ArticlePDF Available

Analysis of Antidepressant Mechanism of Yueju Pill and Chaihu Shugan Powder in Treating Depression with “the Same Disease with Different Treatments”

Authors:
Traditional Chinese Medicine 中医学, 2021, 10(1), 1-13
Published Online January 2021 in Hans. http://www.hanspub.org/journal/tcm
https://doi.org/10.12677/tcm.2021.101001
文章引用: 黄志航, 刘文雯, 钟馨, 木本荣, 王冬梅, 国锦琳. 探析越鞠丸和柴胡疏肝散同病异治抑郁症的作用机制
[J]. 中医学, 2021, 10(1): 1-13. DOI: 10.12677/tcm.2021.101001
探析越鞠丸和柴胡疏肝散“同病异治”抑郁症
的作用机制
黄志航*,刘文雯*,钟 馨,木本荣,王冬梅#,国锦琳#
成都中医药大学,四川 成都
收稿日期:20201117日;录用日期:20201225日;发布日期:202115
目的基于网络药理学和生物信息学方法探讨越鞠丸和柴胡疏肝散同病异治抑郁症的作用机制。方
法:利用TCMIDBatman-TCM获取越鞠丸与柴胡疏肝散各自的有效活性成分和作用靶点通过基因表
达集(GEO)芯片数据库筛选抑郁症差异基因DrugBankGeneCardsOMIMTTD筛选抑郁症相关靶
点基因运用CytoscapeString构建靶点相互作用网络PPI,并通过CytoscapeNetwork Analyzer
具对靶点进行拓扑分析插件ClusterVizMCODE算法进行模块分析;利用DAVID对靶点进行GOKEGG
分析。结果两个方剂中有310个共同靶点与抑郁症有关,越鞠丸特有抗抑靶点有20个,柴胡疏肝散特
有抗抑靶点有52个。这两种药物可能通过INSALBBDNFIL6FOS等关键蛋白所在的神经活性配体
受体相互作用Calcium信号通路细胞缝隙连接等发挥抗抑郁的作用。越鞠丸的特有靶点SCNN1G
SCNN1BSCNN1A所在的醛固酮调节的钠重吸收、觉转导信号通路揭示抗抑郁机制柴胡疏肝散
特有靶点AKT1HRASMAPK1白所在的癌症通路、ErbB信号通路等揭示了不同的抗抑郁机制。结
论:越鞠丸和柴胡疏肝散由于组分差异既可以通过相同靶点抗抑郁,也可以通过特有靶点抗抑郁。
研究对两种方剂中药物靶点和通路进行可视化网络分析进而初步阐明同病异治抑郁症的科学内涵。
关键词
越鞠丸柴胡疏肝散,抑郁症,同病异治网络药理学生物信息学
Analysis of Antidepressant Mechanism
of Yueju Pill and Chaihu Shugan Powder
in Treating Depression with the Same
Disease with Different Treatments
Zhihang Huang*, Wenwen Liu*, Xin Zhong, Benrong Mu, Dongmei Wang#, Jinlin Guo#
*
共同第一作者。
#通讯作者。
黄志航
DOI:
10.12677/tcm.2021.101001 2
中医学
Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan
Received: Nov. 17th, 2020; accepted: Dec. 25th, 2020; published: Jan. 5th, 2021
Abstract
Objective: Based on network pharmacology and bioinformatics methods, to explore the mechan-
ism of Yueju Pill and Chaihu Shugan Powder in treating depression inthe same disease with dif-
ferent treatments”. Methods: TCMID and Batman-TCM were used to obtain the active components
and targets of Yueju Pill and Chaihu Shugan Powder respectively; use Gene Expression Omnibus
(GEO) and genetic disease databases to screen the differences of genes in depression; use Drug-
Bank, Gene Cards, OMIM, TDD to screen related proteins to depression; use Cytoscape and String
to construct the protein interaction network (PPI). Through the Network Analyzer tool of Cytos-
cape, the topology of the target was analyzed, and ClusterViz’s MCODE algorithm was used for
module analysis; use DAVID for GO and KEGG analysis of targets. Results: Among the two formula-
tions, 310 common targets were related to depression, among which 20 were specific an-
ti-depressants of Yueju Pill and 52 were specific anti-depressants of Chaihu Shugan Powder. These
two drugs may play an antidepressant role in the neural-active ligand-receptor interactions and
Calcium signaling pathways of key proteins such as INS, ALB, BDNF, IL6, FOS and so on. The aldos-
terone regulating sodium reabsorption and taste transduction pathways of the specific targets
SCNN1G, SCNN1B and SCNN1A of Yueju Pill revealed the antidepressant mechanism; AKT1, HRAS,
MAPK1 in the cancer pathways and ErbB signaling pathways, which are specific targets of Chaihu
Shugan Powder, reveal different antidepressant mechanisms. Conclusion: Due to the difference in
components, Yueju Pill and Chaihu Shugan Powder can be used as anti-depressants at the same or
specific targets. In this study, the visual network analysis of drug targets and pathways in the two
formulations was carried out to preliminarily clarify the scientific connotation of treating de-
pression in the same disease with different treatments”.
