouroftheplaster.Alt‐
houghtheoutsidewallsurfacetemperaturewasbetween37°Cto45°C,theheatgaininto
theroomsreducedbythebuilding’sthermalmass,wherethetemperaturesrangefrom
34.8to38.4°Contheinternalsurfaceofthewall.FromFigure20,itcanbenoticedthat
outsidesurfacetemperatureofthewallandthemashrabiyas’externalsurfacebecome
equalduringthesunsetwithatemperaturearound38°C.
Figure20.Thesurfacetemperaturesoftheopenmashrabiyaandwallsurfaceinsideandoutside.
Energies2021,14,53029of34
5.3.ThermalComfortAssessment
Aspartofthestudyoftheperformanceofthemashrabiya,itwasimportanttoassess
theimpactofthemashrabiyaontheindoorthermalcomfort.Multiplemethodsandequa‐
tionscanbeusedtocalculatethetemperatureofindoorcomfort.AlthoughASHRAE55
isconsideredasamasterguide,theoutdoortemperatureaveragesoflessthan10°Cor
higherthan33.5°Carenottakenintoaccount.Astheaverageoutdoortemperatureofthis
buildingwasabovethisrange,anothermethodwasusedtoevaluatethecomforttemper‐
atureforpassivebuildingswiththeequationofNicolandHumphreys[62]forestimate
comforttemperatureinfree‐runningbuildingsasdescribedbelow:
𝑇𝑐=13.5+0.54𝑇𝑜
whereTcisthecomforttemperature,andToisthemonthlyoutdoorairtemperatureaver‐
age.Thisstudyconsideredtheaverageoutdoortemperaturemeasuredduringtheexperi‐
mentonly,whichwas36.2°C.Therefore,thecomforttemperatureforthiscaseis33°C,
dependingontheequation.ItisworthpointingoutthatPakistaniparticipantsfeltcom‐
fortableatindoortemperaturesaround33°CintheNicolandHumphreyfieldstudy.The
paperalsostatedthatduringthetests,theworkerschangedtheirclothingandusedfans
ofairmovement.
Figure21showstherooms’levelofcomfortbasedonthecalculatedcomforttemper‐
aturesandtotalmeasurementsforbothrooms.Eachbarrepresentsmeasurementsofthe
completeroomtemperatureforeachdayandtherequireddegreetoachievecomfort.The
left‐axis0valueinthegraphisequivalenttothecalculatedcomforttemperatureof33°C,
meansthevaluesequalorabove0consideredwithinthecomfortzonewhilethevalues
below0havenotachievedthis.
ItisclearfromthechartthatthetemperaturesinsidetheR1typicallywerecloserto
thelevelofcomfortandbetterthanR2by0.3degreesonaverage.Inanycase,thedecrease
inoutdoortemperaturestobelow33°C,contributedtoimprovingtheindoortempera‐
turesandreachingthemoderatetemperatureinsomeoftheexperimentdays.
Figure21.Roomstemperaturesascomparedtocomforttemperatureovertheexperimentdays.
AsshowninFigure22,whentheoutdoorairtemperatureinCourtyardwasbelow
32°C,bothroomsachievedcomfortbetween4and8:30a.m.on29August.Overall,the
roomswereabletoachievecomfortbetween3and7a.m.duringexperimentdayswith
theeffectofnightventilationandtheloweroutdoortemperatures.Itisimportanttonote
thattheexperimentwasconductedintheworstclimatesituations,whereAugustrepre‐
sentsthehighesttemperatureaverageoftheyear.Consequently,theeffectofopeningup
Energies2021,14,53030of34
themashrabiyaorapplyingotherpassivecoolingmethodswilloftenprovidebetterim‐
pactsinthemildseasons.
Figure22.Thehourlyoutdoortemperatureandroomtemperatureprofilesof29Augustcomparedtothecomfortlevel.
