Article

Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

We examined whether dynamically changing light across a scheduled 16‐h waking day influences sleepiness, cognitive performance, visual comfort, melatonin secretion, and sleep under controlled laboratory conditions in healthy men. Fourteen participants underwent a 49‐h laboratory protocol in a repeated‐measures study design. They spent the first 5‐h in the evening under standard lighting, followed by an 8‐h nocturnal sleep episode at habitual bedtimes. Thereafter, volunteers either woke up to static light or to a dynamic light that changed spectrum and intensity across the scheduled 16‐h waking day. Following an 8‐h nocturnal sleep episode, the volunteers spent another 11‐h either under static or dynamic light. Static light attenuated the evening rise in melatonin levels more compared to dynamic light as indexed by a significant reduction in the melatonin AUC prior to bedtime during static light only. Participants felt less vigilant in the evening during dynamic light. After dynamic light, sleep latency was significantly shorter in both the baseline and treatment night while sleep structure, sleep quality, cognitive performance and visual comfort did not significantly differ. The study shows that dynamic changes in spectrum and intensity of light promote melatonin secretion and sleep initiation in healthy men.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Fewer studies have examined the impact of light on cognitive functions. Improvements in specific aspects of cognition have been reported after nocturnal light exposure [26][27][28] and, as with alertness, minimal or no changes have been observed after daytime exposure [26,29]. Many of these studies, however, have not considered the very high interindividual variability in cognitive task responses and the covariance of this with time of day. ...
... While the direct impact of light on the conduct of some of these specific cognitive tasks have not been previously assessed, the impact of light intensity on working memory tasks (2-Back) has been assessed before with results showing either no effects [29,54,55] or positive effects during blue light exposure [54,[56][57][58]. Performance on other working memory tasks (addition task) have been positively influenced by daytime exposure to high melanopic lighting as well [59]. ...
... Indeed, we found no association between PVT-measured changes in alertness and any of the improvements in cognitive function. Other studies, investigating effects of light of similar spectral distributions and intensities, also did not report any effects on auditory sustained attention, or subjective alertness [29,55]. Given the current data, the most parsimonious explanation is that daytime light exposure can improve specific domains of cognitive function not by increasing alertness, which is the proposed mechanism by which light improves nighttime cognitive performance, but by directly increasing performance through its impact on non-hypothalamic targets of the ipRGC that may either be involved in the visual processing of the task (e.g., ventral and dorsal lateral geniculate nucleus) or in the response to the task itself (e.g., lateral and peri habenular nuclei for the BART and ERT). ...
Article
Full-text available
Light at night can improve alertness and cognition. Exposure to daytime light, however, has yielded less conclusive results. In addition to direct effects, daytime light may also mitigate the impact of nocturnal light exposure on alertness. To examine the impact of daytime lighting on daytime cognitive performance, and evening alertness, we studied nine healthy individuals using a within subject crossover design. On four visits, participants were exposed to one of four lighting conditions for 10 h (dim fluorescent, room fluorescent, broad-spectrum LED, standard white LED; the latter three conditions were matched for 100 lx) followed by an exposure to bright evening light. Cognitive performance, subjective and objective measures of alertness were regularly obtained. While daytime alertness was not impacted by light exposure, the broad-spectrum LED light improved several aspects of daytime cognition. The impact of evening light on alertness was not mitigated by the pre-exposure to different daytime lighting conditions. Results suggest that daytime exposure to white light with high melanopic efficacy has the potential to improve daytime cognitive function and that such improvements are likely to be direct rather than a consequence of light-induced changes in alertness.
... Circadian timekeeping and melatonin secretion are regulated by light in a wavelength-dependent fashion such that short wavelength light exerts greater influence over physiological/behavioral rhythms and melatonin secretion than long wavelength light (Chang et al. 2015;Stefani et al. 2021;Zaidi et al. 2007). This is because intrinsically photosensitive retinal ganglion cells (ipRGCs) are best stimulated by light around 480 nm (Brainard et al. 2001;Chellappa et al. 2013;Lockley et al. 2003;Zaidi et al. 2007), and these cells are the primary mechanism for reporting light exposure to the SCN (Altimus et al. 2010;Lucas et al. 2012;Mouland et al. 2019;Panda et al. 2002;Ruby et al. 2002;Van diepen et al. 2021). ...
