ArticlePDF Available

Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom

Authors:

Abstract

Over 9.5 billion kg of coffee is produced annually and demand is expected to triple by 2050. Hence, the identification and quantification of the greenhouse gas emission footprint of coffee is essential if it is to become a more sustainable crop. We have produced a detailed life cycle assessment of the carbon equivalent footprint of coffee produced in Brazil and Vietnam and exported to the United Kingdom. The average carbon footprint of Arabica coffee from both countries was calculated as 15.33 (±0.72) kg of carbon dioxide equivalent per 1 kg of green coffee (kg CO2e kg−1 ) for conventional coffee production and 3.51 (±0.13) kg CO2e kg−1 for sustainable coffee production. The 77% reduction in carbon footprint for sustainable coffee production in comparison to conventional production was due to exportation of coffee beans via cargo ship rather than freight flight and the reduction of agrochemical inputs. Based on our results, further reductions could be made through optimal use of agrochemicals; reduced packaging; more efficient water heating; renewable energy use; roasting beans before exportation; and carbon offsetting. Applying these recommendations correctly through certification schemes could mitigate other environmental impacts of coffee cultivation.
REVIEW PAPER
Life cycle assessment synthesis of the carbon footprint of
Arabica coffee: Case study of Brazil and Vietnam conventional
and sustainable coffee production and export to the United
Kingdom
Carmen Nab
|
Mark Maslin
Department of Geography, University
College London, London, UK
Correspondence
Mark Maslin
Email: m.maslin@ucl.ac.uk
Funding information
Research Councils UK; Natural
Environment Research Council, Grant/
Award Number: NE/S007229/1
Over 9.5 billion kg of coffee is produced annually and demand is expected to tri-
ple by 2050. Hence, the identification and quantification of the greenhouse gas
emission footprint of coffee is essential if it is to become a more sustainable crop.
We have produced a detailed life cycle assessment of the carbon equivalent foot-
print of coffee produced in Brazil and Vietnam and exported to the United King-
dom. The average carbon footprint of Arabica coffee from both countries was
calculated as 15.33 (±0.72) kg of carbon dioxide equivalent per 1 kg of green
coffee (kg CO
2e
kg
1
) for conventional coffee production and 3.51 (±0.13) kg
CO
2e
kg
1
for sustainable coffee production. The 77% reduction in carbon foot-
print for sustainable coffee production in comparison to conventional production
was due to exportation of coffee beans via cargo ship rather than freight flight
and the reduction of agrochemical inputs. Based on our results, further reductions
could be made through optimal use of agrochemicals; reduced packaging; more
efficient water heating; renewable energy use; roasting beans before exportation;
and carbon offsetting. Applying these recommendations correctly through certifi-
cation schemes could mitigate other environmental impacts of coffee cultivation.
1
|
INTRODUCTION
The Intergovernmental Panel on Climate Change (IPCC, 2019) warned that humans have damaged a quarter of land on
Earth (2 billion hectares) through land degradation and agriculture, which are responsible for almost a quarter of the
worlds greenhouse gas (GHG) emissions. The IPCC (2018) report suggests that global emissions must halve by 2030 and
be net zero by 2050 if global temperature rise is to be kept to 1.5°C. Agriculture will play an important role in managing
the land and reducing GHG gas emissions.
Coffee is a luxury agricultural commodity, sometimes referred to as a drug food,as it provides no nutritional value.
In 2018, coffee was the Worlds 121st most traded product, representing 0.17% of total world trade (OEC). Between 2017
and 2018 coffee exports grew by 1.49%. Coffee is the worlds 70th most traded agricultural commodity (International Cof-
fee Organization [ICO], 2019), with over 9.5 billion kg produced in 2018 (Figure 1) with a total trade value of $30.9 bil-
lion (OEC). Coffee is grown in tropical regions where the ecosystems are considered fragile due to other human pressures.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG).
© 2020 The Authors. Geo: Geography and Environment published by John Wiley & Sons Ltd and the Royal Geographical Society (with the Institute of British Geographers)
Received: 17 January 2020
|
Revised: 18 November 2020
|
Accepted: 26 November 2020
DOI: 10.1002/geo2.96
Geo: Geography and Environment. 2020;e00096.
https://doi.org/10.1002/geo2.96
wileyonlinelibrary.com/journal/geo2
|
1of19
Coffee cultivation can play a crucial role in maintaining and providing ecosystem services at a local and national level and
has a substantial role to play in mitigating the agricultural sectors environmental impact. With demand for coffee expected
to triple by 2050 (Conservation International, 2019b), the increasing global demand for environmentally friendly products
has pushed a rapid acceleration of sustainability initiatives among coffee producers and retailers (Noponen, 2012).
If coffee is to become more sustainable we need to understand how and where GHGs are emitted through the produc-
tion cycle and whether mitigating these emissions will increase or decrease the environmental impact of coffee cultivation.
To this end we have applied an entire life cycle carbon footprint analysis (Cheng et al., 2014). This approach has previ-
ously been used in agriculture (Ponsioen & Blonk, 2012), food consumption (Shirley et al., 2012), industrial production
(Virtanen et al., 2011), and international trading (Peters et al., 2011). Analyses for individual agricultural products have
been carried out, including butter (Flysjö, 2011), dairy (AsselinBalençon et al., 2013), honey (Mujica et al., 2016), sugar
(Yuttitham et al., 2011), wine (Pattara et al., 2012), and coffee products in Japan (Hassard et al., 2014). A carbon footprint
analysis by Hertwich and Peters (2009) concluded that global food production and consumption is the source of 20% of
total anthropogenic GHG emissions, the majority of which is linked to agriculture (Cheng et al., 2014).
2
|
COFFEE CULTIVATION
Most coffee grown is made up of two species: Coffea arabica (Arabica) and Coffea canephora var. Robusta (Robusta), the
former making up 70% of all coffee grown globally, and the latter encompassing the remaining 30% (ICO, 2019). Globally,
coffee is currently grown between 22°N and 26°S (Wintgens, 2008). Germination of a coffee seed takes one to two months
(Wintgens, 2008) and the plant takes approximately three years to mature and begin producing fruit (Hoffmann, 2018). The
coffee plant flowers for less than two weeks, which is followed by the development of the coffee cherries. Development
takes 69 months for Arabica and 911 months for Robusta (Wintgens, 2008). At this stage, the berries turn from green to
deep red and are ready for harvesting. Cultivated coffee trees have a lifespan of around 30 years (Bunn et al., 2015).
Though they can live up to 80 years in the wild, the most productive years are between 7 and 20 years.
Arabica coffee originated in Ethiopia and is grown within tropical forests at altitudes of 1,6002,800 m (DaMatta,
2004). This region has well distributed rainfall patterns, ranging from 1,400 to 2,000 mm for two thirds of the year, with
the last third being the dry season and coinciding with the coldest months (Haggar & Schepp, 2012). Arabicas optimum
rainfall is between 1,200 and 1,800 mm annually, and below 1,000 mm coffee plants cannot survive. The species prefers
FIGURE 1 Total production of coffee by all exporting countries, 19902018 (data from ICO, 2019).
2of19
|
NAB AND MASLIN
temperatures between 18 and 22°C with little seasonal fluctuations (de Camargo, 2010), though it can tolerate temperatures
as low as 15°C and up to 25°C (Wintgens, 2008). These stringent environmental requirements mean that Arabica is mostly
grown in regions around the equator, with the major production areas being the Brazilian highlands, Central America, and
Colombia (Hoffmann, 2018). There are major concerns that future climate change (DaMatta et al., 2019) will greatly reduce
the areas suitable for coffee cultivation, mainly due to the increased seasonal temperatures; see Bunn et al. (2015) for a
comprehensive review.
3
|
COFFEE PRODUCTION
This study focuses on two sites in Brazil and Vietnam, and evaluates the different processes involved in the supply chain
of Arabica coffee exported to the United Kingdom. Brazil and Vietnam were chosen as they are the two largest coffee pro-
ducing countries, together producing over 50% of the worlds Arabica coffee (Figure 2). Brazil is the worlds largest pro-
ducer of coffee beans, responsible for around 30% market share. Since 2008, coffee production in Brazil and Vietnam has
increased by 60% and 165% on average, respectively, in comparison to average 19902007 levels. In the 2017/2018 season,
Brazil produced over 3 million metric tons of coffee (51 million bags), of which 60% was exported, whilst Vietnam pro-
duced 1.8 million metric tons of coffee (30 million bags), of which approximately 80% was exported (ICO, 2019).
Coffees global significance extends beyond its large consumption numbers to the well documented environmental bur-
dens as a result of effluent releases, fertiliser use, and habitat destruction (Hassard et al., 2014). Although there has been
substantial research into the environmental impacts of coffee production, it has primarily focused on the production phase
and its contribution to the displacement of natural habitats and communities (e.g.,Komar, 2006; Rappole et al., 2003). Sig-
nificantly less consideration has been given to the environmental cost of coffee processing, including the transportation
from the production to consumption countries.
Conventional coffee production consumes substantial amounts of energy, water, and land, which can have potentially
significant impacts on native tropical biodiversity (Arce et al., 2009), particularly due to the long, complex supply chain
required to produce and transport the coffee bean to market. Although only grown in tropical and equatorial areas as the
FIGURE 2 (a) Global top 10 coffee producers, 20002018; (b) global top 10 coffee consumers, 20002013 (data from ICO, 2019).
NAB AND MASLIN
|
3of19
primary export of many developing countries, the majority of coffee consumption occurs in the developed world, with the
European Union (EU) and the United States importing twothirds of coffee produced worldwide (Salomone, 2003); see Fig-
ure 2. The significant distance from production to final destination means there is a large amount of carbon emissions asso-
ciated with the transportation phase alone, with roughly 15% of GHG emissions in coffees lifecycle attributed to
international transportation (Humbert et al., 2009; Killian et al., 2013; PCF Pilotprojekt Deutschland, 2008).
4
|
COFFEE CERTIFICATION AND SUSTAINABILITY SCHEMES
With mounting global focus on climate change, an increasing number of coffee associations and individual companies are
introducing sustainability schemes. In 2015, Starbucks announced that it had reached an industry milestone of 99% ethically
sourced coffee (Starbucks Coffee Company, 2019) and launched a traceability pilot programme, The Sustainable Coffee
Challenge. The programme aims to make coffee the worlds first fully sustainable agricultural product and has since grown
to more than 100 international partners (Conservation International, 2019b). To meet this goal, Nespresso launched the
AAA Sustainable Quality Program, which supports more than 45,000 farmers and aims to reduce the carbon footprint of a
cup of Nespresso coffee by 28% by 2020 in comparison to 2009 (Nespresso, 2019b). Strategies in the programme range
from designing more efficient coffee machines to agroforestry and are informed by life cycle assessments (LCAs). As of
2016, LCAs showed a carbon footprint reduction of 19.4%, with the company insetting100% of its carbon footprint
(Nespresso, 2019a); the process of embedding sustainable activities directly into supply chains, instead of offsetting them
through indirect carbonsequestering initiatives.
Over time, the agricultural industry has increasingly used certification as a marketing tool for its products, in response
to increased competition and public scrutiny (International Trade Centre [ITC], 2011). These certifications prove to con-
sumers that producers conform to good agricultural practices, practice safe pesticide use, engage in resource protection or
protect the environment. As a result, the product is accepted as safe and environmentally friendly. Whilst the certification
process is simple for producers of perishables such as a fruit and vegetables, the coffee industry is much more complex as
a result of coffee farmers providing green coffee to overseas roasters, who in turn produce and market the finished product.