6.ConclusionsandFutureWorks
Thispaperreviewedthemashrabiyathroughseveralaspects:definitions,history,de‐
signandstructure,typology,andfunctionsfocusingonrelatedresearchworkanddevel‐
opmentsinhotclimates.Inaselectedbuildinginahotclimate,theimpactoftraditional
mashrabiyasonthethermalindoorenvironmentwasevaluated.Asreviewed,moststud‐
iestendtofocusoneitherthehistoryordevelopmentofmashrabiyaswithouttestingor
consideringtheiractualperformanceandinfluenceontheindoorthermalenvironment.
AcasestudywasselectedinthemostplentifulregionwithmashrabiyasinSaudi
Arabia“HistoricJeddah”toinvestigateandevaluatetheefficiencyofmashrabiyasonthe
indoorenvironmentandcomfort.Thestudydemonstratedthatopenmashrabiyasallow
daytimeairflow,andthusenhanceairmovementandcirculationintheroomandreduce
theindoortemperaturebyupto2.4°Cincomparisonwiththeclosedmashrabiya.The
evaluationoftheindoorthermalcomfortdemonstratedthatRoom1typicallywerecloser
tothetemperaturecomfort33°CandbetterthanRoom2by0.3degreesonaverage.The
openmashrabiyahadpositiveeffectsonRoom1,butduringsuchthiswarmoutdoor
weather,addingsomepassivecoolingmethodswerebeingneeded.Thebuildingenve‐
lopeplayedanimportantroleindelayingtheheatflowintotheroomsandmaintaining
thelowfluctuatingindoorairtemperaturerangingfrom2.1°Cto4.2°Ccomparedtothe
highfluctuatingtemperaturesoftheairoutdoorrangingfrom9.4°Cto16°C.
Itisalsonoteworthythatthisfieldworkhassomelimitations.Thestudyassessed
thermalcomfortbasedonlyontheenvironmentalfactorswithoutcoveringthepersonal
factors.Thatwasbecausenoinhabitantswereinthehouseduringthetests,andthediffi‐
cultyinvolvingpeopleinthistypeofexperimentundersuchclimaticandspatialcondi‐
tions.Thepresentedresultoftheindoorairvelocitywasmeasuredataspecificpointat
eachmashrabiya,andfutureworkwillbeinvestigatingmoremeasurementpointsinside
therooms.Fortheoutdoorairvelocity,readingsmaybeinfluencedbyseveralfactorssuch
asthepositionoftheanemometer,itselevationfromthegroundlevel,andsomesur‐
roundingobstacles.
Thisstudyprovidesareviewofexistingstudiesonthetraditionalmashrabiyadevice
andprovidesdataonitsperformanceinhotclimates.Moreover,thisknowledgecanbe
appliedtomodernbuildingsbycombiningthemashrabiyaconceptwithnewsolutionsor
Energies2021,14,53031of34
improvingitsdesignaccordingtotheusers’needsandmodernbuildingsystemsinhot
climates.Additionally,itcanbemoreeffectivetousethismethodintemperateclimates
andcanleadtomorethermalcomfortperiods.Furthermore,morestudiesandtestson
mashrabiyasunderdifferentclimaticconditionsarerequired.Inaddition,thedifferent
strategiesormaterialscanbeincorporatedwithmashrabiyaswiththeaimofimproving
theirthermalperformance.
AuthorContributions:Conceptualization,A.A.B.;methodology,A.A.B.andJ.K.C.;software,
A.A.B.;validation,A.A.B.andJ.K.C.;formalanalysis,A.A.B.andJ.K.C.;investigation,A.A.B.;data
curation,A.A.B.;writing—originaldraftpreparation,A.A.B.;writing—reviewandediting,A.A.B.,
J.K.C.andA.S.K.;visualization,A.A.B.andJ.K.C.;supervision,J.K.C.;fundingacquisition,A.S.K.
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchwasfundedbyDeanshipofScientificResearchandPrinceKhalidAl‐Faisal
ChairforDevelopingMakkahAl‐MukarramahandtheHolyPlacesatUmmAl‐QuraUniversity
grantnumber[DSRUQU.PKC‐42‐6].
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Thedatapresentedinthisstudyareavailableonrequestfromthe
correspondingauthor.