Keywords
Yueju Pill, Chaihu Shugan Powder, Depression, The Same Disease with Different Treatments,
Network Pharmacology, Bioinformatics
Copyright © 2021 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
抑郁症(depressive disorder)又称为抑郁障碍,它是由于多种复杂原因所造成的一种心理疾病,主要以
心境低落、活动衰退、思维迟钝为主要的发病症状。2008 年世界卫生组织将重度抑郁列为全球第三大疾
病。由于信息化时代发展,社会舆论暴力加剧,抑郁症已经成为了全球关注重视的疾病,及时发现并
治疗,有助于改善和提高抑郁症的疗效。
临床上西医治疗抑郁症用药包括丙米嗪、阿米替林、多塞平等,但连续服用西药起效时间长,停药
后也易反复,可能还会出现无力、头晕、反射亢进、共济失调、肌肉震颤等不良反应,大剂量使用时甚
至可能刺激中枢系统出现精神亢奋。而中医结合活血、清热、祛湿、消食和祛痰等法治疗[1]。目前国内
Open Access
黄志航
DOI:
10.12677/tcm.2021.101001 3
中医学
大多数学者认为,抑郁症的病因在于肝脏,所以可以通过服用透邪解郁的四逆散[2]、调气疏肝解郁散结
的柴胡疏肝散[3],理气解郁的越鞠丸[4]等方剂,起到疏肝解郁、宽胸理气的作用。相较于西医,中医治
疗疾病的优势就在于注重未病先防[5],整体调理,各种药材活性成分相辅相成又互相制约,养护自身抵
御外邪的正气,提高自身的抵抗力,防止人体功能紊乱,有效维护身体健康。中医药治疗疾病因其具有
多成分多靶点多途径调节和善于采用整体与辩证观相结合的方法来治疗疾病的特点,在治疗
因不明确的复杂疾病方面具有独特优势。目前,中药方剂治疗抑郁症已有相关研究得到证实,但对于中
药方剂同病异治抑郁症的科学内涵还尚未明确。
同病异治概念早在《素问·病能论》[6]中有云:有病颈痈者,或石治之,或针灸治之,而皆
已,其真安在?岐伯曰:此同名异等者也。夫痈气之息者,宜以针开除去之;夫气盛血聚者,宜石而写
之。此所谓同病异治也。同病异治,即同一种疾病因为个体差异或是病情变化而采取不一样的治疗方
法,不同的治疗方法却有一样的缓解或治愈疗效,这是中医治疗的一大特色,也是一大成功治疗疾病的
方法实操。但是通过单一的方法不能有效解释同病异治疾病的作用机制,所以需要一种能够将多种
药物成分和靶点与疾病联系起来的研究方法。
网络药理学是一种新兴的以整体性、系统性为特点的网络分析研究方法。它可以通过搜索整合药物
信息,从而揭示中药对机体调控机制[7]。生物信息学同样作为新兴学科,运用计算机信息技术开发新的
算法和统计方法以及数据库对生物学信息和数据进行整合分析[8],利用数据处理方法挖掘更多隐含的生
物学意义。针对方剂多成分多靶点多途径调节特点,筛选药物多成分和疾病靶点,对信号通
路的多途径调节进行分析,进而探究中药与疾病的作用机制。目前,国内已有部分学者采用网络药理学
和生物信息学对中药方剂治疗疾病作用机制进行探究,证实了方法的可行性,为探究越鞠丸和柴胡疏肝
同病异治抑郁症的真正科学内涵奠定了坚实的基础。
本研究采用网络药理学和生物信息学数据挖掘方法,通过筛选整合药物有效活性成分靶点和疾病靶
点,对活性成分共有和特有的抗抑郁靶点及通路进行分析,从而阐释越鞠丸和柴胡疏肝散对抑郁症
病异治的作用机制和科学内涵。
2. 研究对象和方法
2.1. 越鞠丸和柴胡疏肝散化学成分的收集
越鞠丸由香附、苍术、川芎、栀子、六神曲 5味中药组成,柴胡疏肝散由陈皮、柴胡、白芍、香附、
枳壳、川芎、甘草 7中药组成。在中药化学数据库 Batman-TCM (http://bionet.ncpsb.org/batman-tcm/) [9]
TCMID (http://www.megabionet.org/tcmid/) [10]中通过运用网络药理学和生物信息学数据挖掘方法搜索整
合收集越鞠丸和柴胡疏肝散各个组分的有效化学成分。同时应用 Batman-TCM 在线分析平台,搜索越鞠
丸和柴胡疏肝散的单味药组分中对应的靶点,对于每一个组分的化学成分,只考虑评分不小于 20 分的预
测靶点,同时删除无有效靶点的成分。此外,由于越鞠丸中六神曲成分是多种药材按比例混合再发酵制
成的曲剂,存在许多真菌和细菌,因此其药效并非基于成分靶点的原则来发挥,而可能通过调节
肠道菌群来发挥作用,故暂时无法基于平台进行分析[11]所以,本研究只分析越鞠丸的 4种成分,不包
括六神曲。
2.2. 抑郁症差异基因的筛选
在美国国立生物中心(National Center for Biotechnology Information, NCBI)中的 GEO (Gene Expression
Ominibus)数据库(www.ncbi.nlm.nih.gov/geo)检索抑郁症相关芯片,找到编码为 GSE44593 (Organisms:
Homo sapiens)的基因芯片数据,该芯片数据包括疾病组 14 例抑郁症患者、对照组 14 例正常对照者的基
黄志航
DOI:
10.12677/tcm.2021.101001 4
中医学
因 ,共 28 个样本。本研究采用 R语言编 limma 软件包对该基因芯片数据进行分析,默认参数设置 P value
< 0.05,筛选出抑郁症差异表达基因。
2.3. 抑郁症靶点的筛选
利用 DrugBank (https://www.drugbank.ca/) [12]GeneCards (http://www.genecards.org/) [13]OMIM
(http://omim.org/) [14]TTD (http://bidd.nus.edu.sg/group/cjttd/) [15] 4 个数据库,结合上述差异表达基因,
归纳整合筛选抗抑靶点。
2.4. 成分靶点网络的构建
整理上述筛选结果,删除重复的靶点。采用 Cytoscape3.7.2 (http://www.cytoscape.org/)构建越鞠丸
柴胡疏肝散成分靶点网络,得到越鞠丸和柴胡疏肝散成分与靶点之间相关性的可视化关系图。
2.5. 共有靶点和特有靶点网络的构建
使用 String 11.0 (http://string-db.org/)在线工具获取共有靶点之间的相互作用关系、特有靶点之间的相