Therefore, the identity of the producing individuals is often not known to the consumer, with the industrys complex supply
chain making the validation of practices for certification difficult (Bosselmann, 2012). Nevertheless, several sustainability
schemes have been introduced in recent years as a result of the increased consumer demand for environmentally conscious
products. In 2012, 40% of global coffee (3.3 million metric tons) was produced in compliance with a voluntary sustainabil-
ity standard, of which 40% was produced in Brazil and 15% in Vietnam (Potts et al., 2014). With smallholders supplying
70% of the worlds coffee (Kolk, 2011), sustainability certification schemes have focused largely on helping coffee farmers
maintain their high yield while reducing production costs and environmental degradation, by educating them about optimal
fertiliser, energy and water inputs. Additionally, training coffee farmers techniques such as integrated crop management and
soil conservation helps them increase soil fertility to reduce the dependence on fertilisers and pesticides, further reducing
the inputs required to produce optimal crop quality and quantity. Lower production costs combined with price premiums
have been found to make sustainable coffee agriculture more profitable than conventional techniques, whilst maintaining
high yields (Gobbi, 2000).
Certification requirements and foci have varied considerably between the five main certification schemes; Fairtrade sup-
ports small producers by guaranteeing a price premium, which is meant to be used to enhance social, economic, and envi-
ronmental development. The Rainforest Alliance and Organic certifications have focused on protecting ecosystems and
biodiversity, whilst UTZ aims to mainstream sustainability across the coffee market. In 2011, the ITC conducted an analy-
sis of the effectiveness of the most popular sustainability schemes for coffee, concluding that the Organic and Rainforest
Alliance schemes had the biggest environmental impact, particularly in terms of biodiversity and soil fertility. In terms of
environmental and sustainability requirements, the Rainforest Alliance certification scheme was found to be the most ambi-
tious.
The certifications have, however, some limitations: many of their criteria are difficult to monitor, such that there is no
guarantee certified coffee has been produced according to certification standards. Additionally, the criteria are universal,
lacking locationspecific requirements for maintaining environmental integrity and biodiversity. In terms of carbon footprint
reduction, private schemes such as the Nespresso and Starbucks schemes have been estimated to have a significantly larger
impact (Keller e al., 2013) due to their specific focus on reducing GHG emissions, higher level of intervention, and their
use of emissions data to inform decisions. Additionally, their specific focus on their own suppliers means that they are able
to make more targeted changes in comparison to the blanket standards imposed by the main coffee certification schemes.
4of19
|
NAB AND MASLIN
5
|
LIFE CYCLE ASSESSMENTS
The IPCC (2006), developed a standard inventory methodology for estimating all GHG emissions from the major economic
sectors, which is now used by most governments to estimate national GHG emissions (Vergé et al., 2013). The resulting
inventories are the foundation of national GHG mitigation strategies and international agreements, yet they are unsuitable
for tracking the effectiveness of mitigation strategies as they do not account for the complexity of agroecosystems and the
resulting variability between producers, regions, and time. Moreover, the agricultural inventories do not include GHG emis-
sions from energy use, omitting the transportation phase of crop production entirely (IPCC, 1996). As a result, there has
been a rapid development of various tools for assessing GHG emissions from agriculture. Some, like Century (Parton et al.,
2006), DayCent (Parton et al., 2008), and the US Cropland GHG Calculator (McSwiney et al., 2010), are specifically
focused towards assessing the crop production footprint per unit area. Others, such as the Cool Farm Tool (Unilever, 2011)
and the Integrated Farm System Model (Rotz et al., 2012), calculate the carbon footprint of a farm as a whole by quantify-
ing each production step. Simpler tools such as the Carbon Calculator (Carbon Farming Group [CFG], 2009) compute foot-
prints per capita or per farm, without accounting for the broad interfarm practice diversity (AsselinBalençon et al., 2013).
Nevertheless, none of these assessments enable fair comparison per quantity of a certain crop produced, as they do not sep-
arate emissions from different crops. The wideranging nature of the coffee chain, with many individuals and companies of
different types and sizes involved, makes an LCA the most accurate way of quantifying the environmental impact of each
stage in coffee production (McGeough et al., 2012; Salomone, 2003).
The LCA method involves mapping out all activities of production, distribution, and consumption of a product, followed
by a quantification of all impacts associated with these activities (Figure 3). This method follows the International Organi-
zation for Standardization (ISO) 14,000 standards, which define LCAs as comprising four stages: goal and scope definition
outlining what the study intends to assess; inventory quantifying the life cycle activities and their inflows (resources
consumed) and outflows (emissions); impact assessment mapping these inflows and outflows to measures of environmen-
tal damage; and interpretation evaluating the results and developing recommendations (Kirchain et al., 2017).
5.1
|
Life cycle stages of coffee
The life cycle of coffee can be divided into four general stages: production, transportation, roasting, and consumption. The
first three stages are generally the same for all types of coffee product, particularly when considering that many companies
produce several different coffee products, whereas the final consumption stage processes differ depending on the product
type produced.
Although LCAs have been extensively applied to a wide range of agricultural products, their application to coffee is
very limited in comparison to other agroindustrial products such as cash crops, dairy products, and canned food (Phrom-
marat, 2018). Previous LCAs have produced widely varying estimations of the carbon footprint of coffee production, with
values ranging from 3.7 to 15.8 kg CO
2e
kg
1
of green coffee (Table 2.2). Studies have collectively agreed that the cultiva-
tion and consumption stages have the greatest environmental impact (Arzoumanidis et al., 2017; Coltro et al., 2006; Dom-
ínguezPatiño et al., 2014; Humbert et al., 2009; Killian et al., 2013; PCF Pilotprojekt Deutschland, 2008). PCF
Pilotprojekt Deutschland (2008) estimated that 55% of coffee productions carbon footprint was generated during cultivation
and onfarm processing and 30% during consumption, with the remaining 15% resulting from transport, processing, and
waste disposal. However, to date, all LCAs have been conducted using cargo ships as the method of exportation. Increas-
ingly, roasters are importing fresher coffee, at a much higher price, by shipping the coffee by air instead of ship from the
country of origin. These freight flights release an estimated 100 times more CO
2e
per km travelled than cargo ships
(Department for Environment, Food and Rural Affairs [DEFRA] and British Standards Institution [BSI], 2011), making
their inclusion in carbon footprint estimations crucial. To date, no LCA has included the exportation of coffee beans via
freight flight.
In a carbon footprint analysis of six coffee products, Hassard et al. (2014) calculated the highest impact for the latte
(224 g CO
2
per serving), followed by canned coffee (223 g CO
2
per serving), with the lowest impact calculated for
espresso coffee (49 g CO
2
per serving). These differences were attributed largely due to differences in packaging and the
addition of milk. However, on a per millilitre basis, espresso coffee had the highest impact (1.6 g CO
2e
ml
1
), followed by
canned coffee (1.2 g CO
2e
ml
1
), and the latte (0.97 g CO
2e
ml
1
). This indicates the importance of selecting an appropri-
ate functional unit when carrying out LCAs to carry out meaningful comparisons. In this study, the highest contributing
factors were the emissions from milk production, packaging, and the production stages of the coffee itself (Hassard et al.,
2014).
NAB AND MASLIN
|
5of19
Indirect, wider environmental impacts are often not considered in carbon footprint assessments due to difficulties in
quantifying the amount of carbon they release. For example, an LCA by Salomone (2003) identified eutrophication (320 g
PO
43
e
kg
1
of packed coffee) and terrestrial ecotoxicity (6 t/kg of packed coffee) as the main categories of environmental
impact from coffee production. This comprehensive assessment included all life cycle stages from coffee cultivation
through to consumption and disposal, but omitted fertiliser and pesticide use. In commercial farming, the excessive applica-
tion of fertilisers (frequency and quantity) has been shown to exceed the soils ability to retain and transform the nutrients
and release them according to the crops needs (Coltro et al., 2006). Studies have shown that the saturation of the soil with
phosphate or nitrogen has promoted losses of phosphates and nitrates into the groundwater (Dubos et al., 2017; Rahman &
Zhang, 2018). On a farm level, the use of fertilisers and pesticides can cause the destruction of soil flora and fauna, which
can in turn cause both physical and chemical deterioration of the soil itself, the groundwater, and the widespread environ-
ment.
Nevertheless, agricultural activities also have positive effects in terms of oxygen generation, carbon capture, and biodi-
versity protection (Coltro et al., 2006). For example, Pelupessy (2003) estimated that coffee plants capture approximately
35% as much CO
2
as the same area of woodland. None of the studies mentioned in this section considered the potential
positive contributions of carbon storage in the coffee ecosystem to climate change mitigation, as carbon footprint estima-
tions only include carbon fluxes between the system and its environment (BSI, 2008). Since coffee production systems can
range from simple monoculture plantations to complex agroforests, their aboveground and belowground carbon stocks
vary widely, with estimations ranging from 14.1 Mg/ha in an unshaded coffee monoculture (Hergoualch et al., 2012) to
46.3 Mg/ha in a highly diverse agroforest (SotoPinto et al., 2010).
FIGURE 3 General life cycle stages of the production of a serving of coffee (adapted from Hassard et al., 2014).
6of19
|
NAB AND MASLIN
To examine the carbon footprint of coffee production, the CO
2e
emissions from the growing, milling, and exportation
phases were first quantified, after which the emissions from the processing phase estimated by a past LCA were investi-
gated.
6
|
METHODOLOGY
Coffees journey from producer to consumer is complex, with multiple sites and companies involved in the supply
chain. This makes it difficult to quantify carbon emissions at each life cycle stage, particularly at the farm level where
data are scarce. This study covers the full supply chain of Arabica coffee and is based on an extensive collation of
secondary data gathered from peerreviewed academic literature and online databases. The quality and quantity of data
available vary depending on which aspect of the LCA is being counted, and this is noted in the methods.
For this study, the coffee supply chain is divided into four separate stages: growing, milling, the process of exportation,
and processing (Figure 4a). In order to represent a broader view of carbon emissions across the coffee processing chain,
the processing stage is further divided into six smaller stages (Figure 4b), with the information for these stages taken from
a previous coffee LCA carried out by PCF Pilotprojekt Deutschland (2008). The scope for this study was defined using
PAS 2050:2011, a carbon standard development recommended by the British Department for Environment, Food and Rural
Affairs and the British Standards Institution (DEFRA and BSI, 2011).
The calculated carbon footprint must be defined in terms of a functional unit to allow for interstudy comparisons
(DEFRA and BSI, 2011). The functional unit defined for this study was 1 kg of green Arabica coffee beans, such that the
resulting carbon footprint results are presented as kilograms of carbon dioxide equivalent per 1 kg of green Arabica coffee
(kg CO
2e
kg
1
green Arabica coffee beans).
The PAS 2050 method allows for the exclusion of some elements of the carbon footprint in order to simplify the evalua-
tion, stipulating that at least 95% of the total emissions must be assessed. In this study, it is assumed that the land used for
coffee production at the selected study sites has been used for this purpose for at least 20 years, such that emissions from
land use change and carbon storage by shade trees can be excluded.
FIGURE 4 Different stages of coffee processing with potential sources of carbon emissions (adapted from Killian et al., 2013).
NAB AND MASLIN
|
7of19
6.1
|
Life cycle inventory
A life cycle inventory was created, identifying the main inputs at the first three stages of coffee production; growing,
milling, and exportation. The inputs required for the growing and milling stages were taken from LCAs carried out by De
Marco et al. (2018) and Arce et al. (2009), respectively (Table 1). These are generic data and therefore it was not possible
to differentiate differences between growing and milling in the two case study countries. The input units used for these
stages are average inputs required to produce 1 kg of green Arabica coffee beans on conventional and sustainable coffee
farms in a tropical environment. The coffee farm locations were placed at random points in Sao Paulo (Brazil) and Buôn
Ma Thut (Vietnam), the biggest coffee producing regions in the countries (ICO, 2019). The nearest ports and international
airports to these coffee farms were then identified using seadistances.org (2019) and Google Maps (2019). The transport
distances from these ports to the Port of Bristol were then estimated using Google Maps (van distance, freight flight dis-
tance) and seadistances.org (cargo ship distance) for the exportation phase (Table 1).