Acknowledgments:TheauthorswouldliketothankDeanshipofScientificResearchandPrince
KhalidAl‐FaisalChairforDevelopingMakkahAl‐MukarramahandtheHolyPlacesatUmmAl‐
QuraUniversityforthefinancialsupport.TheauthorsgratefullyacknowledgetoMahaOboud
Baeshen,asoneoftheBaeshenhouserepresentatives,forallowingustoconductthefieldexperi‐
mentinthebuilding.WearealsogratefultoHananAlKhatriforassistanceandsupportwiththe
equipment.
ConflictsofInterest:Theauthorsdeclarethatthereisnoconflictofinterest.
Reference
1. Rafique,M.M.;Rehman,S.;Lashin,A.;AlArifi,N.AnalysisofaSolarCoolingSystemforClimaticConditionsofFiveDifferent
CitiesofSaudiArabia.Energies2016,9,75,doi:10.3390/en9020075.
2. Shahzad,S.;Calautit,K.;Wei,S.;Tien,P.W.;Calautit,J.;Hughes,B.Analysisofthethermalcomfortandenergyperformance
ofathermalchairforopenplanoffice.J.Sustain.Dev.EnergyWaterEnviron.Syst.2020,8,373–395,doi:10.13044/j.sdewes.d7.0298.
3. Bagasi,A.A.;Calautit,J.K.Experimentalfieldstudyoftheintegrationofpassiveandevaporativecoolingtechniqueswith
Mashrabiyainhotclimates.EnergyBuild.2020,225,110325,doi:10.1016/j.enbuild.2020.110325.
4. Fathy,H.NaturalEnergyandVernacularArchitecturePrinciplesandExampleswithReferencetoHotAridClimate;TheUniversityof
ChicagoPress:Chicago,IL,USA,1986.
5. Saulles,T.d.ThermalMassExplained.InTheConcreteCentre;MPATheConcreteCentre:Camberley,Surrey,UK,2015.
6. Baker,N.;Steemers,K.EnergyandEnvironmentinArchitecture:ATechnicalDesignGuide;Taylor&Francise‐Library:London,
UK,2005.
7. Daemei,A.B.;Eghbali,S.R.;Khotbehsara,E.M.Bioclimaticdesignstrategies:Aguidelinetoenhancehumanthermalcomfortin
Cfaclimatezones.J.Build.Eng.2019,25,100758,doi:10.1016/j.jobe.2019.100758.
8. Alharbi,A.InvestigationofSub‐WetBulbTemperatureEvaporativeCoolingSystemforCoolinginBuildings,DoctorofPhilosophy,
ArchitectureandBuiltEnvironment;UniversityofNottingham:Nottingham,UK,2014.Availableonline:
http://eprints.nottingham.ac.uk/27806/(accessedon1February2020).
9. Almerbati,N.;Ford,P.;Taki,A.;Dean,L.FromVernaculartoPersonalisedandSustainable.InProceedingsofthe48th
InternationalConferenceoftheArchitecturalScienceAssociation,10–13December2014;pp.479–490.Availableonline:
http://anzasca.net/wp‐content/uploads/2014/12/10_38_77.pdf(accessedon15June2017).
10. Almerbati,N.HybridHeritage:AnInvestigationintotheViabilityof3D‐PrintedMashrabiyaWindowScreensforBahraini
Dwellings.DoctorofphilosophyPhDThesis,DeMontfortUniversity,Leicester,UK,2016.Availableonline:
http://hdl.handle.net/2086/12482(accessedon25June2017).
11. Almaany.DictionaryofAlmaany.Availabeonline:http://www.almaany.com/(accessedon30March2017).
12. Al‐Murahhem,F.M.“BehindtheRoshān:VisualisingtheRoshānasanArchitecturalExperienceinTraditionalDomesticInteriors”;
UniversityofBrighton:Brighton,UK,2008.Availableonline:https://research.brighton.ac.uk/en/studentTheses/behind‐the‐
rosh%C4%81n(accessedon10December2019).