互作用关系,再导入 Cytoscape 3.7.2 软件构建共有抗抑靶点蛋白质与蛋白质相互作用网络(Protein-Protein
Interaction, PPI)、两种中药方剂特有抗抑靶点 PPI,其中用“节点”来表示作用靶点,“边”来表示靶点
与靶点之间的关系。节点对应的边越多,表示该节点在整个网络中可能具有重要的作用。通过对共有靶
点和特有靶点的网络构建分析,能够更好的阐释“同病异治”的作用机制和科学内涵。
2.6. 网络的分析
运用 Cytoscape3.7.2 软件中的工具 Network Analyzer 来进行拓扑分析,以评价越鞠丸和柴胡疏肝散的
共同抗抑靶点。其中有两个重要参数包括节点中心度和点的连接度。节点中心度用以衡量节点在网络中
的中心程度,点的连接度是指该网络中与该点相连接的边的数量。运用 Cytoscape 中的 ClusterViz 进行模
块分析,选择 MCODE 算法进行聚类分析[16]K-Core 是决定识别模块大小的参数,将参数 K-Core 设置
4,即获得的模块所对应的边应大于 4,从而寻找靶点与靶点之间的相互联系。
2.7. 预测靶点的 GO KEGG 通路分析
利用 DAVID 6.7 (https://david.ncifcrf.gov/) [17]对筛选到的共有抗抑靶点和特有抗抑靶点进行 GO
KEGG 分析,得到靶点富集结果和所在信号通路,并用 GraphPad Prism 8 绘图。
3. 结果与分析
3.1. 越鞠丸和柴胡疏肝散成分筛选的靶点
利用 Batman-TCM TCMID 两个数据库筛选靶点,去除没有对应靶点的成分。越鞠丸和柴胡疏肝
散中成分和靶点统计见1。结果显示越鞠丸的化学成分和靶点分别为 132 个、1247 个,柴胡疏肝散的
化学成分和靶点分别为 305 个、1413 个。越鞠丸和柴胡疏肝散共有的化学成分和靶点是 104 个、1140 个。
其中,香附和川芎为两药共有的两种组分,对应的化学成分和靶点分别为 12 个、91 个和 449 个、958
个。越鞠丸特有的化学成分和靶点分别是 27 个、107 个;柴胡疏肝散特有的化学成分和靶点分别是 175
个、273 个。越鞠丸柴胡疏肝散成分靶点网络(1)其中有 299 个有效成分节点,1473 个靶点节点和
6691 条边线。有效成分与靶点之间相互联系,且多个靶点对应多个成分,体现了中药方剂以多成分
多靶点多途径调节的特点。
黄志航
DOI:
10.12677/tcm.2021.101001 5
中医学
Table 1. Statistics of components and targets of Yueju Pill and Chaihu Shugan Powder
1. 越鞠丸和柴胡疏肝散成分和靶点统计
复方 单味药 成分数目 靶点数目
越鞠丸
香附 12 449
苍术 15 315
川芎 91 958
栀子 14 664
合计 132 1247
柴胡疏肝散
陈皮 32 603
柴胡 67 1097
白芍 18 123
香附 12 449
枳壳 10 342
川芎 91 958
甘草 75 690
合计 305 1413
Figure 1. Ingredient-target network of Yueju Pill and Chaihu Shugan Powder. A1Yueju Pill
unique ingredients; A2Chaihu Shugan Powder unique ingredients; A3Xiang Fu, Chuanxiong
ingredients; A4Non-Xiang Fu, Chuanxiong common ingredients; B1Yueju Pill unique targets;
B2Xiang Fu, Chuanxiong targets; B3Non-Xiang Fu, Chuanxiong common targets; B4Chaihu
Shugan Powder unique targets
1. 成分靶点网络。A1——越鞠丸特有成分;A2——柴胡疏肝散特有成分;A3——香附、
川芎成分;A4——非香附、川芎共有成分;B1——鞠丸特有靶点;B2——香附、川芎靶点;
B3——非香附、川芎共有靶点;B4——柴胡疏肝散特有靶点
3.2. 抑郁症相关基因分析与抑郁症靶点的分析
进入 GEO 数据库,下载 GSE44593 基因芯片数据,用 R语言对其进行数据分析,筛选前 50 个差异
基因,并绘制前 50 个差异基因热图(2)。通过对疾病数据库的检索,筛选出抑郁症靶点有 1630 。其
中有 310 个共同靶点与抑郁症有关,20 个越鞠丸特有靶点和 52 个柴胡疏肝散特有靶点与抑郁症有关。
再运用 String 工具绘制共有抗抑靶点网络作用图(3),有 309 个节点和 5293 条边。越鞠丸特有抗抑靶
点作用图有 10 个节点和 11 条边(4)柴胡疏肝散特有抗抑靶点作用网(5)47 个节点和 160 条边。
黄志航
DOI:
10.12677/tcm.2021.101001 6
中医学
Figure 2. Heat map of the first 50 differentially expressed genes
2. 50 个差异表达基因热图
Figure 3. The network action diagram of common targets
3. 共有靶点作用网络图
黄志航
DOI:
10.12677/tcm.2021.101001 7
中医学
Figure 4. The specific network action diagram of anti-inhibition targets of
Yueju Pill
4. 越鞠丸特有抗抑靶点作用网络图
Figure 5. The specific network action diagram of anti-inhibition
targets of Chaihu Shugan Powder
5. 柴胡疏肝散特有抗抑靶点作用网络图
3.3. 拓扑和模块分析
在网络评价参数中,如果一个节点具有高连接度数和高节点中心度,那么,可能表明该节点在整个
网络中具有重要影响。在对共有抗抑靶点 PPI 图分析中,度较高的四个是 NSALBBDNFIL6。共有