Based on emission hotspots identified by previous LCAs, the sustainable case studies varied from the conventional ones
in three ways: the use of organic waste instead of artificial fertilisers, the lack of pesticides, and the exportation of coffee
beans to the United Kingdom via cargo ship rather than freight flight. Additionally, increased efficiency in the milling
phase meant a reduction in water, electricity, and fossil fuel use in the sustainable case studies (Table 1).
6.2
|
Carbon footprint calculation
The carbon footprint quantification methodology was based on combined guidance from PAS 2050:2011 (DEFRA and
BSI, 2011) and the IPCCs National Greenhouse Gas Inventories (IPCC, 2006). The footprint of each emissions factor was
determined using conversion factors provided by the UK Government and DEFRA. Countryspecific conversion factors on
electricity and fossil fuels used for inputs based in Brazil and Vietnam to account for variation caused by the sources of
inputs (e.g., electricity). A spreadsheet model was created to calculate the carbon footprint, into which all the collected data
and emission factors were entered.
6.2.1
|
Step 1: calculating coffee production
To start, the amount of coffee produced or processed at every stage was determined, by which the emissions at each stage
could be divided to determine the carbon footprint of a specific source of emissions for one functional unit. The informa-
tion on coffee is presented as a function of 1 kg of green coffee beans.
6.2.2
|
Step 2: calculating carbon emissions
To calculate the emissions of each source, its input value, presented in the life cycle inventory, was multiplied by its speci-
fic emission factor. Different conversion factors were used to calculate these conversion factors: electricity and fossil fuel
emissions were calculated using the national average electricity and fossil fuel emissions factors for Brazil and Vietnam,
provided by DEFRA (2012). Emissions for water, firewood, and transportation were obtained from the UK Government,
(2019). Fertiliser and pesticide emission factors provided by DEFRA (2012) were used.
6.2.3
|
Step 3: carbon footprint calculation
The emissions at each stage of coffee production were totalled and standardised in kg of CO
2e
. These emissions were then
divided by the total amount of coffee produced or processed at each stage, resulting in the carbon footprint of each stage
expressed in kg CO
2e
kg
1
green coffee.
The carbon footprint was calculated separately for each case study, resulting in four quantifications: conventional coffee
from Brazil; conventional coffee from Vietnam; sustainable coffee from Brazil; and sustainable coffee from Vietnam. This
was done to allow for the comparison between conventional and sustainable coffee and between separate coffee growing
regions, Latin America and Southeast Asia.
After extensive evaluation of the available literature, the following data sources were chosen to complete the life cycle
inventory:
8of19
|
NAB AND MASLIN
TABLE 1 Life cycle inventory of the main inputs and outputs for conventional and sustainable coffee production in Brazil (top) and Vietnam
(bottom); data refer to 1 kg of green coffee beans
Brazil conventional Brazil sustainable
Parameter Unit Value Comments Value source Parameter Unit Value Comments Value source
Growing Growing
Fertiliser kg 0.23 De Marco et al.
(2018)
Fertiliser kg 0.50 organic waste
only
De Marco et al.
(2018)
Fossil fuels kg 0.01 De Marco et al.
(2018)
Fossil fuels kg 0.01 De Marco et al.
(2018)
Electricity kg 0.11 De Marco et al.
(2018)
Electricity kg 0.11 De Marco et al.
(2018)
Pesticides kg 0.01 De Marco et al.
(2018)
Pesticides kg 0.00 No pesticides De Marco et al.
(2018)
Milling Milling
Water L 22.05 Arce et al.
(2009)
Water L 0.79 Arce et al. (2009)
Electricity kWh 0.26 Arce et al.
(2009)
Electricity kWh 0.04 Arce et al. (2009)
Fossil fuels kg 0.03 Arce et al.
(2009)
Fossil fuels kg 0.03 Arce et al. (2009)
Fuel (firewood) kg 1.54 Arce et al.
(2009)
Fuel (firewood) kg 1.54 Arce et al. (2009)
Exportation Exportation
Van/lorry
distance
km 14.00 Google
Maps (2019)
Van/lorry
distance
km 101.00 Google
Maps (2019)
Freight flight
distance
km 9,353.39 Google
Maps (2019)
Freight flight
distance
km 9,660.03 seadistances.org
(2019)
Van distance km 27.00 Google
Maps (2019)
Van distance km 1.60 Google
Maps (2019)
Outputs Outputs
Green coffee kg 1.00 Functional
unit
Green coffee kg 1.00 Functional
unit
Vietnam conventional Vietnam sustainable
Parameter Unit Value Comments Value source Parameter Unit Value Comments Value source
Growing Growing
Fertiliser kg 0.23 De Marco et al.
(2018)
Fertiliser kg 0.50 organic waste
only
De Marco et al.
(2018)
Fossil fuels kg 0.01 De Marco et al.
(2018)
Fossil fuels kg 0.01 De Marco et al.
(2018)
Electricity kg 0.11 De Marco et al.
(2018)
Electricity kg 0.11 De Marco et al.
(2018)
Pesticides kg 0.01 De Marco et al.
(2018)
Pesticides kg 0.00 No pesticides De Marco et al.
(2018)
Milling Milling
Water L 22.05 Arce et al.
(2009)
Water L 0.79 Arce et al.
(2009)
Electricity kWh 0.26 Arce et al.
(2009)
Electricity kWh 0.04 Arce et al.
(2009)
(Continues)
NAB AND MASLIN
|
9of19
Growing phase: De Marco (2018) an LCA of Arabica coffee production in Brazil and Vietnam, with data put together
from a mix of peerreviewed literature, primary data from coffee producers, and interviews with coffee farmers.
Milling phase: Arce (2009) a study comparing the environmental footprint of conventional and sustainable coffee farm-
ing in Latin America, with data for conventional production taken from ICAFE (2017) and compared with primary data
compiled from a number of sustainable coffee processors. Whilst not as recent as De Marco (2018), this was chosen as it
included the evaluation of primary data from multiple coffee farms.
Though the literature is limited for coffee production, these sources were selected as they were deemed the most com-
prehensive and provided clear data inputs for each stage of the coffee life cycle, for both conventional and sustainable Ara-
bica coffee. These studies were based largely on primary data collected at coffee farms and mills, which were collated with
results from peerreviewed academic literature to estimate inputs at each stage.
The use of an LCA was appropriate as it quantifies carbon emissions released by each input of the products life cycle,
thus allowing for the accurate estimation of the carbon footprint of each phase of production. Additionally, the quantifica-
tion of GHG emissions as a combined CO
2e
value was suitable as it factors in the climatic potential of each gas included
and allows for a comparison of the overall climatic impact of products that emit different GHGs.
6.3
|
Growing, milling, and exportation phases
The carbon footprints estimated for conventional coffee production in Brazil and Vietnam were 11.56 and 12.99 kg CO
2e
kg
1
green coffee, respectively, from farm level to a storage location in Bristol (Table 2, upper panel). The proportion of
the carbon footprint contributed by each stage is similar for both countries, with the majority of the emissions coming from
the freight flight transport between the producing countries and the United Kingdom (10.42 and 11.55 kg CO
2e
kg
1
,
respectively). This flight was calculated to contribute 98100% of emissions produced in the exportation phase and 90% of
total emissions produced in the growing, milling, and exportation phases. In the growing phase, the use of fertilisers was
the largest source of CO
2e
emissions (95% and 92%), whilst in the milling phase fossil fuel use (77% and 45%) and elec-
tricity use (16% and 51%) made the highest contributions.
The carbon footprints estimated for sustainable coffee production in Brazil and Vietnam were much lower, totalling 0.32
and 0.59 kg CO
2e
kg
1
green coffee, respectively, for the growing, milling, and exportation phases (Table 2, lower panel).
Whilst still the largest contributor, the exportation phase was responsible for 59% and 70% of total CO
2e
emissions for Bra-
zil and Vietnam, respectively, with the cargo ship transport from port to port contributing 67% and 50% of emissions in the
exportation phase. The use of organic waste as fertiliser and lack of pesticide use made fossil fuel use (66% and 39%) and
electricity use (16% and 51%) the largest emission sources in the growing phase. In the milling phase, fossil fuel use
TABLE 1 (Continued)
Vietnam conventional Vietnam sustainable
Parameter Unit Value Comments Value source Parameter Unit Value Comments Value source
Fossil fuels kg 0.03 Arce et al.
(2009)
Fossil fuels kg 0.03 Arce et al.
(2009)
Fuel (firewood) kg 1.54 Arce et al.
(2009)
Fuel (firewood) kg 1.54 Arce et al.
(2009)
Exportation Exportation
Van/lorry
distance
km 338.00 Google
Maps (2019)
Van/lorry
distance
km 333.00 Google
Maps (2019)
Freight flight
distance
km 10,372.04 Google
Maps (2019)
Freight flight
distance
km 16,169.81 seadistances.org
(2019)
Van distance km 27.00 Google
Maps (2019)
Van distance km 1.60 Google
Maps (2019)
Outputs Outputs
Green coffee kg 1.00 Functional
unit
Green coffee kg 1.00 Functional
unit
10 of 19
|
NAB AND MASLIN
TABLE 2 Carbon footprint at each phase of conventional and sustainable coffee production
Conventional
Brazil Vietnam
Emission source
CO
2
emission
Emission source
CO
2
emission
kg CO
2e
kg
1
green coffee %kgCO
2e
kg
1
green coffee %
Growing Growing
Fertiliser 0.96 95 Fertiliser 0.96 92
Fossil fuels 0.03 3 Fossil fuels 0.03 3
Electricity 0.01 1 Electricity 0.04 4
Pesticides 0.01 1 Pesticides 0.01 1
Total 1.01 100 Total 1.04 100
Milling Milling
Water 0.01 7 Water 0.01 4
Electricity 0.02 16 Electricity 0.09 51
Fossil fuels 0.08 77 Fossil Fuels 0.08 45
Fuel (firewood) 0.00 0 Fuel (Firewood) 0.00 0
Total 0.10 100 Total 0.18 100
Exportation Exportation
Farm to airport 0.01 0 Farm to airport 0.21 2
Airport to airport 10.42 100 Airport to airport 11.55 98
Airport to storage 0.02 0 Airport to storage 0.02 0
Total 10.44 100 Total 11.77 100
Sustainable
Brazil Vietnam
Emission source
CO
2
emission
Emission source
CO
2
emission
kg CO
2e
kg
1
green coffee %kgCO
2e
kg
1
green coffee %
Growing Growing
Fertiliser 0.01 17 Fertiliser 0.01 10
Fossil fuels 0.03 66 Fossil fuels 0.03 39
Electricity 0.01 16 Electricity 0.04 51
Pesticides 0.00 0 Pesticides 0.01 0
Total 0.05 100 Total 0.08 100
Milling Milling
Water 0.00 0 Water 0.00 0
Electricity 0.00 3 Electricity 0.02 16
Fossil fuels 0.08 96 Fossil fuels 0.08 84
Fuel (firewood) 0.00 0 Fuel (firewood) 0.00 0
Total 0.08 100 Total 0.10 100
Exportation Exportation
Farm to airport 0.06 33 Farm to airport 0.20 50
Airport to airport 0.12 67 Airport to airport 0.21 50
Airport to storage 0.00 1 Airport to storage 0.00 0
Total 0.19 100 Total 0.41 100
NAB AND MASLIN
|
11 of 19
remained the largest emission source, contributing 96% and 84% of emissions in Brazil and Vietnam, respectively. In total,
the carbon footprint of conventional coffee production was 36 and 22 times higher than sustainable production in Brazil
and Vietnam, respectively.
6.4
|
Processing phase
An LCA on coffee processing by PCF Pilotprojekt Deutschland (2008) calculated a carbon footprint of 3.05 kg CO
2e
kg
1
green coffee, with 70% of emissions associated with consumption, followed by grinding (10%), roasting (6%), distribution
and disposal (5%), and packaging (4%).