Energies2021,14,53032of34
13. Mohamed,J.“TheTraditionalArtsandCraftsofTurneryorMashrabiya.”MasterofArt;Rutgers,TheStateUniversityofNew
Jersey,NewBrunswick,Canada;Piscataway,NJ,USA,2015.Availableonline:
http://mals.camden.rutgers.edu/files/J_Mohamed.pdf(accessedon10May2017).
14. Kamal,M.A.ThemorphologyoftraditionalarchitectureofJeddah:Climaticdesignandenvironmentalsustainability.Glob.
BuiltEnviron.Rev.2014,9,4–26.
15. Khan,S.M.JeddahOldHouses.InDepartmentofScientificResearch;KingAbdulazizCityforScienceandTechnology:Riyadh
SaudiArabia;1986.
16. Al‐Shareef,F.M.NaturallightcontrolinHadjaziarchitecture:AninvestigationoftheRowshanperformancebycomputer
simulation.DoctorofPhilosophyPhDthesis,UniversityofLiverpool,Liverpool,UK,1996.Availableonline:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307640(accessedon14February2017).
17. Sudy,S.TheArchitecturalLanguageofPark51UnderstandingCulturalandHistoricalConnections;WashingtonStateUniversity:
Washington,DC,USA,2011.Availableonline:https://research.libraries.wsu.edu/xmlui/handle/2376/3584(accessedon30
February2018).
18. Abdelgelil,N.ANewMashrabiyyaforcontemporaryCairo:IntegratingtraditionallatticeworkfromIslamicandJapanese
cultures.J.AsianArchit.Build.Eng.2006,5,37–44,doi:10.3130/jaabe.5.37.
19. Al‐Murahhem,F.Themechanismoftherawāshīn:ThecasestudyofMakkah.WITTrans.Ecol.Environ.2010,128,13,
doi:10.2495/ARC100481.
20. Alitany,A.;Redondo,E.;Adas,A.The3DDocumentationofProjectedWoodenWindows(TheRoshans)intheOldCityof
Jeddah(SaudiArabia)UsingImage‐basedTechniques.InProceedingsoftheISPRSAnn.Photogramm.RemoteSens.Spatial
Inf.Sci.,II‐5/W1.XXIVInternationalCIPASymposium,Strasbourg,France,2–6September2013;pp.7–12.Availableonline:
http://www.isprs‐ann‐photogramm‐remote‐sens‐spatial‐inf‐sci.net/II‐5‐W1/7/2013/isprsannals‐II‐5‐W1‐7‐2013.pdf(accessed
on20May2018).
21. Talib,K.ShelterinSaudiArabia;AcademyEditions/St.Martin′sPress:NewYork,NY,USA,1984;p.144.
22. Germanà,M.L.;Alatawneh,B.;Reffat,R.M.Technologicalandbehavioralaspectsofperforatedbuildingenvelopesinthe
Mediterraneanregion.InProceedingsofthe10thConferenceonAdvancedBuildingSkins,Bern,Switzerland,04November
2015;pp.846–854.Availableonline:https://www.researchgate.net/profile/Maria_Luisa_Germana/publication/
283732169_Technological_and_behavioral_aspects_of_perforated_building_envelopes_in_the_Mediterranean_region/links/56
4623bb08ae54697fb9d81b.pdf(accessedon9November2018).
23. Alitany,A.;Baik,A.;Boehm,J.;Robson,S.Jeddahhistoricalbuildinginformationmodeling“JHBIM”OldJeddah‐SaudiArabia.
InProceedingsoftheInternationalArchivesofthePhotogrammetry,RemoteSensingandSpatialInformationSciences‐ISPRS
Archives,Strasbourg,France,2–6September2013;pp.73–78.Availableonline:https://www.int‐arch‐photogramm‐remote‐
sens‐spatial‐inf‐sci.net/XL‐5‐W2/73/2013/.(accessedon20June2018).
24. Batterjee,S.A.PerformanceofShadingDeviceInspiredbyTraditionalHejaziHousesinJeddahSaudiArabia.MScinEnvironmental
DesignofBuildings;TheBritishUniversityinDubai:Dubai,UnitedArabEmirates,2010.Availableonline:
http://bspace.buid.ac.ae/handle/1234/142(accessedon23May2017).