抗抑靶点 PPI 中前 10 靶点拓扑分析见2。此外,运用 ClusterViz 中的 MCODE 算法进行分析,其中有
6类模块的 score > 4,这 6类不同模块对应的参数如3所示。
在越鞠丸特有抗抑靶点 PPI ,度较高的是 RENSCNN1ASCNN1GSCNN1B ESR1在柴胡
疏肝散特有抗抑靶点 PPI 中,度较高的是 AKT1MAPK1EGFHRAS MPO
黄志航
DOI:
10.12677/tcm.2021.101001 8
中医学
Table 2. Topological analysis of common anti-targets (top 10)
2. 共有抗抑靶点的拓扑分析(10)
编号 基因 连接度 介度(介数中心性)
1 INS 158 0.0851
2 ALB 135 0.0528
3 BDNF 130 0.0440
4 IL6 118 0.0256
5 FOS 110 0.0236
6 TP53 99 0.0261
7 TNF 96 0.0173
8 TAC1 87 0.0091
9 IGF1 87 0.0089
10 TH 87 0.0167
Table 3. Analysis of 6 modules of Yueju Pill and Chaihu Shugan Powder
3. 越鞠丸和柴胡疏肝散 6个模块分析
编号 模块 打分
1
22.407 60 855
2
19.417 49 586
3
9.529 35 174
4
6.667 22 70
5
5.917 25 101
6
5.667 7 17
黄志航
DOI:
10.12677/tcm.2021.101001 9
中医学
3.4. 共有抗抑靶点通路分析
每一个模块对应的基因数目为 6049352225 7。其中第三模块和第六模块暂不对应相应通
路,运用 DAVID 在线平台对每一个模块进行相关通路分析。其中发现不同模块之间也有相同通路,如
Calcium 信号通路、神经活性配体受体相互作用和细胞缝隙连接等。而这些通路都已经证明与抑郁症的
发病机制相关[18]具体模块通路分析信息如4所示。该结果表明两种方剂的活性成分可能通过相同的
靶点所在的信号通路来发挥抗抑郁的作用。
Table 4. The pathway analysis of the common anti-inhibition targets
4. 共有抗抑靶点的通路分析
编号 模块 通路
1
NR3C1, GHRH, IL13, FOXP3, HTR2A, ADRB3, ADRA1D,
ADIPOQ, HTR7, CALCA, ADRA1B, VCAM1, ESR1, SLC18A3,
DRD1, ACHE, SLC6A2, ADRA1A, CHRNA4, FOS, SIRT1, IGF1,
ADRB1, NOTCH1, IL6, SOD1, CAT, TGFB1, HTR3A, FASLG,
ADORA2B, MIF, ADRB2, EPO, FGF2, OPRK1, DRD5, MAOB,
OXT, BDNF, ICAM1, PPARG, SOD2, TAC1, HRH2, LEP, HMOX1,
MAP2K1, TAAR1, APOE, IL1RN, TLR3, IDO1, PTGS2, MTOR,
TNF, CRP, ALB, HTR6, SELP
Neuroactiveligand-receptor interactionCalcium
signaling pathwayPathways in cancer
Cytokine-cytokine receptor interactionMAPK
signaling pathwayPrion diseases
Toll-like receptor signaling pathwayVascular
smooth muscle contractionAdipocytokine
signaling pathwayHypertrophic cardiomyopathy
(HCM)Gap junctionGraft-versus-host disease
Dilated cardiomyopathyTryptophan metabolism
2
ADORA1, CHRM2, F2, HTR1A, AGTR2, DRD3, TH, KISS1, DDC,
AVPR1A, CNR2, AVP, DBH, PLCB1, ADRA2A, ADRA2C, CCL2,
DRD4, IL4, AGTR1, MAOA, HRH1, IL1B, SLC18A2, PF4, HTR1B,
IL10, HTR2C, ENSG00000196689, IFNG, PIK3CA, OXTR, PIK3R1,
GRM7, COMT, CRH, CHRM4, TACR2, TP53, CHRM1, HTR1D,
OPN4, CHRM5, HRH4, DRD2, AGT, SLC6A4, CHRM3, HTR2B
Neuroactive ligand-receptorCalcium signaling
pathwayTyrosine metabolismRegulation of
actin cytoskeletonRenin-angiotensin systemT
cell receptor signaling pathwayApoptosis
Allograft rejectionGap junctionJak-STAT
signaling pathway
3
GRIA4, HTR3B, GRIA3, DNMT1, GNAS, FGFR2, CACNG2 ,
NRXN1, NLGN1, MYOD1, PDGFB, GRIA1, GRIN1, GSR,
HOMER1, SHBG, NOS1, SLC1A3, IGF2, SLC17A7, ESR2,
CYP19A1, SHH, GABRB2, SLC6A3, EDN1, CAMK2 G, GRIN2D,
GRIN2C, GRIN2B, SNC A, CACNA1C, RET, GRIA2, BMP4
4
NEFL, CACNA1A, GABRB 3, GABRA1, GABRG2, KC NE1L,
GRIN2A, KCNA1, KCND3 , GABRG3, ABCC9, FMR1, PDE4B,
PDE4D, CACNA1H, KCNJ5, SCN2A, DLG4, GABRA3,