Article
Lenses that filter short-wavelength (“blue”) light are commercially marketed to improve sleep and circadian health. Despite their widespread use, minimal data are available regarding their comparative efficacy in curtailing blue light exposure while maintaining visibility. Fifty commercial lenses were evaluated using five light sources: a blue LED array, a computer tablet display, an incandescent lamp, a fluorescent overhead luminaire, and sunlight. Absolute irradiance was measured at baseline and for each lens across the visual spectrum (380–780 nm), which allowed calculation of percent transmission. Transmission specificity was also calculated to determine whether light transmission was predominantly circadian-proficient (455–560 nm) or non-proficient (380–454 nm and 561–780 nm). Lenses were grouped by tint and metrics were compared between groups. Red-tinted lenses exhibited the lowest transmission of circadian-proficient light, while reflective blue lenses had the highest transmission. Orange-tinted lenses transmitted similar circadian-proficient light as red-tinted lenses but transmitted more non-circadian-proficient light, resulting in higher transmission specificity. Orange-tinted lenses had the highest transmission specificity while limiting biologically active light exposure in ordinary lighting conditions. Glasses incorporating these lenses currently have the greatest potential to support circadian sleep-wake rhythms.
... For studies that focused on well-being, the type of light source seems less relevant if only the illuminance level is investigated. However, other qualities, like differences in the spectral power distribution of sources, have different effects on well-being-related variables, such as sleep or mood (e.g., [54]). ...
Article
Full-text available
The idea of smart lighting has emerged over the years in commercial and industrial environments, with a focus on energy saving. With the advancement in technology, smart lighting can now offer opportunities in addition to energy saving to users in home environments for the provision of a comfortable atmosphere and the maintenance of user well-being. Currently, research in the smart lighting field is predominantly dedicated to energy saving in non-residential environments; meanwhile, the residential environments have not been explored. Therefore, a literature review was conducted to provide an overview of smart lighting systems’ effect on energy and well-being in the residential environment. Current research is mostly limited to designing and developing a smart lighting system in a controlled environment, with a limited evaluation of well-being and comfort. The review shows that residential smart lighting application possibilities and opportunities are not widely and thoroughly explored.
... Recent studies revealed that through an optimised smart lighting system energy costs of 17 to 60% [7] can be saved compared to traditional static lighting solutions [7,10,11]. Besides the aspect of saving energy, research is focusing on the implementation of dynamic patterns of light exposure [12], which vary the illumination or the correlated colour temperature (CCT) to support the circadian rhythm [13] or task-related performance [12]. The discovery of intrinsically photosensitive ganglion cells (ipRGCs) [14][15][16][17][18] made clear that besides the image-forming properties of colour and brightness perception [19], the composition of a light spectrum [20] can also affect the human alertness and cognitive performance [6,[21][22][23]. ...
Article
Full-text available
Modern indoor lighting faces the challenge of finding an appropriate balance between energy consumption, legal requirements, visual performance, and the circadian effectiveness of a spectrum. Multi-channel LED luminaires have the option of keeping image-forming metrics steady while varying the melanopic radiance through metamer spectra for non-visual purposes. Here, we propose the theoretical concept of an automated smart lighting system that is designed to satisfy the user’s visual preference through neural networks while triggering the non-visual pathway via metamers. To quantify the melanopic limits of metamers at a steady chromaticity point, we have used 561 chromaticity coordinates along the Planckian locus (2700 K to 7443 K, ±Duv 0 to 0.048) as optimisation targets and generated the spectra by using a 6-channel, 8-channel, and 11-channel LED combination at three different luminance levels. We have found that in a best-case scenario, the melanopic radiance can be varied up to 65% while keeping the chromaticity coordinates constant (Δu′v′≤7.05×10−5) by using metamer spectra. The highest melanopic metamer contrast can be reached near the Planckian locus between 3292 and 4717 K within a Duv range of −0.009 to 0.006. Additionally, we publish over 1.2 million optimised spectra generated by multichannel LED luminaires as an open-source dataset along with this work.