6.5
|
Total carbon footprint
By combining all the stages including the processing phase (Figure 5), conventional coffee from Vietnam was calculated to
have the highest carbon footprint (16.04 kg CO
2e
kg
1
green coffee) followed by conventional coffee from Brazil (14.61 kg
CO
2e
kg
1
green coffee), though the primary difference between these two was the transportation distance. Sustainable cof-
fee from Vietnam (3.64 kg CO
2e
kg
1
green) and sustainable coffee from Brazil (3.37 kg CO
2e
kg
1
green) were much
lower, and again the differences were due to different transport distances. For conventional coffee production, the exporta-
tion process was calculated to produce over 70% of total CO
2e
emissions in both case studies. The processing phase was
the second largest source of emissions (19%21%) followed by the growing (7%) and milling (1%) phases. In the case of
sustainable coffee, the processing phase was by far the largest source of CO
2e
emissions, contributing 91% for Brazil and
84% in Vietnam. Exportation was responsible for 611% of total CO
2e
emissions, followed by milling (23%) and growing
(12%). PAS 2050 classifies emissions exceeding 5 kg CO
2e
kg
1
as very high intensity,whilst those between 0.1 and
1.0 kg CO
2e
kg
1
are classed as medium intensity(DEFRA and BSI, 2011). At over 10 kg CO
2e
kg
1
, both case studies
of conventional coffee production assessed would be classed as very high intensity, whilst those for sustainable coffee pro-
duction are considered to be of medium intensity.
With a drink containing approximately 18 g of green coffee (Starbucks Coffee Company, 2019), each kg of green coffee
makes approximately 56 espresso beverages. Thus, the carbon footprint found in the LCA is on average 0.28 and 0.06 kg
CO
2e
per espresso beverage for conventional and sustainable coffee, respectively (9.2 and 2.1 g CO
2e
ml
1
). In an LCA of
FIGURE 5 The contribution of each phase to the total carbon footprint of coffee production (percentages may not add up due to rounding).
12 of 19
|
NAB AND MASLIN
milk production, Hassard et al. (2014) estimated a carbon footprint of 2.26 g CO
2e
ml
1
. Using these values, the carbon
footprint of standard coffee beverages was estimated: with the conventional production of coffee beans, the carbon foot-
prints for one serving of caffe latte, flat white, and cappuccino were estimated to be 0.55, 0.34, and 0.41 kg CO
2e
, respec-
tively. When produced sustainably, these values were reduced to 0.33, 0.13, and 0.20 kg CO
2e
. Whilst the carbon footprint
of coffee production is four times higher than that of milk (per ml) for conventional production and equal to that of milk
for sustainable production, the larger proportion of milk than coffee used in these beverages resulted in a significant
increase in carbon footprint. For conventional coffee production, the carbon footprint increased by 25% (flat white), 50%
(cappuccino), and 100% (caffe latte) in comparison to espresso (Figure 6). When produced sustainably, the large decrease
in the carbon footprint of coffee meant that the difference was even larger, increasing by 205% (flat white), 315% (cappuc-
cino), and 530% (caffe latte) in comparison to espresso (Figure 6).
These estimations were higher than those made by Hassard et al. (2014), who calculated carbon footprints of 0.049 kg
(espresso) and 0.224 g CO
2e
(caffe latte) per serving. This is largely due to their use of Japan as the country of both pro-
duction and consumption, omitting the exportation phase quantified in this study. Additionally, Hassard et al.s LCA of
milk only included direct emissions created in the production phase, omitting indirect emissions such as methane produced
by cows. An LCA by de Boer (2003) estimated that the emission of methane from cows adds an additional 4865% to the
global warming potential of milk production, increasing its carbon footprint to 3.353.73 g CO
2e
ml
1
.
7
|
DISCUSSION
7.1
|
Major contribution to coffee total carbon footprint
When interpreting the LCA results, it is important to consider that the lack of real farm data regarding emissions means that
the environmental impact calculated with an LCA may differ from the actual environmental impact (Thomassen et al.,
2008). The LCA also does not provide any insight into the other environmental impacts of coffee production, including
deforestation, biodiversity loss, water pollution, and eutrophication (reference).
These case studies presented here demonstrate the importance of the exportation phase, with significant emissions with
conventional coffee if international freight flights are used. Sustainable coffee production with no air transport, a large part
of the emissions are in the processing phase. Previous LCAs placed the largest proportion of CO
2e
emissions in the pro-
cessing and production phases, with the exportation phase attributed to less than 5% of total CO
2e
emissions. Whilst the
coffee farms investigated in these studies were largely similar to those studied in the conventional case studies, they
FIGURE 6 Comparison of the carbon footprint of different styles of coffee using conventional or sustainable coffee and diary milk or non
diary milk. Weight of coffee per cup was from Starbucks Coffee Company (2019); coffee carbon footprint from this study and milk carbon
footprint from Poore and Nemecek (2018).
NAB AND MASLIN
|
13 of 19
included the international transport of coffee beans via cargo ship, explaining the small proportion of emissions attributed
to the exportation phase.
The sustainable case studies quantified in this study had an estimated 77% lower carbon footprint than the conventional
case studies, mainly as a result of two sustainability measures. First, the use of cargo ships for the transportation of coffee
beans from the production countries to the United Kingdom instead of freight flights reduced estimated emissions by 10.3
11.3 kg CO
2e
kg
1
green coffee. Although transportation via cargo ship takes significantly longer, with transport time
increasing from 12 hours to two weeks (24 times longer) for Brazil and 14 hours to three weeks (48 times longer) for Viet-
nam (seadistances.org, 2019), this method of transportation can export significantly larger shipments of coffee beans at
once. Second, the replacement of chemical fertilisers with organic waste in the sustainable case studies reduced estimated
emissions by 0.95 kg CO
2e
kg
1
green coffee. An LCA of coffee production in Vietnam, based on interview data, found
that most coffee farmers apply excess chemical fertilisers (on average 0.6 kg plant
1
year
1
) with the belief that this will
increase coffee yield linearly. In fact, a report from the Chumphon Horticultural Research Center (2011) calculated an opti-
mal fertiliser application rate of 0.24 kg plant
1
year
1
. Their study found that any excess fertiliser could not be absorbed
by the coffee plants, instead leaching into nearby surface water, resulting in nitrous oxide emission and water pollution.
Based on this report, Ratchawat et al. (2018) estimated that the carbon footprint of coffee could be reduced by 12% if farm-
ers followed this recommendation, saving them around £17/ha on the cost of chemical fertilisers.
The lack of pesticide use in the production phase and reduced use of water and electricity in the milling phase further
reduced the estimated carbon footprint of the sustainable case studies in comparison to the conventional ones, albeit at a
significantly smaller scale (<0.1 kg CO
2e
kg
1
green coffee reduction each).
7.2
|
Further potential reductions of the carbon footprint of coffee production
7.2.1
|
Use of recycled materials and reduction of packaging amount
This reduces the demand for primary materials, thus reducing energy, water, and material consumption, air and water emis-
sions in the production of packaging materials, and impacts on biodiversity from forestry and mining (von Geibler et al.,
2016). An LCA by the Alliance for Environmental Innovation (2000) estimated carbon footprints of 0.52, 0.22, and
0.18 kg CO
2e
per serving for paper, polystyrene, and ceramic cups, whilst Arena et al. (2003) estimated a carbon footprint
reduction of up to 85% where recycled plastic was used to produce packaging in comparison to virgin plastic.
7.2.2
|
Increasing efficiency in water heating
In the processing phase, an estimated 70% of CO
2
emissions were attributed to consumption, largely due to the significant
energy use of automatic coffee machines (see PCF Pilotprojekt Deutschland, 2008). This energy use could be reduced by
using more efficient water using technologies although this is largely in the hands of the consumer and the design of
more efficient coffee machines. The addition of milk and/or sugar was not considered in this study.
7.2.3
|
Use of renewable energy sources
The use of fossil fuels for electricity and energy production releases significant air emissions during each phase of the cof-
fee life cycle (von Geibler et al., 2016). An LCA by IRENA (2017) estimated that the use of renewable energy sources can
reduce the carbon footprint of crop production by up to 70%. Based on the carbon footprints calculated in this study, the
use of renewable energy sources instead of fossil fossils could reduce the carbon footprint of coffee production by 0.11 kg
CO
2e
kg
1
green coffee (not including the processing phase).
7.2.4
|
Roasting the coffee beans in the producing country
Currently, coffee is usually exported to the country of consumption before it is roasted, allowing retailers to market their
coffee as freshly roasted.Whilst green coffee beans have a longer shelf life than roasted ones, roasted coffee beans can
retain their fresh taste up to six months if stored at cool temperature (below 10°C) in airtight laminated aluminium layer,
oneway valve and nitrogen flushed packaging (Josephy, Bush, Nipkow, & Pilone, 2013; Smrke, 2020). Roasting coffee
beans reduces their weight by more than half but the volume remains approximately the same. This makes a big difference
to air freight which is focused mainly on weight but less important for international shipping that is mainly concerned with
14 of 19
|
NAB AND MASLIN
volume. Roasting the coffee beans before exporting them could reduce the carbon footprint in the exportation phase depen-
dent on the method of exportation. This would also allow producer countries to move up the value chain and have associ-
ated development advantages; this more than offset the downside of roasted and ground coffee being more perishable.
In addition to making these sustainable changes to the coffee life cycle, coffee retailers could offset their entire carbon
footprint at a miniscule price of around £0.15 and £0.03 per kg of green coffee produced for conventional and sustainable
coffee production, respectively (£0.01 per kg CO
2e
; Conservation International, 2019a), based on the carbon footprints cal-
culated in this study. Carbon offsetting does, however, require due diligence to ensure good qualityoffsets that will pro-
duce the desired environmental benefits and should be seen as an additional environmental measure rather than a primary
solution.
7.2.5
|
Land use change
Although the amount and location of land used for coffee production has remained relatively stable over the past 20 years
(Babin, 2014), one of the most frequently hypothesised but understudied results of the increasing demand for coffee is the
switch from coffee agroecosystems to monoculture systems with little ecological benefits. The carbon sequestration poten-
tial of agroforestry systems is well documented, particularly for products such as coffee and cocoa, for which gross carbon
sequestration has been estimated to outweigh GHG emissions throughout their lifetime (Fitriani, Zakaria, & Ismono, 2018).
Whilst the intensification of existing agriculture allows for the avoidance of carbon emissions from land use change, inten-
sive monoculture coffee plantations do not have this carbon sequestration potential. A carbon performance study in Costa
Rica and Nicaragua found that, whilst the highest yield and greatest profits were found in fullsuncoffee systems com-
pletely lacking shade trees, these systems had the least potential for carbon sequestration (Noponen, 2012). To incentivise
the continued maintenance of existing coffee agroecosystems and compensate for the coffee production revenue lost, sus-
tainability certification schemes such as Fair Trade have introduced a premium pricing scheme, which guarantees a higher
retail price for coffee grown under Fair Trade standards (Babin, 2014). Noponen (2012) also found that, if maintenance of
less productive coffee agroecosystems results in the expansion of coffee production into areas of currently forested land to
compensate for the reduced yield, this land use change will release a mammoth 5,000 kg CO
2e
ha
1
year
1
of GHG emis-
sions. Thus, mechanisms that are based on reducing emissions by avoiding landuse change whilst intensifying productivity
of agricultural systems, such as the UNREDD programme, could play a major role in reducing pressure for forest conver-
sion to agriculture and increasing agroforestry systemsclimate change mitigation success. Moreover, with the increased
risk from raised temperature due to climate change (Bunn et al., 2015) more and more coffee production regions will have
to have shade species to protect the coffee plants (Wintgens, 2008), which will increase carbon sequestration and increase
local biodiversity.