CACNA1G, HTT, HOMER2
Neuroactiveligand-receptor interactionCalcium
signaling pathway
5
HCRT, GHRL, BCHE, IL5, LTA, NGF, COL1A1, ADORA2A,
CNTF, BMP2, MC4R, MAPT, CRHR2, CCL5, NGFR, AR, CNR1,
INS, CALB1, ADRA2B, KIT, SOX9, ACE, PPARA, APOA1
Calcium signaling pathway
Neuroactiveligand-receptor interaction
6 KCNH2, KCNQ1, SCN5A, KCND2, SCN1B, SCN8A, ANK3
3.5. 特有抗抑靶点通路分析
同样运用 DAVID 分析得出,越鞠丸潜在抗抑靶点的代谢通路有:醛固酮调节的钠重吸收信号通路
(15.00%)、味觉转导信号通路(15.00%) (6)。柴胡疏肝散潜在抗抑靶点的代谢通路排在前面的有:癌症
通路(25.00%)ErbB 信号通路(17.31%)MAPK 信号通路(15.38%)(7)。该结果表明越鞠丸和柴胡疏
肝散的活性成分可能通过作用于这些特有靶点影响信号通路来达到抗抑郁的效果。
4. 讨论
在临床中发现[19]一些抑郁症患者中的某些因子比正常人来说相对较高,如细胞因IL-1TNF-α
等,抗炎因子 IL-4IL-8 IL-10 都会显著的上升。这就是抑郁症的发病机制推测之一:炎症反应学说。
黄志航
DOI:
10.12677/tcm.2021.101001 10
中医学
另外还有细胞分子机制学说、脑源性神经营养因子学说等[20]在研究抑郁症的发病原因中,这些学说都
有一定的理论依据,从不同的角度上揭示了抗抑郁药物的作用机制。
Figure 6. KEGG analysis of potential targets of Yueju Pill
6. 越鞠丸潜在抗抑靶点的 KEGG 分析
Figure 7. KEGG analysis of potential targets of Chaihu Shugan Powder
7. 柴胡疏肝散潜在抗抑靶点的 KEGG 分析
我国一系列针对越鞠丸治疗抑郁症的研究显示越鞠丸中大部分药物组分包括香附、苍术、川芎、
栀子都具有抗抑郁的效果[21]蒋麟发现,在研究越鞠丸之中的组分时,发现并非所有组分都有作用。在
对小鼠的行为分析当中,发现只有川芎和栀子有抗抑郁的作用[22]其中栀子起作用可能是脑内脑源性神
经生长因子(Brain-derived neuotrophyic factor, BDNF)的表达升高相关[23]。脑内脑源性神经生长因子可以
通过与特异性受体酪氨酸激酶受体 B (Tyrosine Kinase receptor B, TrkB)相互作用来达到维持着神经元存
活的作用,其表达水平的提高可改善突触的可塑性,从而产生快速抗抑郁效果[24]尉小慧等提出,醇提
越鞠丸将具有更强的抗抑郁效果[25]。同 时 当前对于治疗抑郁症的相关研究,已证实了柴胡疏肝散也有
抗抑郁作用。柴胡疏肝散与部分抗抑郁药物的作用效果相无论是单独使用还是与其他抗抑郁药物协
同使用,都比空白对照有更好的抗抑郁效果,同时,其降低抑郁症状评分也比某些抗抑郁药物显著[26]
这说明柴胡疏肝散的确具有一定程度的抗抑郁作用。研究表明柴胡疏肝散分别与帕罗西汀疗法和艾司西
酞普兰可以有效降低抑郁程度[27] [28]。其中与帕罗西汀疗法的联合过程中,通过提高五-羟色胺
(5-hydroxytryptamine, 5-HT)的含量来治疗抑郁症。在现代药理学中也证明了在柴胡疏肝散当中的一些成
分如芍药内脂苷、柴胡皂苷 A等能有效提高 5-HT 含量,从而达到抗抑郁的目的[29] [30] [31]。我们可以
发现 5-HT 含量高低与抑郁症紧密相关。如果脑中的 5-HT 所介导的通路发生异常,意味 5-HT 的含量降
低,那么可能就会导致抑郁症等多疾病的发生[32]
黄志航
DOI:
10.12677/tcm.2021.101001 11
中医学
5. 结论
综上所述,本研究通过网络药理学和生物信息学数据挖掘技术分析越鞠丸和柴胡疏肝散作用抑郁症
的机制。从“同病”的角度来说,两种方剂存在相同抗抑靶点,如 INSALBBDNFIL6FOS 等。
这些靶点很可能在其生物通路具有发挥抗抑郁的作用。同时“异治”是由于在每一种方剂当中,又有其
特有抗抑靶点所在的生物通路来发挥作用。越鞠丸中的 SCNN1GSCNN1BSCNN1A 蛋白所在的味
转导信号通路、醛固酮调节的钠重吸收等信号通路发挥抗抑郁的机制。柴胡疏肝散中的 AKT1HRAS
MAPK1 蛋白所在的癌症通路、ErbB 信号通路等通路发挥抗抑郁的机制。综上,在对越鞠丸和柴胡疏肝
散的研究当中,确实能够有效揭示“同病异治”的科学内涵,同时上述所显示的一些靶点所在的生物通
路已在相关文献当中证实了其抗抑郁的作用。但由于在筛查靶点的过程中,存在一些成分所对应的靶点
过少,导致对研究结果会有一定的限制,所以今后需进一步探讨相关靶点的作用机制来更好阐释两者
抗抑郁的作用。现在发现中药的多成分多靶点的特点与网络药理学多靶点途径的研究方法十分切合,
所以用网络药理学来研究中药作用机制是一种逻辑性科学性强的选择。同时结合生物信息学、R语言及
其数据挖掘方法,筛选疾病表达的差异基因,找到疾病靶点,预测药物作用疾病通路,再构建可视化的
计算机网络图,可以更好地分析疾病与药物之间的紧密关系。本研究通过采用网络药理学和生物信息学
的信息挖掘技术,对越鞠丸和柴胡疏肝散的化学成分和靶点进行了大量信息整合筛选和预测,通过对靶
点和通路的分析初步阐明同病异治抑郁症的作用机制,最终以可视化蛋白质互作网络的形式呈现越
鞠丸和柴胡疏肝散同病异治的作用机制,可用于后续研究的参考。基于网络药理学和生物信息学数
据挖掘探索中药作用疾病机制也为今后深入研究中药方剂同病异治的作用机制研究提供了一个新的
思路与方法。
基金项目
成都中医药大学科技发展基金(ZRQN2020001);四川省青年科技创新团队项目(19CXTD0055)
参考文献
[1] 张磊阳, 蒋健, 贺敏, 李玥. 抗抑郁中药的药理研究进展[J]. 中国实验方剂学杂志, 2017, 23(24): 224-234.