... Also, the level of endogenous melatonin negatively correlates with cognitive deficits. Lifestyle choices, external environment, aging, and other factors affect the synthesis of melatonin (7)(8)(9). However, the specific relationship between endogenous melatonin level and neurodegenerative diseases remains to be determined. ...
Article
Full-text available
Lifestyle choices, external environment, aging, and other factors influence the synthesis of melatonin. Although the physiological functions of melatonin have been widely studied in relation to specific organs, the systemic effects of endogenous melatonin reduction has not been reported. This study evaluates the systemic changes and possible pathogenic risks in an endogenous melatonin reduction (EMR) mouse model deficient in the rate limiting enzyme in melatonin production, arylalkylamine N-acetyltransferase (Aanat) gene. Using this model, we identified a new relationship between melatonin, Alzheimer’s disease (AD), and gut microbiota. Systematic changes were evaluated using multi-omics analysis. Fecal microbiota transplantation (FMT) was performed to examine the role of gut microbiota in the pathogenic risks of EMR. EMR mice exhibited a pan-metabolic disorder, with significant transcriptome changes in 11 organs, serum metabolome alterations as well as microbiota dysbiosis. Microbiota dysbiosis was accompanied by increased gut permeability along with gut and systemic inflammation. Correlation analysis revealed that systemic inflammation may be related to the increase of Ruminiclostridium_5 relative abundance. 8-month-old EMR mice had AD-like phenotypes, including Iba-1 activation, A β protein deposition and decreased spatial memory ability. Moreover, EMR mice showed decreased anti stress ability, under high-fat diet, EMR mice had greater body weight and more obvious hepatic steatosis compared with WT group. FMT improved gut permeability, systemic inflammation, and AD-related phenotypes, while reducing obesity in EMR mice. Our findings suggest EMR causes systemic changes mediated by gut microbiota dysbiosis, which may be a pathogenic factor for AD and obesity, we further proved the gut microbiota is a potential target for the prevention and treatment of AD and obesity.
... In addition to the aspect of energy saving, ergonomic considerations in lighting are becoming increasingly important. Modern, multi-channel LED systems offer a huge flexibility in providing dynamic patterns of light exposure throughout the day [20], which can be tailored to match the users' specific needs in terms of circadian rhythm [21][22][23], task-related performance [20,24,25], and lighting preference [26][27][28][29]. With regard to an intelligent lighting control, sensor feedback may thus allow for an automated time-and task-dependent adaptation of corresponding light levels and spectra, while taking contributions from timevarying natural daylight sources into account. ...
Article
Full-text available
Intelligent systems for interior lighting strive to balance economical, ecological, and health-related needs. For this purpose, they rely on sensors to assess and respond to the current room conditions. With an augmented demand for more dedicated control, the number of sensors used in parallel increases considerably. In this context, the present work focuses on optical sensors with three spectral channels used to capture color-related information of the illumination conditions such as their chromaticities and correlated color temperatures. One major drawback of these devices, in particular with regard to intelligent lighting control, is that even same-type color sensors show production related differences in their color registration. Standard methods for color correction are either impractical for large-scale production or they result in large colorimetric errors. Therefore, this article shows the feasibility of a novel sensor binning approach using the sensor responses to a single white light source for cluster assignment. A cluster specific color correction is shown to significantly reduce the registered color differences for a selection of test stimuli to values in the range of 0.003-0.008 ∆u'v', which enables the wide use of such sensors in practice and, at the same time, requires minimal additional effort in sensor commissioning.
... Circadian timekeeping and melatonin secretion are regulated by light in a wavelength-dependent fashion such that short wavelength light exerts greater influence over physiological/behavioral rhythms and melatonin secretion than long wavelength light (Chang et al. 2015;Stefani et al. 2021;Zaidi et al. 2007). This is because intrinsically photosensitive retinal ganglion cells (ipRGCs) are best stimulated by light around 480 nm (Brainard et al. 2001;Chellappa et al. 2013;Lockley et al. 2003;Zaidi et al. 2007), and these cells are the primary mechanism for reporting light exposure to the SCN (Altimus et al. 2010;Lucas et al. 2012;Mouland et al. 2019;Panda et al. 2002;Ruby et al. 2002;Van diepen et al. 2021). ...