7.2.6
|
The processing phase
In the sustainable coffee production case studies, more than 80% of the CO
2e
emissions were produced in the processing
phase. Of the 3.05 kg CO
2e
kg
1
green coffee estimated, 70% was attributed to the consumption of coffee. The source study
found that a main emission driver is the preparation of coffee using an automatic coffee machine, which generates an esti-
mated 60.27 g CO
2e
per cup of coffee, in comparison to an estimated 10.04 g by traditional filter drip and French press
methods, largely due to a sixfold increase in electricity use (PCF Pilotprojekt Deutschland, 2008). Consumers therefore
play a critical role in reducing the carbon footprint of coffee production and should be encouraged to reduce their energy
usage through consumerfocused awareness campaigns. To support this, manufacturers have made significant strides to
increase the energy efficiency of coffee machines in recent years. Measures such as autopowerdown, low or zero standby
consumption, and better insulation of hot parts have been introduced to enhance energy efficiency. As of 2013, automated
coffee machines had a market share of 23% in the EU, with an annual growth of 5.5% (Josephy et al., 2013). The extre-
mely strong trend towards espresso portioned machines means that increasing energy efficiency is crucial to decreasing the
carbon footprint of coffee consumption. From 2013, coffee machines sold in the EU must have a power management func-
tion that automatically switches the machines to a standby or off mode after the shortest possible time period of intended
use (Josephy et al., 2013). The introduction of an energy label would be very effective in helping buyers recognise the most
efficient machines on the market. As retailers strive towards offering products of best label classes, an energy label would
incentivise the coffee industry to develop more energy efficient coffee machines. When producing this label, the energy
and resource consumption associated with the production of coffee capsules and pads should be taken into account.
NAB AND MASLIN
|
15 of 19
7.3
|
Comparison of coffee to other agricultural products
Average carbon footprints of conventional and sustainable coffee production in this study are 15.33 (±0.72) and 3.51
(±0.13) kg CO
2e
kg
1
green coffee. In comparison to other highly traded agricultural products, the carbon footprint of cof-
fee is relatively high, with animal products and highly processed products often having the highest carbon footprints:
Beef = 27 kg CO
2e
kg
1
(Wiedemann et al., 2015); cheese = 13.5 kg CO
2e
kg
1
(Canellada et al., 2018); tea = 7.1 kg
CO
2e
kg
1
(Cichorowski et al., 2015); bananas = 1.28 kg CO
2e
kg
1
(Roibás et al., 2016); wine = 1.72 kg CO
2e
L
1
(Pat-
tara et al., 2012); sugar = 0.55 kg CO
2e
kg
1
(Yuttitham et al., 2011). The high quantity of coffee produced yearly means
that the coffee sector has a significant total carbon footprint. Based on the results, coffee production can be attributed to a
total of 33.3125.6 billion kg of global annual CO
2e
emissions. This is comparable to the total annual CO
2
emissions of
Denmark (33.9 billion kg) and the Philippines (137.2 billion kg), as calculated by the European Commission (2017). In
comparison, global tea production can be attributed to roughly 36.9 billion kg (Cichorowski et al., 2015), when exported
via cargo ship, similarly to sustainable coffee production. The lack of nutritional value of both coffee and tea means that
they can be considered luxury products, sometimes called drug foods,as they are unnecessary for human survival, mak-
ing their large carbon footprints arguably much worse than those of products with high nutritional values.
8
|
CONCLUSIONS
Our coffee carbon footprint analysis shows there is a significant difference between sustainable and conventional coffee.
This is largely due to the exportation of coffee beans via cargo ship rather than freight flight and the reduction of agro-
chemical inputs. This footprint could be further reduced by more efficient use of packaging materials, increased efficiency
in water heating, use of renewable energy sources, roasting beans before exportation, and carbon offsetting. With growing
competition and global coffee demand, retailers are increasingly transporting coffee beans via freight flight to get fresher
coffee. This makes it unlikely that they will switch back to cargo ship transport, despite the large climate change mitigation
potential, exposing the need for a tax on aviation fuel and/or a tax on flying luxury goods such as coffee and tea.
Despite the widespread agreement that sustainable production practices are better for the environment, our sustainable case
study carbon footprint was only 24% lower than that of the conventional case studies (excluding the exportation phase). There
are also concerns that by focusing on the carbon footprint of production, other environmental impacts are being missed. Hence,
sustainability certification schemes must be holistic in their approach and avoid the obsession with just carbon emissions. Care-
fully thought out and financed certification schemes could reduce the environmental impact of coffee by educating farmers on
optimal fertiliser and pesticide inputs, soil fertility conservation and water conservation, whilst maintaining high yields and
reducing production costs, increasing the profitability of coffee while reducing carbon emissions (ITC, 2011).
Coffee cultivation faces an uncertain future, with climate change predictions suggesting a 50% reduction in the suitable
growing area by 2050 (Bunn et al., 2015) at the same time as a tripling of demand. One adaptation is to ensure there are
shade species to reduce the maximum temperature and damage to the coffee plants (Wintgens, 2008). Some certification
schemes do include climate change adaptation measures, such as paying a premium for agroforestry system cultivated cof-
fee as opposed to intensive monoculture coffee plantations (Noponen, 2012). This needs to be expanded to all certification
schemes and imbedded in international agreements such as REDD + and the Bonn Accord to protect the environment and
the livelihoods of coffee producers.
ACKNOWLEDGEMENTS
The authors would like to thank the reviewers and the editors for all their hlepful and supportive comments. We would also
like to thank Miles Irving and the UCL Geography Drawing Office for assistance with the diagrams. We would like to
thank the Natural Environment Research Council London DTP (NE/L002485/1) for providing funding.
FUNDING INFORMATION
Research Councils UK, Natural Environment Research Council (grant number: NE/S007229/1).
DATA AVAILABILITY STATEMENT
All data used in this paper are referenced in the reference list.
16 of 19
|
NAB AND MASLIN
ORCID
Mark Maslin https://orcid.org/0000-0001-9957-3463
REFERENCES
Alliance for Environmental Innovation (2000). Report of the Starbucks Coffee Company/ Alliance for Environmental Innovation Joint Task Force.
Alliance for Environmental Innovation. Retreived from http://business.edf.org/files/2014/03/starbucksreportapril2000.pdf
Arce, V., Raudales, R., Trubey, R., King, D., Chandler, R., & Chandler, C. (2009). Measuring and managing the environmental cost of coffee
production in Latin America. Conservation and Society,7, 141144.
Arena, U., Mastellone, M., & Perugini, F. (2003). Life Cycle assessment of a plastic packaging recycling system. The International Journal of
Life Cycle Assessment,8,9298.
Arzoumanidis, I., Salomone, R., Petti, L., Mondello, G., & Raggi, A. (2017). Is there a simplified LCA tool suitable for the agrifood industry?
An assessment of selected tools. Journal of Cleaner Production,149, 406425.
AsselinBalençon, A., Popp, J., Henderson, A., Heller, M., Thoma, G., & Jolliet, O. (2013). Dairy farm greenhouse gas impacts: A parsimonious
model for a farmer's decision support tool. International Dairy Journal,31, S65S77.
Babin, N. (2014). The coffee crisis, fair trade, and agroecological transformation: Impacts on landuse change in Costa Rica. Agroecology and
Sustainable Food Systems,39,99129.
Bosselmann, A. (2012). Mediating factors of land use change among coffee farmers in a biological corridor. Ecological Economics,80,7988.
BSI. (2008). Publicly Available Specification (PAS) 2050: Specification for the assessment of the life cycle greenhouse gas emissions of goods
and services. London, UK: British Standards Institution.
Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2015). A bitter cup: Climate change profile of global production of Arabica and robusta
coffee. Climatic Change,129,89101. https://doi.org/10.1007/s105840141306x
Canellada, F., Laca, A., Laca, A., & Díaz, M. (2018). Environmental impact of cheese production: A case study of a smallscale factory in south-
ern Europe and global overview of carbon footprint. Science of the Total Environment,635, 167177.
Carbon Farming Group. (2009). Calculator other emissions (computer software). Retrieved from http://www.carbonfarming.org.nz/calculators/
Cheng, K., Yan, M., Nayak, D., Pan, G., Smith, P., Zheng, J., & Zheng, J. (2014). Carbon footprint of crop production in China: An analysis of
National Statistics data. The Journal of Agricultural Science,153, 422431.
Chumphon Horticultural Research Center. (2011). Effective coffee Robusta management. Retrieved from http://www.doa.go.th/hort/index.php?
option=com_content&view=article&id=33:chumphontour&catid=9:modeltour
Cichorowski, G., Joa, B., Hottenroth, H., & Schmidt, M. (2015). Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea. The
International Journal of Life Cycle Assessment,20, 426439.
Coltro, L., Mourad, A., Oliveira, P., Baddini, J., & Kletecke, R. (2006). Environmental profile of Brazilian green coffee. International Journal of
Life Cycle Assessment,11,1621.
Commission, E. (2017). European Commission. (2017). Fossil CO
2
emissions of all world countries, 2018 report. Emissions Database for Global
Atmospheric Research (EDGAR). Retrieved from https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2018&sort=des9
Conservation International. (2019b). Sustainable coffee challenge. Retrieved from https://www.conservation.org/stories/sustainablecoffeechalle
nge
Conservation International. (2019a). Carbon credits. Retrieved from https://www.conservation.org/carbonoffsets
DaMatta, F. M. (2004). Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research,86,99
114. https://doi.org/10.1016/j.fcr.2003.09.001
DaMatta, F. M., Rhan, E., Läderach, P., Ghini, R., & Ramalho, J. C. (2019). Why could the coffee crop endure climate change and global warm-
ing to a greater extent than previously estimated? Climatic Change,152, 167178. https://doi.org/10.1007/s1058401823464
de Boer, I. (2003). Environmental impact assessment of conventional and organic milk production. Livestock Production Science,80,6977.
De Marco, I., Riemma, S., & Iannone, R. (2018). Life cycle assessment of supercritical CO
2
extraction of caffeine from coffee beans. The Jour-
nal of Supercritical Fluids,133, 393400.
DEFRA. (2012). 2012 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting. Retrieved from https://assets.publishing.
service.gov.uk/government/uploads/system/uploads/attachment_data/file/69554/pb13773ghgconversionfactors2012.pdf
Department for Environment, Food and Rural Affairs and British Standards Institution. (2011). The guide to PAS 2050:2011: How to carbon
footprint your products, identify hotspots and reduce emissions in your supply chain (p. 79). London, UK: Department for Environment, Food
and Rural Affairs and British Standards Institution.
DomínguezPatiño, J., Martínez, A., Romero, R., & Orozco, I. (2014). Life cycle assessment on real time in a coffee machine. Journal of Chem-
istry,8, 11421149.
Dubos, B., Snoeck, D., & Flori, A. (2017). Excessive use of fertilizer can increase leaching processes and modify soil reserves in two Ecuadorian
oil palm plantations. Experimental Agriculture,53, 255268.
Fitriani, Arifin Bustanul, Zakaria Wan Abbas, Ismono R Hanung (2018). Coffee agroforestry for sustainability of Upper Sekampung Watershed
management. IOP Conference Series: Earth and Environmental Science,141, 012006. http://dx.doi.org/10.1088/17551315/141/1/012006.
Flysjö, A. (2011). Potential for improving the carbon footprint of butter and blend products. Journal of Dairy Science,94, 58335841.
NAB AND MASLIN
|
17 of 19
Gobbi, J. (2000). Is biodiversityfriendly coffee financially viable? An analysis of five different coffee production systems in western El Salvador.
Ecological Economics,33, 267281.
Google Maps. (2019). Map. [online] Received from https://www.google.co.uk/maps
Haggar, J., & Schepp, K. (2012). Coffee and climate change: Impacts and options for adaptation in Brazil. Guatemala, Tanzania and Vietnam:
National Resources Institute.