25. Maghrabi,A.A.AirflowCharacteristicsofModulatedLouveredWindowswithReferencetotheRowshanofJeddah,Saudi
Arabia.DoctorofPhilosophy,UniversityofSheffield,Sheffield,UK,2000.Availableonline:
http://etheses.whiterose.ac.uk/id/eprint/14623(accessedon17July2017).
26. Salloum,A.El‐RawashinofJeddah,SaudiArabia.InProceedingsofthePassiveandLowEnergyArchitecture:Proceedingsof
theSecondInternationalPLEAConference,Crete,Greece,1–28June1983;pp.245–252.
27. Aljofi,E.ThepotentialityofreflectedsunlightthroughRawshanscreens.InProceedingsoftheInternationalConference
“PassiveandLowEnergyCoolingfortheBuiltEnvironment”,Santorini,Greece,May2005;pp.817–822.Availableonline:
http://www.inive.org/members_area/medias/pdf/inive/palenc/2005/aljofi.pdf(accessedon2January2017).
28. Greenlaw,J.‐P.TheCoralBuildingsofSuakin;OrielPress:Stocksfield,UK,1976.
29. Adas,A.A.WoodenBayWindow(Rowshan)ConservationinSaudi‐HejaziHeritageBuildings.InProceedingsoftheISPRS‐
InternationalArchivesofthePhotogrammetry,RemoteSensingandSpatialInformationSciences,Strasbourg,France;pp.7–11.
Availableonline:http://www.int‐arch‐photogramm‐remote‐sens‐spatial‐inf‐sci.net/XL‐5‐W2/7/2013/isprsarchives‐XL‐5‐W2‐7‐
2013.pdf(accessedon8January2020).
30. Hariri,M.DesignofRowshananditsimportancetothedwelling.J.Umm‐Al‐QuraUniv.1992,3,175–237.
31. Naciri,N.“SustainablefeaturesoftheVernacularArchitecture,ʺinʺACaseStudyofClimaticControlsintheHot‐Aridregions
oftheMiddleEasternandNorthAfricanRegions.”;2007;p.15.Availableonline:https://www.solaripedia.com/files/488.pdf
(accessedonon5September2017).
32. Sabry,E.;Dwidar,S.ContemporaryIslamicArchitecturetowardspreservingIslamicheritage.ResearchGate2015,
doi:10.13140/RG.2.1.1928.7208.
33. Algburi,O.;Beyhan,F.CoolingLoadReductioninaSingle–FamilyHouse,anEnergy–EfficientApproach.GaziUniv.J.Sci.
2019,32,385–400.
34. Al‐Ban,A.Z.G.“ArchitectureandCulturalIdentityintheTraditionalHomesofJeddah.UniversityofColoradoatDenver.”
DoctorofPhilosophy,DesignandPlanning,UniversityofColorado,Denver,CO,USA,2016.Availableonline:
https://search.proquest.com/openview/bf247bf137581eda868bab9ca90181d5/1?pq‐origsite=gscholar&cbl=18750&diss=y
(accessedon11November2019).
Energies2021,14,53033of34
35. Ashour,A.F.IslamicArchitecturalHeritage:Mashrabiya.WITTrans.BuiltEnviron.2018,177,245–253,doi:10.2495/IHA180211.
36. Otusanya,O.P.;Ajwang,P.;Ondimu,S.N.ReducingCoolingDemandsinSub‐SaharanAfrica:AStudyonTheThermal
PerformanceofPassiveCoolingMethodsinEnclosedSpaces.J.Sustain.Dev.EnergyWaterEnviron.Syst.2020,
doi:10.13044/j.sdewes.d7.0313.
37. Abdelkader,R.;Park,J.‐H.SustainableBuildingFaçades:ModernUsagesofTheTraditionalMashrabiya.OpenHouseInt.2018,
43,69–76.