http://dx.chinadoi.cn/10.13422/j.cnki.syfjx.2017240224
[2] 王慧慧, 张百霞, 叶小彤, 何帅兵, 张燕, 王耘. 基于中药作用机理辅助解析系统的四逆散抗抑郁作用机制
研究[J]. 中国中药杂志, 2015, 40(19): 3723-3728. http://dx.chinadoi.cn/10.4268/cjcmm20151906
[3] 邱娟. 柴胡疏肝散及拆方对抑郁模型大鼠行为学和脑组织 p38MAPKERK5 表达的影响[D]: [博士学位论文].
: 中南大学, 2014.
[4] 任荔, 陶伟伟, 薛文达, 吴颢昕, 陈刚. 越鞠丸石油醚部位潜在的快速抗抑郁作用与 BDNFTrkB 蛋白表达的上
调相关[J]. 中国药理学通报, 2015, 31(12): 1754-1759.
[5] 张天臣. 运用仲景治未病理论防治糖尿病之探讨及彭万年教授相关学术经验总结[D]: [博士学位论文]. 广州: 广
州中医药大学, 2015.
[6] 姚春鹏, 译注. 黄帝内经·素问[M]. 北京:中华书局, 2010: 614.
[7] 解静, 高杉, 李琳, 徐一兰, 高树明, 于春泉. 网络药理学在中药领域中的研究进展与应用策略[J]. 中草药, 2019,
50(10): 2257-2265. http://dx.chinadoi.cn/10.7501/j.issn.0253-2670.2019.10.001
[8] 王俊, 郭丽, 吴建盛, 汤丽华, 胡栋. 大数据背景下的生物信息学研究现状[J]. 南京邮电大学学报(自然科学版),
2017, 37(4): 62-67. http://dx.chinadoi.cn/10.14132/j.cnki.1673-5439.2017.04.011
[9] Liu, Z.Y., Guo, F.F., Wang, Y., Li, C., Zhang, X., Li, H.L., et al. (2016) BATMAN-TCM: A Bioinformatics Analysis
Tool for Molecular Mechanism of Traditional Chinese Medicine. Scientific Reports, 6, Article ID: 21146.
https://doi.org/10.1038/srep21146
[10] Xue, R.C., Fang, Z., Zhang, M.X., Yi, Z.H., Wen, C.P. and Shi, T.L., et al. (2013) TCMID: Traditional Chinese Medi-
黄志航
DOI:
10.12677/tcm.2021.101001 12
中医学
cine Integrative Database for Herb Molecular Mechanism Analysis. Nucleic Acids Research, 41, D1089-D1095.
https://doi.org/10.1093/nar/gks1100
[11] 王秋红, 苏阳, 王荔慧, 王长福, 付新, 吴伦, 匡海学. 六神曲中真菌的分离与鉴定[J]. 中国实验方剂学杂志,
2014, 20(7): 122-127. http://dx.chinadoi.cn/10.13422/j.cnki.syfix.2014070122
[12] Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y.F., et al. (2014) Drug Bank 4.0: Shedding New
Light on Drug Metabolism. Nucleic Acids Research, 42, D1091-D1097. https://doi.org/10.1093/nar/gkt1068
[13] Rebhan, M.,Chalifa-Caspi, V., Prilusky, J. and Lancet, D. (1997) Gene Cards: Integrating Information about Genes,
Proteins and Diseases. Trends in Genetics, 13, 163. https://doi.org/10.1016/S0168-9525(97)01103-7
[14] Hamosh, A., Scott, A.F., Amberger, J.S. (2002) Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of
Human Genes and Genetic Disorders. Nucleic Acids Research, 30, 52-55.
https://doi.org/10.1093/nar/30.1.52
[15] Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Xu, F., et al. (2012) Therapeutic Target Database Update 2012: A Resource
for Facilitating Target-Oriented Drug Discovery. Nucleic Acids Research, 40, D1128-D1136.
https://doi.org/10.1093/nar/gkr797
[16] Wang, J.X., Zhong, J.C., Chen, G., Li, M., Wu, F.X. and Pan, Y. (2015) ClusterViz: A Cytoscape APP for Cluster
Analysis of Biological Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12, 815-822.
https://doi.org/10.1109/TCBB.2014.2361348
[17] 章亮, 陈泽慧, 韩英, 王晓琴, 张波. 基于网络药理学的白屈菜抗肿瘤分子机制研究[J]. 中草药, 2018, 49(3):
646-657. http://dx.chinadoi.cn/10.7501/j.issn.0253-2670.2018.03.021
[18] 高耀, 吴丹, 田俊生, 周玉枝, 高晓霞, 秦雪梅. 逍遥散和开心散同病异治抑郁症的网络药理学作用机制研究
[J]. 中草药, 2018, 49(15): 3483-3492. http://dx.chinadoi.cn/10.7501/j.issn.0253-2670.2018.15.004
[19] Catena-Dell’Osso, M., Bellantuono, C., Consoli, G., et al. (2011) Inflammatory and Neurodegenerative Pathways in
Depression: A New Avenue forantidepressant Development. Current Medicinal Chemistry, 18, 245-255.
https://doi.org/10.2174/092986711794088353
[20] Tsao, C.W., Lin, Y.S., Chen, C.C., et al. (2006) Cytokines and Serotonin Transporter in Patients with Major Depres-
sion. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 899-905.
https://doi.org/10.1016/j.pnpbp.2006.01.029
[21] 任荔, 吴颢昕, 陈刚. 越鞠丸抗抑郁研究进展[J]. 中国中医基础医学杂志, 2016, 22(10): 1429-1431.