Hassard, H., Couch, M., Techaerawan, T., & McLellan, B. (2014). Product carbon footprint and energy analysis of alternative coffee products in
Japan. Journal of Cleaner Production,73, 310321.
Hergoualc'h, K., Blanchart, E., Skiba, U., Hénault, C., & Harmand, J. (2012). Changes in carbon stock and greenhouse gas balance in a coffee
(Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems & Environment,
148, 102110.
Hertwich, E. G., & Peters, G. P. (2009). Carbon footprint of nations: A global, tradelinked analysis. Environmental science & technology,43
(16), 64146420. https://doi.org/10.1021/es803496a
Hoffmann, J. (2018). The World Atlas of Coffee From Beans to Brewing Coffees Explored, Explained and Enjoyed (2nd ed.). London, UK:
Octopus.
Humbert, S., Loerincik, Y., Rossi, V., Margni, M., & Jolliet, O. (2009). Life cycle assessment of spray dried soluble coffee and comparison with
alternatives (drip filter and capsule espresso). Journal of Cleaner Production,17, 13511358.
ICAFE (Instituto del Café de Costa Rica). (2017). Estructura del Sector. http://www.icafe.cr/nuestrocafe/estructuradelsector/
International Coffee Organization (ICO). (2019). Historical data on the global coffee trade. Retrieved from http://www.ico.org/new_historical.a
sp?section=Statistics
International Trade Centre. (2011). The Coffee Exporter's Guide (3rd ed., pp. 228242). Geneva, Switzerland: International Trade Centre.
IPCC. (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reporting Instructions (Volume 1). Retrieved from
https://www.ipcc.ch/report/revised1996ipccguidelinesfornationalgreenhousegasinventories/
IPCC. (2006). Guidelines for national greenhouse gas inventories. Volume 4: Agriculture, Forestry and Other Land Use. Retrieved from https://
www.IPCC.ch/report/2006ipccguidelinesfornationalgreenhousegasinventories/
IPCC. (2018). Summary for policymakers. Global warming of 1.5°C. pp. 814. Retrieved from https://www.ipcc.ch/sr15/
IPCC. (2019). Summary for policy makers. Climate Change and Land. Retrieved from https://www.ipcc.ch/site/assets/uploads/2019/08/4.SPM_
Approved_Microsite_FINAL.pdf
IRENA. (2017). Perspectives for the energy transition: Investment needs for a lowcarbon energy system (pp. 121186). Retrieved from https://
www.irena.org/publications/2017/Mar/PerspectivesfortheenergytransitionInvestmentneedsforalowcarbonenergysystem
Josephy, B., Bush, E., Nipkow, J., & Pilone, A. (2013). Super Efficient Coffee Machines Best Available Technology (BAT) and Market Trans-
formation. Topten International Group. Retrieved from http://www.topten.eu/uploads/File/038_Barbara_Josephy_final_Coffee.pdf
Keller, E. J., Milà i Canals, L., King, H., Lee, J., & Clift, R. (2013). Agrifood certification schemes: How do they address greenhouse gas emis-
sions? Greenhouse Gas Measurement and Management,3,85106.
Killian, B., Rivera, L., Soto, M., & Navichoc, D. (2013). Carbon footprint across the coffee supply chain: The case of Costa Rican Coffee. Jour-
nal of Agricultural Science and Technology,3, 151170.
Kirchain, R., Gregory, J., & Olivetti, E. (2017). Environmental lifecycle assessment. Nature Materials,16, 693697.
Kolk, A. (2011). Mainstreaming sustainable coffee. Sustainable Development,21, 324337.
Komar, O. (2006). Ecology and conservation of birds in coffee plantations: A critical review. Bird Conservation International,16,123.
McGeough, E., Little, S., Janzen, H., McAllister, T., McGinn, S., & Beauchemin, K. (2012). Lifecycle assessment of greenhouse gas emissions
from dairy production in Eastern Canada: A case study. Journal of Dairy Science,95, 51645175.
McSwiney, C., Bohm, S., Grace, P., & Robertson, G. (2010). US cropland greenhouse gas calculator (computer software). Retrieved from http://
surf.kbs.msu.edu/ghgcalculator/
Mujica, M., Blanco, G., & Santalla, E. (2016). Carbon footprint of honey produced in Argentina. Journal of Cleaner Production,116,5060.
Nespresso. (2019a). The Positive Cup. p. 31.Retreived from https://www.nestlenespresso.com/assetlibrary/documents/nespressopositivecupcsv
reportinteractive.pdf#page=31
Nespresso. (2019b). Nespresso AAA Sustainable Quality
Program: A triplewin collaboration between Nespresso and the Rainforest Alliance.
Retrieved form https://www.nestlenespresso.com/newsandfeatures/nespressoaaasustainablequalitytmprogramatriplewincollaborationbe
tweennespressoandtherainforestalliance
Noponen, M. (2012). Carbon and economic performance of coffee agroforestry systems in Costa Rica and Nicaragua. Ph.D: Bangor University.
Retrieved from https://research.bangor.ac.uk/portal/files/20570051/null
OEC (Observatory of Economic Complexity) Coffee https://oec.world/en/profile/hs92/coffee
Parton, W., Ojima, D., Cole, C., & Schimel, D. (2008). DayCent: Daily century model (Version 4.5; computer software). Retrieved from http://
www.nrel.colostate.edu/projects/daycent/index.html
Parton, W., Schimel, D., Cole, C., & Ojima, D. (2006). Century (Version 5: computer software). Retrieved from http://www.nrel.colostate.edu/pro
jects/century5/
Pattara, C., Raggi, A., & Cichelli, A. (2012). Life cycle assessment and carbon footprint in the wine supplychain. Environmental Management,
49, 12471258.
PCF Pilotprojekt Deutschland. (2008). Case study tchibo private kaffee: Rarity machare by tchibo GMBH. Retrieved from http://www.pcfproje
kt.de/files/1232962944/pcf_tchibo_coffee.pdf
18 of 19
|
NAB AND MASLIN
Pelupessy, W. (2003). Environmental issues in the production of beverages: Global coffee chain. In: B. Mattsson and U. Sonesson (Eds.), Envi-
ronmentallyfriendly food processing (pp. 95115). Cambridge, MA; Boca Raton, FL: Woodhead Publishing Limited and CRC Press LLC.
Peters, G., Minx, J., Weber, C., & Edenhofer, O. (2011). Growth in emission transfers via international trade from 1990 to 2008. Proceedings of
the National Academy of Sciences USA,108, 89038908.
Phrommarat, B. (2018). Life cycle assessment of ground coffee and comparison of different brewing methods: A case study of organic Arabica
coffee in northern Thailand. The Environment and Natural Resources Journal,17,96108.
Ponsioen, T., & Blonk, T. (2012). Calculating land use change in carbon footprints of agricultural products as an impact of current land use.
Journal of Cleaner Production,28, 120126.
Poore, J., & Nemecek, T. (2018). Reducing foods environmental impacts through producers and consumers. Science,360, 987992.
Potts, J., Lynch, M., Wilkings, A., Huppé, G., Cunningham, M., & Voora, V. (2014). The State of Sustainability Initiatives Review. International
Institute for Sustainable Development (IISD) and the International Institute for Environment and Development (IIED). pp. 155186. Retrieved
from https://www.iisd.org/pdf/2014/ssi_2014.pdf
Rahman, K., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability.
Sustainability,10, 759.
Rappole, J., King, D., & Vega Rivera, J. (2003). Coffee and conservation. Conservation Biology,17, 334336.
Ratchawat, T., Panyatona, S., Nopchinwong, P., Chidthaisong, A., & Chiarakorn, S. (2018). Carbon and water footprint of Robusta coffee
through its production chains in Thailand. Environment, Development and Sustainability,22, 24152429.
Roibás, L., Elbehri, A., & Hospido, A. (2016). Carbon footprint along the Ecuadorian banana supply chain: Methodological improvements and
calculation tool. Journal of Cleaner Production,112, 24412451.
Rotz, C., Corson, M., Chianese, D., Montes, F., Hafner, S., & Coiner, C. (2012). The integrated farm system model (IFSM): Reference manual
(Version 3.6). Washington, DC: United States Department of Agriculture.
Salomone, R. (2003). Life Cycle Assessment applied to coffee production: Investigating environmental impacts to aid decision making for
improvements at company level. Journal of Food Agriculture and Environment,1, 295300.
seadistances.org. (2019). Port Distances [online] Retrieved from https://seadistances.org
Shirley, R., Jones, C., & Kammen, D. (2012). A household carbon footprint calculator for islands: Case study of the United States Virgin Islands.
Ecological Economics,80,814.
Smrke, S. (2020). A science guide to coffee freshness (2020). Retrieved from https://europeancoffeetrip.com/coffeefreshnessscience/
SotoPinto, L., Anzueto, M., Mendoza, J., Ferrer, G., & de Jong, B. (2010). Carbon sequestration through agroforestry in indigenous communities
of Chiapas, Mexico. Agroforestry Systems,78,3951.
Starbucks Coffee Company. (2019). Tackling climate change. Retrieved from https://www.starbucks.com/responsibility/environment/climatecha
nge
The Rainforest Alliance. (2019). Coffee Annual Report 2018: UTZ Program. Retrieved from https://utz.org/wpcontent/uploads/2019/06/Coffee
AnnualReport2018_UTZprogram_EXTERNAL.pdf
Thomassen, M., van Calker, K., Smits, M., Iepema, G., & de Boer, I. (2008). Life cycle assessment of conventional and organic milk production
in the Netherlands. Agricultural Systems,96,95107.
UK Government. (2019). UK Government GHG Conversion Factors for Company Reporting. Conversion factors 2019: Full set (for advanced
users). Retrieved from https://www.gov.uk/government/publications/greenhousegasreportingconversionfactors2019
Unilever. (2011). Cool farm tool (v1.1; Unilever., Sustainable Food Laboratory, & University of Aberdeen computer software). Retrieved from
http://www.Unilever.com/aboutus/supplier/sustainablesourcing/tools/?WT.LHNAV=Tools
Vergé, X., Maxime, D., Dyer, J., Desjardins, R., Arcand, Y., & Vanderzaag, A. (2013). Carbon footprint of Canadian dairy products: Calculations
and issues. Journal of Dairy Science,96, 60916104.
Virtanen, Y., Kurppa, S., Saarinen, M., Katajajuuri, J., Usva, K., Mäenpää, I., Nissinen, A. (2011). Carbon footprint of foodapproaches from
national inputoutput statistics and a LCA of a food portion. Journal of Cleaner Production,19, 18491856.
von Geibler, J., Cordaro, F., Kennedy, K., Lettenmeier, M., & Roche, B. (2016). Integrating resource efficiency in business strategies: A mixed
method approach for environmental life cycle assessment in the singleserve coffee value chain. Journal of Cleaner Production,115,6274.
Wiedemann, S., McGahan, E., Murphy, C., Yan, M., Henry, B., Thoma, G., & Ledgard, S. (2015). Environmental impacts and resource use of
Australian beef and lamb exported to the USA determined using life cycle assessment. Journal of Cleaner Production,94,67
75.
Wintgens, J. N. (2008). Coffee: growing, processing, sustainable production: A guidebook for growers, processors, traders, and researchers.
Coffee: Growing, processing, sustainable production: A guidebook for growers, processors, traders, and researchers. Weinheim, Germany:
Wiley VCH.
Yuttitham, M., Gheewala, S., & Chidthaisong, A. (2011). Carbon footprint of sugar produced from sugarcane in eastern Thailand. Journal of
Cleaner Production,19, 21192127.