38. AL‐Dossary,A.M.;Kim,D.D.AStudyofDesignVariablesinDaylightandEnergyPerformanceinResidentialBuildingsunder
HotClimates.Energies2020,13,5836,doi:10.3390/en13215836.
39. Alothman,H.“AnEvaluativeandCriticalStudyOfMashrabiya:InContemporaryArchitecture.”MasterofScience,
Architecture,NEAREASTUNIVERSITY,LAPLAMBERTAcademicPublishing:Koln,Germany,2017.Availableonline:
http://docs.neu.edu.tr/library/6505208522.pdf(accessedon19April2019).
40. Al‐Hashimi,A.A.K.;Semidor,C.VirtualStudyoftheDay‐lightingPerformanceofRawshaninResidentialBuildingsofJeddah.
SB13DubaiPap.2013,8.689–696.
41. Alwetaishi,M.;Balabel,A.;Abdelhafiz,A.;Issa,U.;Sharaky,I.;Shamseldin,A.;Al‐Surf,M.;Al‐Harthi,M.;Gadi,M.User
ThermalComfortinHistoricBuildings:EvaluationofthePotentialofThermalMass,Orientation,EvaporativeCoolingand
Ventilation.Sustainability2020,12,9672,doi:10.3390/su12229672.
42. Benedetti,C.;Baratieri,M.;Leone,G.;Mimmo,T.;Paglialonga,G.Woodtechnologyforpassivecooling.InProceedingsofthe
11thWorldConferenceonTimberEngineering,Trentino,Italy,20–24June2010;pp.20–24.
43. Samuels,W.“PerformanceandPermeability:AnInvestigationoftheMashrabiyaforUsewithintheGibsonDesert.”Masterof
Architecture(Professional),VictoriaUniversityofWellington:Wellington,NewZealand,2011.Availableonline:
http://support.sbcindustry.com/Archive/2010/june/Paper_386.pdf(accessedon17January2018).
44. Karamata,B.;Giovannini,L.;Verso,V.R.L.;Andersen,M.Concept,DesignandPerformanceofaShapeVariableMashrabiya
asaShadingandDaylightingSystemforAridClimates.InProceedingsofthe30thInternationalPassiveandLowEnergy
ArchitectureConference(PLEA2014),Ahmedabad,India,16–18December2014;pp.344–351.Availableonline:
http://infoscience.epfl.ch/record/206749(accessedon6February2018).
45. Giovannini,L.;Verso,V.R.L.;Karamata,B.;Andersen,M.LightingandEnergyPerformanceofanAdaptiveShadingand
DaylightingSystemforAridClimates.EnergyProcedia2015,78,370–375,doi:10.1016/j.egypro.2015.11.675.
46. Sabry,H.;Sherif,A.;Gadelhak,M.;Aly,M.Balancingthedaylightingandenergyperformanceofsolarscreensinresidential
desertbuildings:Examinationofscreenaxialrotationandopeningaspectratio.Sol.Energy2014,103,364–377,
doi:10.1016/j.solener.2014.02.025.
47. Khadra,A.A.;Chalfoun,N.Developmentofanintegratedpassivecoolingfaçadetechnologyforofficebuildingsinhotarid
regions.WITTrans.Ecol.Environ.2014,190,13,doi:10.2495/EQ140501.
48. Batool,A.“QuantifyingEnvironmentalPerformanceofJaliScreenFaçadesforContemporaryBuildingsinLahore,Pakistan.”
MasterofArchitecture,UniversityofOregon,Eugene,OR,USA,2014.
49. DiTuri,S.;Ruggiero,F.Re‐interpretationofanancientpassivecoolingstrategy:Anewsystemofwoodenlatticeopenings.
EnergyProcedia2017,126,289–296,doi:10.1016/j.egypro.2017.08.159.
50. Alrashed,F.;Asif,M.;Burek,S.TheRoleofVernacularConstructionTechniquesandMaterialsforDevelopingZero‐Energy
HomesinVariousDesertClimates.Buildings2017,7,17.
51. Taleb,H.M.;Antony,A.G.AssessingdifferentglazingtoachievebetterlightingperformanceofofficebuildingsintheUnited
ArabEmirates(UAE).J.Build.Eng.2020,28,101034,doi:10.1016/j.jobe.2019.101034.
