Content uploaded by Johannes Reich
Author content
All content in this area was uploaded by Johannes Reich on Jan 09, 2021
Content may be subject to copyright.
f, g :N→N
◦h=f◦g
h(n) = f(g(n))
S1,...,Sn
CS
Sges =CS(S1,...,Sn).
E(Sges)
Sges CS
CEE(Sges)CE(E(S1), . . . , E (Sn))
E(CS(S1,...,Sn)) = CE(E(S1), . . . , E(Sn))
Fn
n
g1, . . . , gn∈Fmh∈Fnf=
h(g1, . . . , gn)
g∈Fnh∈Fn+2 a∈Nnb∈N
f∈Fn+1 f(a, 0) = g(a)f(a, b + 1) =
h(a, b, f (a, b))
µ g ∈Fn+1 ∀a∃b g(a, b)=0
µ µb[g(a, b) = 0] b g(a, b) = 0
f(a) = µb[g(a, b) = 0]
µ
A A0
CA B
S=C(A,B)A A0
S=C(A0,B)
A0A
A v A0C0
A0B S0=C0(A0,B)
S v S 0
C0A
S=C0(A,B)AC0
S=C(A0,B)A A0
CA0C
A B
S=C(A,B)
A0
A
f
q(t0)
out(t0)=fint(q(t), in(t))
fext(q(t), in(t))
(in, out, q) : T→I×O×Q T
I, O, Q
f
t0t
S1S2S3
Sges fges (x)=2x+ 5
Sges
S1S2S3
Sges fges (x) = 2x+ 5
S1S2
S3Sges
S1
int s2(int n) {return(2*n);}
int s3(int n) {return(n+5);}
int s(int n) {return(s3(s2(n)));}
S1
RiP
P=CP rot
R(R1,...,Rn)
Z1
Z2
C
p i q
o p i/o
→q
QZ1,2/C ={away, wait, bridge}
IZ1,2={go}
OCOZ1,2={arrived, left}
IC
away arrived
wait
go
lef t
q(t0) = fint(in(t), q(t))
out(t) = fext(in(t), q(t))
http://
docs.oasis-open.org/soa-rm/v1.0/
http://www.w3.org/TR/wsdl20/