How to cite this article: Nab C, Maslin M. Life cycle assessment synthesis of the carbon footprint of Arabica
coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United
Kingdom. Geo: Geography and Environment. 2020;e96. https://doi.org/10.1002/geo2.96
NAB AND MASLIN
|
19 of 19
... • Several capacity levels are considered for establishing factories and DCs in each candidate location. • It is assumed that producing different products has different CO 2 emission rates (Nab & Maslin, 2020). • The environmental effect of opening factories and DCs in candidate locations is also modeled by determining the CO 2 emissions of their construction processes (Peng & Wu, 2015). ...
... Finally, three types of CO 2 emissions were considered in this study, including emissions caused by establishing new factories or DCs, producing coffee products, and transportation. Thus, we used studies performed by Peng and Wu (2015), Nab andMaslin (2020), andCefic (2011) to estimate the parameters of each emission type, respectively. ...
... Finally, three types of CO 2 emissions were considered in this study, including emissions caused by establishing new factories or DCs, producing coffee products, and transportation. Thus, we used studies performed by Peng and Wu (2015), Nab andMaslin (2020), andCefic (2011) to estimate the parameters of each emission type, respectively. ...
Article
One of the most critical issues for any production organization to compete in the current competitive business environment is supply chain network design (SCND). Besides, by increasing greenhouse gas emissions, various organizations have imposed many restrictions to prevent the overproduction of these gases in their production planning. This study develops a mathematical model for the location-allocation-inventory problem based on a real case study to design a three-echelon coffee supply chain network. The primary purpose of the problem is to minimize supply chain costs. Minimizing the CO2 emission was also considered to address the increasing eco-friendly challenges. The problem includes various strategic and tactical decisions, such as the number and capacity of manufacturing centers (MCs) and distribution centers (DCs) to be established, how to allocate factories to distribution centers and DCs to customers, material flow throughout the system, and the number of products stored in warehouses. It should be noted the problem's parameters are considered fuzzy to get closer to reality. Finally, by performing several sensitivity analyses, valuable managerial insights were obtained. Applying the developed model to the case study of a coffee company assisted managers in making optimal strategic decisions to establish new MCs and DCs, and reduce CO2 emissions. © 2022 International Society of Management Science and Engineering Management.
... Hence, the evaluating environmental performance of the coffee agroindustry is essential if it is to become a more sustainable agroindustry. According to (Nab & Maslin (2020), sustainable coffee production in Brazil and Vietnam can reduce the carbon footprint by 77% compared to conventional production based on the type of pathway and means of transportation and the reduction of agrochemical inputs. The 2008 Deutschland Pilot Project reported that 55% of the carbon footprint of coffee production is generated during on-farm cultivation and processing, 30% during consumption, and the remaining 15% is generated from transportation, processing and waste disposal. ...
Article
Full-text available
Indonesia's coffee production will reach 774.6 thousand tons in 2021, an increase of 2.75% from 2020, which was 753.9 thousand tons, and is the highest in the last decade and is expected to increase threefold in 2050. Hence, the evaluating environmental performance of the coffee agroindustry is essential if it is to become a more sustainable agroindustry. This paper aims to assess environmental performance (energy footprint, water footprint, and carbon footprint) in Gayo Arabica coffee green bean production with different agro-industry models. The method to evaluate environmental performance that can be used to identify indications of sustainability is Life Cycle Assessment (LCA) Method. The study was conducted on coffee production and exporter cooperatives in Central Aceh. Primary data were obtained through interviews with farmers, collectors, huller owners, and cooperative administrators. Secondary data comes from cooperative reports. The LCA study is described in two product systems, the model of 2015 and the model of 2016. The LCA model of 2015 is based on the green bean production system carried out in 2015 which includes water treatment, pulping, collecting, drying, hulling, finishing, and transportation. The LCA model of 2016 is based on the green bean production system carried out in 2016 until now which includes sub-processes for water treatment, pulping, collecting 1, hulling, collecting 2, finishing, and transportation. The results show that the energy footprint of the 2016 model (2.5128 MJ per f.u) is greater than that of the 2015 model (1.2336 MJ per f.u), the water footprint of the 2015 model is the same as the water footprint of the 2016 model product system, namely 0. 0086 m3 per f.u., and the carbon footprint of the 2016 model (1.93 kg CO2-eq per f.u) is greater than that of the 2015 model (1.48 kg CO2-eq per f.u). The cooperative initiative (in the model of 2016) is for the purpose of process improvement but cannot reduce carbon emissions. To reduce emissions from the use of fossil fuels, it is necessary to optimize land transportation routes and energy efficiency.
... In the literature, several other functional units are used, making comparisons difficult. Climate impact is sometimes presented per 1 kg (Nab & Maslin, 2020) or one tonne of green beans (Coltro, Mourad, Oliveira, Baddini, & ...
Technical Report
Full-text available
This report was prepared for WWF Sweden to provide scientific background information for complementing the consumer guide for plant based products with information on coffee, tea and cocoa. This report includes quantitative estimations for several environmental categories (climate, land use, biodiversity and water use) of coffee (per L), tea (per L) and cocoa powder (per kg). In addition, scenarios of per cup consumption of coffee, tea and cocoa drink with milk/plant-based drinks and waste at household level, are presented.
... Coffee (Coffea arabica L.) is one of the most important tropical crops worldwide, with Colombia ranked third in production with 13,4 million bags of green beans (60 kg) and 884 thousand ha (Nab & Maslin, 2020;Ceballos-Sierra & Dall' Erba, 2021;FNC, 2021). The growth of coffee plants is a process regulated by interactions between genetics, physiological processes, and climatic conditions, with implications for agronomic management and crop success (Paine et al., 2012;Liu et al., 2018;Rakocevic & Matsunaga, 2018). ...
Article
Full-text available
The growth patterns of coffee plants are determined by interactions between genetic, physiological, and climate factors. The objective of this study was to evaluate the growth patterns of coffee plants in the nursery under the climatic conditions of Chinchiná, Caldas, Colombia, during the first semester of 2019. Measurements were carried out in the Cenicafé 1 variety during six months. Growth parameters such as leaf area, number of leaves, height, stem diameter, and length of the main root were evaluated every 15 d after transplanting (DAT) in 20 plants and the average of absolute growth (Ĝ) rate of each growth variable was calculated. For the total leaf area, total number of leaves, and stem height, a sigmoidal-type growth curve was adjusted , while the growth curve was linear for the stem diameter (R 2 = 0.97) and main root length (R 2 = 0.95). Average values were obtained for 520 cm2 for total leaf area, with an Ĝ of 3.31 cm 2 d-1 , 11 for total leaves (Ĝ 0.055 leaves d-1), 30.23 cm for height (Ĝ 0.155 cm d-1), 4.87 mm for stem diameter (Ĝ 0.199 mm d-1), and 28.80 cm for main root length (Ĝ 0.087 cm d-1) at 180 DAT. These results suggest that growth curves could be a useful tool for describing the growth patterns of coffee seedlings during the nursery stage of growth.
... 6,7 Transportation is responsible for the majority of the coffee Carbon footprint; for instance, the exportation from Brazil or Vietnam to the UK accounts for more than 70% of kg CO 2 equivalent per kg of Arabica coffee. 8 In addition to the environmental impact and resource consumptions, different kinds of byproducts and waste are generated along the entire value chain of coffee, from production, through transformation, to the final user consumption. ...
Article
Full-text available
Coffee is among the most drunk beverages in the world and its consumption produces massive amounts of waste. Valorization strategies of coffee wastes include production of carbon materials for electrochemical energy storage devices such as batteries, supercapacitors, and fuel cells. Coffee is one of the most consumed beverages in the world. In the linear model adopted so far, its consumption is associated with huge amounts of waste and spent coffee grounds. These wastes, instead, are very interesting secondary raw materials for several circular economy concepts. Nano-structured porous carbon materials obtained by coffee waste are emerging as active materials for electrochemical energy storage devices like supercapacitors and batteries. The major results achieved in the last decade in this high-value exploitation strategy of coffee wastes are summarized to suggest a new sustainable use of coffee waste in the empowerment of the ongoing transition toward a green, electrified, and happier coffee-drinking society. Graphical abstract
... The presence of a monoculture can affect social habits and the environment, as observed to oil palm cultivation in Malaysia [13] and pineapple production in Costa Rica [14], where both increased inequality, losses in human rights, land concentration and food insecurity to local communities, especially small farms. Considering the environmental impacts, coffee crop contributes to high greenhouse gas (GHG) emissions, soil erosion, and regional climate changes (high water and median carbon footprint) [15], and sustainable techniques should be incentivized in this production [16]. ...
Article
Full-text available
The Valle de Tenza region, located in the Department of Boyacá—Colombia, shows a transition situation from the family farming of various food crops to coffee farming following an agribusiness model. From this perspective, in order to understand the current scenario of food sovereignty in Guateque and Guayatá, two cities of the Valle de Tenza, this study evaluated socioeconomic, environmental, and cultural aspects based on questionnaires and semi-structured interviews applied to peasant families that practice family farming and/or coffee farming. Moreover, these same aspects were also evaluated among urban food consumers. These evaluations aimed to assess the perception of the interviewees about the availability of regional food crops and current eating habits in relation to those from a decade or more ago, in addition to investigating their knowledge about the traditional cuisine of the region. The cultivation of regional food crops used to prepare local and regional traditional dishes such as piquete , sancocho , and different amasijos based on corn and sagú ( Maranta arundinacea ) has been significantly reduced. The investigation revealed changes in the eating habits of the Valle de Tenza inhabitants due to the consumption of processed foods and the reduced cultivation of local traditional food crops. As a consequence of this transition to coffee production, the most representative traditional foods are being replaced by more profitable crops, including coffee and some fruits not traditionally grown in the Valle de Tenza and with more local and regional acceptance. This reduction can affect food availability and change the gastronomic and cultural identity of the Valle de Tenza population, among other aspects related to food sovereignty.
Article
Purpose This study intends to investigate drivers and consequences of supply chain coordination (SCC) towards green to highlight some convincing evidence for an emerging country's exporters to promote sustainable coffee development. Design/methodology/approach Data were gathered from surveying 189 managers of coffee exporters in Vietnam and then applied PLS-SEM for analysis. Findings This study demonstrates that top management sensitivity, along with institutional forces of regulation, market and competition, strongly stimulate exporters' supply chain coordination towards green. Additionally, that coordination boosts the export financial and market performance. Research limitations/implications The findings may not be generalizable because the current study only included data from Vietnamese coffee exporters. Originality/value This study contributes to the current literature by looking from the perspective of coffee exporters – leading players in supply chains for export. The research findings represent the first solid argument for Vietnam coffee exporters to encourage SCC towards green and reveal several implications for managers and policymakers to support sustainable development in an emerging country.
Article
The aim of this study is to obtain new coffee product variants by torrefaction process with atmospheric media variations. The raw material used was arabica green beans, while the atmospheric medium variations were air, N2, and Ar at a rate of 1 1/minute. About 200 g coffee beans were torrefied in a fixed-bed at 235 ± 8 °C for 60 min and then cooled at the same rate medium. The process ended when temperature reached 50 °C. Subsequently, the beans were removed from the system and measured for yield, color, pH, chlorogenic acid and caffeine content using the UV–Vis method, as well as organoleptic tests. Variations in atmospheric media produced different characteristics of torrefied coffee bean products. The organoleptic test best value was obtained by using atmospheric media Ar (69.75) followed by N2 (67.875) and air (67.625). The absence of oxidizing elements in the atmospheric medium provided an improvement in the aroma and taste of coffee.