52. Schiano‐Phan,R.TheDevelopmentofPassiveDowndraughtEvaporativeCoolingSystemsUsingPorousCeramicEvaporators
andTheirApplicationinResidentialBuildings.InProceedingsofthe28thInternationalConferenceonPassiveandLowEnergy
Architecture,PLEA2004,Eindhoven,TheNetherlands,1September2004;pp.9–12.Availableonline:
https://pdfs.semanticscholar.org/9dc0/8529e5c8142a9fab7b85c34505cecd8f6db9.pdf?_ga=2.190489387.1229423698.1571137479‐
515657236.1571137479(accessedon5January2019).
53. Cain,A.;Afshar,F.;Norton,J.;Daraie,M.‐R.TraditionalCoolingSystemsintheThirdWorld.Ecologist1976,6,60–64.
54. Rael,R.;Fratello,V.S.CoolBrick.Availabeonline:http://www.emergingobjects.com/projects/cool‐brick/(accessedon10
December2019).
55. Rosa,S.‐P.,Environmentalretrofit:buildingintegratedpassivecoolinginhousing,ArchitecturalResearchQuarterly,2010,14,
139–151,doi:10.1017/S1359135510000758.
56. Nermine,A.G.M.andNancy,M.B.Simulatedcomparativeinvestigationofthedaylightandairflowoftheconventional
Egyptianshutter‘sheesh’andaproposedlatticeworkdevice‘newmashrabiyya’,IndoorandBuiltEnvironment,2014,24,583–
596,doi:10.1177/1420326X13516656.
57. Ahmed,A.F.UsingEcoolertechniquetoenhancethermalcomfortinhotdesertaridclimateinEgypt,ed:ResearchGate,
November2015.AvailableOnline:
https://www.researchgate.net/publication/312041119_Using_Ecooler_technique_to_enhance_thermal_comfort_in_hot_desert_
arid_climate_in_Egypt(accessedon6February2020).
58. Headley,D.;Almerbati,N.;Ford,P.;andTaki.Fromresearchtopractice:exploring3Dprintinginproductionofarchitectural
Mashrabiya,presentedatthe49thInternationalConferenceoftheArchitecturalScienceAssociation,TheArchitecturalScience
AssociationandTheUniversityofMelbourne.,2015.AvailableOnline:https://www.researchgate.net/profile/Nehal_Almerbati/
Energies2021,14,53034of34
publication/295830447_From_research_to_practice_exploring_3D_printing_in_production_of_architectural_Mashrabiya/links/
56cdc8d708ae85c8233e6bb5.pdf)(accessedon10February2019).
59. Alsharif,A.M.TowardsIslamicArchitecture:AnAttempttoUnderstandArchitecturefromanIslamicPerspective,Masterof
ArchitectureinArchitectureThesis(M.arch),FacultyoftheArchitectureDepartment,SavannahCollegeofArtandDesign,
June2016.AvailableOnline:http://ecollections.scad.edu/iii/cpro/DigitalItemViewPage.external;jsessionid=
503FD8C0DFA8F71832D4C67D7DCE7C07?lang=eng&sp=1003432&sp=T&sp=1&suite=de(accessedon18November2020).
60. Elkhatieb,M.;Sharples,S.ClimateAdaptiveBuildingShellsforOfficeBuildingsinEgypt:AParametricandAlgorithmic
DaylightTool.InProceedingsoftheSBE16Dubai,Dubai,UAE,17–19January2016;pp.1–8.AvailableOnline:
http://livrepository.liverpool.ac.uk/id/eprint/2047779(accessedon14November2020).
61. ASHRAE.ANSI/ASHRAEStandard55.InThermalEnvironmentalConditionsforHumanOccupancy;2010.
62. Nicol,J.F.;Humphreys,M.A.Adaptivethermalcomfortandsustainablethermalstandardsforbuildings.EnergyBuild.2002,
34,563–572,doi:10.1016/S0378‐7788(02)00006‐3.