[22] 蒋麟. 以越鞠丸为基础的抗抑郁中药复方药理作用及其机理研究[D]: [博士学位论文]. 成都: 成都中医药大学,
2004: 1-59.
[23] Zhang, H.L., Xue, W.D., Wu, R.J., Gong, T., Tao, W.W., et al. (2015) Rapid Antidepressant Activity of Ethanol Ex-
tract of Gardenia jasminoides Ellis Is Associated with Upregulation of BDNF Expression in the Hippocampus. Evi-
dence-Based Complementary and Alternative Medicine, 2015, Article ID: 761238.
https://doi.org/10.1155/2015/761238
[24] 陶伟伟, 肖东, 吴浩然, 佳丽, 黄晓燕, 薛文达, 陈刚. 基于药对探讨中药复方越鞠丸抗抑郁作用配伍规律[J].
中国药理学通报, 2018, 34(9): 1314-1320.
[25] 尉小慧, 陈玥, 夏广新, . 越鞠丸醇提物与水提物对抑郁模型小鼠的抗抑郁作用比较[J]. 上海中医药杂志,
2006, 40(8):69-70. http://dx.chinadoi.cn/10.3969/j.issn.1007-1334.2006.08.033
[26] 金卫东, 邢葆平, 王鹤秋, 陈炯, 童振华, 王乃信. 柴胡疏肝散治疗抑郁症对照研究临床疗效的 Meta 分析[J].
华中医药学刊, 2009, 27(7): 1397-1399.
[27] 潘中瑛, 赵婧, 陈静珊. 柴胡疏肝散联合帕罗西汀对抑郁症患者血清 5-HT 的影响及其安全性分析[J]. 中医药信
, 2018, 35(1): 54-57
[28] 熊盈, 郭蓉娟, 宋大迁, 孙艳, 王鹏宇, 李英. 柴胡疏肝散加减对老年抑郁症患者情绪及生活质量的影响[J].
界中西医结合杂志, 2019, 14(9): 1291-1294.
[29] 梁卫青, 浦锦宝, 陈宇, . 柴胡白芍总皂苷对慢性应激大鼠行为学和海马组织单胺类神经递质的影响[J]. 中华
中医药学刊, 2015, 33(8): 1888-1890.
[30] Chang, X., Jia, H., Zhou, C., Zhang, H.W., Yu, M., Yang, J.S., et al. (2015) Role of Bai-Shaoof Bai-Shao towards the
Antidepressant Effect of Chaihu-Shu-Gan-Sanusing Metabonomics Integrated with Chemical Fingerprinting. Journal
of Chromatography B, 1006, 16-29. https://doi.org/10.1016/j.jchromb.2015.10.007
[31] 郭超峰, 银胜高, 夏猛, . 合欢花总黄酮对抑郁模型大鼠学习记忆能力及血浆单胺类神经递质的影响[J]. 世界
科学技术: 中医药现代化, 2013(6): 1318-1322. http://dx.chinadoi.cn/10.11842/wst.2013.06.011
黄志航
DOI:
10.12677/tcm.2021.101001 13
中医学
[32] Köhler, S., Cierpinsky, K., Kronenberg, G. and Adli, M. (2016) The Serotonergic System in the Neurobiology of De-
pression: Relevance for Novel Antidepressants. Journal of Psychopharmacology, 30, 13-22.
https://doi.org/10.1177/0269881115609072
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.
Article
Full-text available
Ethanol extract of Yueju pill, a Traditional Chinese Medicine herbal formula widely used to treat mood disorders, demonstrates rapid antidepressant effects similar to ketamine, likely via instant enhancement of brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Here we investigated ethanol extracts of the constituent herbs of Yueju responsible for rapid antidepressant effects. Screening with tail suspension test in Kunming mice at 24 hours after a single administration of five individual constituent herbs of Yueju, we found that only Gardenia jasminoides Ellis (GJ) showed a significant effect. The antidepressant response started at 2 hours after GJ administration. Similar to Yueju and ketamine, a single administration of GJ significantly reduced the number of escape failures in the learned helplessness test. Furthermore, GJ decreased latency of food consumption in the novelty suppressed-feeding test. Additionally, starting from 2 hours and continuing for over 20 hours after GJ administration, BDNF expression in the hippocampus was upregulated, temporally linked with the antidepressant response. These findings suggest that GJ has rapid antidepressant effects, which are associated with the elevated expression of BDNF in the hippocampus. In Yueju formula, Yue represents GJ, as thus our study demonstrates the primary role of GJ in rapid antidepressant efficacy of Yueju.
Article
Full-text available
DrugBank (http://www.drugbank.ca) is a comprehensive online database containing extensive biochemical and pharmacological information about drugs, their mechanisms and their targets. Since it was first described in 2006, DrugBank has rapidly evolved, both in response to user requests and in response to changing trends in drug research and development. Previous versions of DrugBank have been widely used to facilitate drug and in silico drug target discovery. The latest update, DrugBank 4.0, has been further expanded to contain data on drug metabolism, absorption, distribution, metabolism, excretion and toxicity (ADMET) and other kinds of quantitative structure activity relationships (QSAR) information. These enhancements are intended to facilitate research in xenobiotic metabolism (both prediction and characterization), pharmacokinetics, pharmacodynamics and drug design/discovery. For this release, >1200 drug metabolites (including their structures, names, activity, abundance and other detailed data) have been added along with >1300 drug metabolism reactions (including metabolizing enzymes and reaction types) and dozens of drug metabolism pathways. Another 30 predicted or measured ADMET parameters have been added to each DrugCard, bringing the average number of quantitative ADMET values for Food and Drug Administration-approved drugs close to 40. Referential nuclear magnetic resonance and MS spectra have been added for almost 400 drugs as well as spectral and mass matching tools to facilitate compound identification. This expanded collection of drug information is complemented by a number of new or improved search tools, including one that provides a simple analyses of drug-target, -enzyme and -transporter associations to provide insight on drug-drug interactions.