Article
Despite the growing interest in sustainable practices, many organisations in the agro-food industry are currently struggling to implement sustainable supply chain (SSC) innovations. This research addresses this gap by studying the Brazilian coffee industry, which is considered not only an important commodity for the Brazilian economy, but also for the global market. To achieve the goals of this study, a bibliometric assessment of the literature was carried out to understand the drivers and barriers of SSCs, and based on the findings, a survey was conducted with a set of Brazilian coffee stakeholders, obtaining a total of 147 complete answers. The results suggest that the main drivers involved in sustainable supply chain management (SSCM) of the Brazilian coffee industry are social responsibility, economic performance/improvement, regulations (environmental, regional, international), and the adoption of an innovative business model. On the other hand, the barriers identified are the lack of government support, the high complexity of the processes and communication gaps. It is expected that the results of this study can contribute to the SSC literature and reduce the blind spots of decision-makers to prioritise actions and understand better how to overcome the barriers and take advantage of the drivers towards more SSCs in the industry. Limitations and future research opportunities are also addressed.
Article
Full-text available
Background: Worldwide coffee production, especially Arabica coffee, is threatened by climatic change, plants diseases and vulnerability of smallholders. Meanwhile, consumers’ demand for socially and environmentally sustainable products is steadily increasing, driving the engagement of stakeholders in agro-ecological and social initiatives. Here we present a new organizational model, the “Coffee agroforestry business-driven cluster” (CaFC), which aims at preserving ecosystems while offering producers a fair income. Based on an original local micro value-chain dedicated to sustainable production of high-quality Arabica coffee under agroforestry systems, the CaFC model stands out by addressing the issues around plantation renovation, a crucial process that requires considerable investments from producers. Methods: Based on a pilot project in Nicaragua, we illustrate how the operational principles of CaFC can be applied in a real setting. Using data shared by key stakeholders involved in the project, we assess the profitability of the CaFC model by comparing different scenarios and applying sensitivity analysis. We then reflect on the reproducibility of the model in other contexts, building on lessons learned from ongoing implementations in Vietnam and Cameroon. Results: For producers renovating their plantations, the CaFC model consistently outperforms other scenarios, offering high quality premiums coupled with capacity building, access to highly productive varieties that perform well under agroforestry systems and adapted credit with favourable repayment schemes. Implementation in Vietnam and Cameroon show that the model can be successfully replicated with some adaptation to local contexts. These cases also highlight the importance of mutual interests, trust and communication in enabling collaboration between stakeholders. Conclusions: The CaFC model has great potential for positive environmental and economic impact and offers strong incentives for stakeholders involved in its resulting micro value-chain. The concept was initially developed in Nicaragua for coffee but could also be adapted in other countries or even to other commodities such as cocoa.
Article
Full-text available
Billions of cups of coffee are consumed worldwide every year with little regard for the wide range of environmental impacts arising at different stages of its life cycle. This study aimed to assess the environmental impacts of a single cup of hot, black coffee brewed from ground organic Arabica beans produced and consumed locally in the northern region of Thailand. Environmental impacts throughout its life cycle were assessed and the influences of different brewing methods were compared. Life cycle assessment (LCA) was implemented to evaluate the environmental performance of the product system. The results found that coffee cultivation is a major contributor to ecosystem damage in all brewing scenarios, particularly on land-use related midpoint indicators. Preparing the coffee by moka pot is especially energy intensive and showed a high impact score on human health. It also demonstrated resource damage categories in the brewing stage that were directly related to fossil-based electricity consumption. For other brewing scenarios, the upstream processes such as cultivation and bean processing were major contributors to environmental harm. According to the farming scenario analysis, the application of chemical fertilizers during conventional farming can aggravate the impact from the cultivation process on human health and resources, as compared to organic farming. This study comprises an initial stage of a coffee LCA study in Thailand. Hopefully, it can add to the body of information pertaining to the life cycle environmental impacts of coffee, a popular beverage product, aid decision-making, and increase attention on the importance of sustainable products.
Article
Full-text available
Coffee, one of the most heavily globally traded agricultural commodities, has been categorized as a highly sensitive plant species to progressive climatic change. Here, we summarize recent insights on the coffee plant’s physiological performance at elevated atmospheric carbon dioxide concentration [CO2]. We specifically (i) provide new data of crop yields obtained under free-air CO2 enrichment conditions, (ii) discuss predictions on the future of the coffee crop as based on rising temperature and (iii) emphasize the role of [CO2] as a key player for mitigating harmful effects of supra-optimal temperatures on coffee physiology and bean quality. We conclude that the effects of global warming on the climatic suitability of coffee may be lower than previously assumed. We highlight perspectives and priorities for further research to improve our understanding on how the coffee plant will respond to present and progressive climate change.
Article
Full-text available
This study investigated the carbon footprint (CFP) and water footprint (WFP) of Robusta coffee products in the boundary of business-to-business. The scope of work included coffee cultivation, roasted coffee and ground coffee production. The activity data were collected from 180 coffee farms in Chumphon Province (Thailand) in 2015. A national guideline for CFP of products and a guideline of WFP analysis by Hoekstra et al. (The water footprint assessment manual: setting the global standard, Water Footprint Network, Enschede, 2011) were used in this study. The functional unit was 1 kg of each coffee product. In addition, the influences of soil types, crop management, size of coffee farm and co-cultivation of fruits on CFP of coffee product were examined. The results indicated that the CFP of Robusta coffee products was 0.40 ± 0.12 kgCO2e/kg of coffee cherry, 0.55 ± 0.08 kgCO2e/kg of roasted coffee and 0.56 ± 0.08 kgCO2e/kg of ground coffee. Almost 70% of GHG emissions came from use of chemical fertilizer, followed by LPG in roasting process and electricity in grinding process. Crop management and size of planted area had significant impacts on the CFP of coffee cherry. Co-cultivation with other fruits in large-scale planted area could significantly reduce the CFP. The WFPs of Robusta coffee were 10 m³/kg of coffee cherry and 27 m³/kg of roasted and ground coffee. Wastewater from coffee inspection, fermentation, pulping and washing accounted for 68% of total water consumption. Optimal fertilizer application, using high energy efficiency burner during roasting, co-cultivation with fruit trees and rejuvenation were suggested as appropriate mitigation measures for reduction in the CFP and WFP of Robusta coffee. Graphical abstract Open image in new window
Article
Full-text available
The global impacts of food production Food is produced and processed by millions of farmers and intermediaries globally, with substantial associated environmental costs. Given the heterogeneity of producers, what is the best way to reduce food's environmental impacts? Poore and Nemecek consolidated data on the multiple environmental impacts of ∼38,000 farms producing 40 different agricultural goods around the world in a meta-analysis comparing various types of food production systems. The environmental cost of producing the same goods can be highly variable. However, this heterogeneity creates opportunities to target the small numbers of producers that have the most impact. Science , this issue p. 987
Article
Full-text available
The main objective of watershed management is to ensure the optimal hydrological and natural resource use for ecological, social and economic importance. One important adaptive management step in dealing with the risk of damage to forest ecosystems is the practice of agroforestry coffee. This study aimed to (1) assess the farmer's response to ecological service responsibility and (2) analyze the Sekampung watersheds management by providing environmental services. The research location was Air Naningan sub-district, Tanggamus, Lampung Province, Indonesia. The research was conducted from July until November 2016. Stratification random sampling based on the pattern of ownership of land rights is used to determine the respondents. Data were analyzed using descriptive statistics and logistic regression analysis. Based on the analysis, it was concluded that coffee farmers' participation in the practice of coffee agroforestry in the form of 38% shade plants and multiple cropping (62%). The logistic regression analysis indicated that the variables of experience and status of land ownership, and incentive-size plans were able to explain variations in the willingness of coffee growers to follow the scheme of providing environmental services. The existence of farmer with partnership and CBFM scheme on different land tenure on upper Sekampung has a strategic position to minimize the deforestation and recovery watersheds destruction.
Article
Full-text available
The excessive use of inorganic fertilizers causes serious environmental degradation, resulting in lower crop yields in Bangladesh. Seventy percent of Bangladesh farmers practice traditional fertilizer broadcasting. In the 1960s, the Bangladesh state authority launched a 'Grow More Food' campaign to feed the country's increasing population. Farmers were supplied with chemical fertilizers and pesticides at a subsidized price. Farmers increased the frequency of fertilizer applications to enhance yields. These practices are still used and have caused significant environmental degradation. In this study, we examined the effects of fertilizer broadcasting on excessive use of fertilizer and environmental risks. We collected data from 211 Bangladesh infield farmers in 2016. Respondents were interviewed using a semi-structured questionnaire. Data were analyzed by applying a binary logistic regression model to test the degree of effects between the testable variables. The study found that the effect of broadcasting on the excessive use of fertilizers is strongly significant, at 1%. It also found that younger farmers have a significant effect at 10% on the excessive use of fertilizers. Bangladesh policymakers can formulate policy on sustainable fertilizer management, introducing different placement methods on the basis of this finding. After that, the Directorate of Agricultural Extension (DAE) can carry out the policy at the field level.
Article
Full-text available
The environmental impact during the preparation of coffee beverages was evaluated on real time. The functional unit is a cup of coffee prepared from 7 g of ground coffee and 125 mL of tap water. The boundaries system considered are assembly process, electricity process, tap water process, coffee process and municipal waste process. Based on boundary system, the life cycle inventory is carbon dioxide, 50.31 g; coal, brown, 53.72 mg; coal hard, 0.9906 g; dinitrogen monoxide, 0.9575 mg; natural gas, 0.0020 m3; methane, fossil, 13.82 mg; oil, crude, 1.012 g; uranium, 15.02 ug. The life cycle impact assessment is determined using the sum of the contributions of the impacts shown in the inventory analysis, each one multiplied by a coefficient called the “characterization factor”, which indicates the scale of the potential contributed by the individual substance to the effect. The results show the advantages of using the LCA (life cycle assessment) on real time as it provides information from both quality and environmental parameters allowing taking actions based on timely information. The preparation of a cup of coffee produced an environmental load of 50.9 g of CO2 equivalents and Non Renewable energy equivalents to 151 kJ; the sugar process and materials transportation were not considered.
Article
The environmental performance of a small-scale cheese factory sited in a NW Spanish region has been analysed by Life Cycle Assessment (LCA) as representative of numerous cheese traditional factories that are scattered through the European Union, especially in the southern countries. Inventory data were directly obtained from this facility corresponding to one-year operation, and the main subsystems involved in cheese production were included, i.e. raw materials, water, electricity, energy, cleaning products, packaging materials, transports, solid and liquid wastes and gas emissions. Results indicated that the environmental impacts derived from cheese making were mainly originated from raw milk production and the natural land transformation was the most affected of the considered categories. On the contrary, the manufacturing of packaging material and other non-dairy ingredients barely influenced on the total impact. Additionally, an average carbon footprint of the cheeses produced in the analysed facility has also been calculated, resulting milk production and pellet boiler emissions the most contributing subsystems. Furthermore, it was notable the positive environmental effect that entailed the direct use of whey as animal feed, which was considered in this study as avoided fodder. Finally, a revision of published works regarding the environmental performance of cheese production worldwide was provided and compared to results found in the present work. According to the analysed data, it is clear that the content of fat and dry extract are determinant factors for the carbon footprint of cheeses, whereas the cheesemaking scale and the geographical area have a very low effect.
Article
The environmental impacts of caffeine extraction from coffee beans using supercritical carbon dioxide (scCO2) were evaluated, through a Life Cycle Assessment (LCA) approach. Using this process, two products of interest were obtained: caffeine and decaffeinated coffee. All the emissions to air, water and soil were reported to 1 kg of decaf coffee constituted by a 60/40 Arabica/Robusta blend. The performed analysis showed that agricultural stages, transportation and caffeine extraction are the steps mostly affecting the environmental categories under study. Therefore, the process was optimised, considering the fertilisers’ amount reduction and the substitution of a portion of electricity at grid with electricity produced by photovoltaic panels. Using this improved scenario, a reduction of the environmental impact equal to 176% in terms of human health, 10.3% in terms of ecosystem diversity and 16.1% in terms of resource availability can be obtained.
Article
Concerns about the planet's health call for a careful evaluation of the environmental impact of materials choices. Life-cycle assessment is a tool that can help identify sustainable materials pathways by considering the burdens of materials both during production and as a product.