Article
Full-text available
As an alternative to modern western medicine, Traditional Chinese Medicine (TCM) is receiving increasingly attention worldwide. Great efforts have been paid to TCM’s modernization, which tries to bridge the gap between TCM and modern western medicine. As TCM and modern western medicine share a common aspect at molecular level that the compound(s) perturb human’s dysfunction network and restore human normal physiological condition, the relationship between compounds (in herb, refer to ingredients) and their targets (proteins) should be the key factor to connect TCM and modern medicine. Accordingly, we construct this Traditional Chinese Medicine Integrated Database (TCMID, http://www.megabionet.org/tcmid/), which records TCM-related information collected from different resources and through text-mining method. To enlarge the scope of the TCMID, the data have been linked to common drug and disease databases, including Drugbank, OMIM and PubChem. Currently, our TCMID contains ∼47 000 prescriptions, 8159 herbs, 25 210 compounds, 6828 drugs, 3791 diseases and 17 521 related targets, which is the largest data set for related field. Our web-based software displays a network for integrative relationships between herbs and their treated diseases, the active ingredients and their targets, which will facilitate the study of combination therapy and understanding of the underlying mechanisms for TCM at molecular level.
Article
Full-text available
Knowledge and investigation of therapeutic targets (responsible for drug efficacy) and the targeted drugs facilitate target and drug discovery and validation. Therapeutic Target Database (TTD, http://bidd.nus.edu.sg/group/ttd/ttd.asp) has been developed to provide comprehensive information about efficacy targets and the corresponding approved, clinical trial and investigative drugs. Since its last update, major improvements and updates have been made to TTD. In addition to the significant increase of data content (from 1894 targets and 5028 drugs to 2025 targets and 17,816 drugs), we added target validation information (drug potency against target, effect against disease models and effect of target knockout, knockdown or genetic variations) for 932 targets, and 841 quantitative structure activity relationship models for active compounds of 228 chemical types against 121 targets. Moreover, we added the data from our previous drug studies including 3681 multi-target agents against 108 target pairs, 116 drug combinations with their synergistic, additive, antagonistic, potentiative or reductive mechanisms, 1427 natural product-derived approved, clinical trial and pre-clinical drugs and cross-links to the clinical trial information page in the ClinicalTrials.gov database for 770 clinical trial drugs. These updates are useful for facilitating target discovery and validation, drug lead discovery and optimization, and the development of multi-target drugs and drug combinations.
Article
Abstract The monoamine hypothesis of depression posits that an imbalance in monoaminergic neurotransmission is causally related to the clinical features of depression. Antidepressants influencing serotonin mainly aim at raising serotonin concentrations, thereby increasing serotonergic transmission at the level of the synapse, for example by inhibiting the serotonin transporter. However, the serotonin system is multifaceted. Different serotonin receptor subtypes turn the serotonergic system into a complex neurochemical arrangement that influences diverse neurotransmitters in various brain regions. Classical antidepressants as well as other psychopharmacological agents have various crucial effects on serotonin receptors. We aim at providing a clinically useful characterization of serotonin receptor subtypes in the treatment of depression. Clarifying the mode of action and the interplay of serotonin receptors with pharmacological agents should help antidepressant mechanisms and typical side effects to be better understood. Against this background, we feature the novel antidepressants vortioxetine, vilazodone and milnacipran/levomilnacipran with regard to their serotonin receptor targets such as the 5-HT1A, 5-HT3 and 5-HT7 which may account for their specific effects on certain symptoms of depression (e.g. cognition and anxiety) as well as a characteristic side-effect profile.
Article
Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.
Article
Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.
Article
The latest advancement in neurobiological research provided an increasing evidence that inflammatory and neurodegenerative pathways play a relevant role in depression. Preclinical and clinical studies on depression highlighted an increased production of inflammatory markers, such as interleukin (IL)-1, IL-6, tumor necrosis factor-α and interferon- α and γ. On the other hand, acute and chronic administration of cytokines or cytokine inducers were found to trigger depressive symptoms. According to the cytokine hypothesis, depression would be due to a stress-related increased production of pro-inflammatory cytokines that, in turn, would lead to increased oxidative and nitrosative brain damage and to indoleamine 2,3 dioxygenase (IDO) induction, with production of tryptophan (TRP) catabolites along the IDO pathway (TRYCATs) and consequent reduced availability of TRP and serotonin (5-HT). Cytokines would also play a role in the onset of the glucocorticoid resistance, underlying the overdrive of the hypothalamic-pituitary-adrenal axis. Therefore, the activation of the inflammatory and neurodegenerative pathways would lead to the brain damage observed in depression through both reduced neurogenesis and increased neurodegeneration. Besides the 5-HT system, other targets, possibly within the I&ND pathways, should be considered for the future treatment of depression: cytokines and their receptors, intracellular inflammatory mediators, IDO, TRYCATs, glucocorticoid receptors, neurotrophic factors may all represent possible therapeutic targets for novel antidepressants. In addition, it should be also clarified the role of the existing anti-inflammatory drugs in the treatment of depression, and those compounds with the anti-inflammatory and anti-oxidative properties should be examined either as monotherapy or adjunctive therapy. In conclusion, the molecular inflammatory and neurodegenerative pathways might provide new targets for antidepressant development and might be crucial to establish a rational treatment of depression aimed, hopefully, to its causal factors.