Article
Introduction Blue-blocking glasses are increasingly used as an intervention for jet-lag and other situations where an individual wishes to promote a “dark” signal despite the presence of ambient light. However, most studies on blue-blockers are done under controlled laboratory settings using emissions generated from electric light sources. The present study evaluated the performance of commercially available blue-blockers under daytime sunlight conditions. Methods A calibrated spectroradiometer (Ocean Insight), cosine corrector, optic fiber, and software package were used to measure the absolute irradiance (uW/cm^2/nm) available midday in a standardized location that received direct sunlight. Thirty-one commercially available blue-blockers were individually placed in front of the cosine corrector and intensity was measured and analyzed. Each lens was tested for its ability to block visible light, as well as light within the 440-530nm range. Lenses were evaluated individually and grouped by lens type: red-tinted lenses (RTL), orange-tinted lenses (ORL), orange-tinted lenses with blue reflectivity (OBL), brown-tinted lenses (BTL), yellow-tinted lenses (YTL), and clear lenses with blue reflectivity (RBL). Results Across the full spectrum, RTL blocked 66% of the light, OTL blocked 60%, OBL blocked 43%, BTL blocked 56%, YTL blocked 28%, and RBL blocked 20%. When the range was restricted to 440-530nm, RTL blocked 99%, OTL blocked 96%, OBL blocked 90%, BTL blocked 66%, YTL blocked 38%, and RBL blocked 17% of the light. Variation across lens types was significant for the full spectrum (one-way ANOVA, p < 0.0001) as well as the 440-530nm range (one-way ANOVA, p < 0.0001). Individual lenses showed variability in performance, though this variability was smaller than the between-group differences. Conclusion Under daylight conditions, red and orange lenses (RTL, OTL, and OBL) blocked at least 90% of the light in the 440-530nm range. Notably, RBL lenses restricted the most short-wavelength light as a proportion of the total light blocked. These data suggest that RTL, OTL, and OBL are effective at blocking the most circadian photosensitive components of daylight at the cost of reducing total illumination. Support (if any) R01MD011600, R01DA051321
... 10,112 When measured across a divergent series of real-world or in-lab conditions, sparser patterns of ambient illumination (with lower zeitgeber strength) during the day also associate with later sleep initiation, less sleep pressure/slow-wave-sleep buildup under states of rest or sleep deprivation, more nighttime awakenings, worse perceptions of sleep quality, less circadian-robust sleep cycles, and increases in reported insomnia symptoms. [113][114][115][116][117][118][119][120][121][122][123][124][125][126] These results are consistent with seasonally oriented studies of participants stationed in Antarctica that quantified (1) melatonin suppression, (2) increased pupillary constriction, and (3) delayed phasing of the sleep-wake cycle in winter versus summer. 127,128 Converging lines of evidence suggest that sensitivity to LAN increases when there is a lack of preceding daytime light, raising the possibility-in turn-that the health vulnerabilities associated with LAN can be counteracted or neutralized by adequate exposure to sunlight or electric indoor lighting. ...
Article
Full-text available
Fabian-Xosé Fernandez Department of Psychology, University of Arizona, Tucson, AZ, USACorrespondence: Fabian-Xosé FernandezDepartment of Psychology, University of Arizona, Tucson, Az, USAEmail FabianF@email.arizona.eduAbstract: This perspective considers the possibility that daytime’s intrusion into night made possible by electric lighting may not be as pernicious to sleep and circadian health as the encroachment of nighttime into day wrought by 20th century architectural practices that have left many people estranged from sunlight.Keywords: human-centric lighting, sleep, circadian entrainment, photohistory, sunlight, daylight
... Under strictly controlled laboratory conditions, we examined whether dynamic light across the day influences cognitive performance, visual comfort, melatonin secretion, sleepiness, and sleep (67). Volunteers either woke up with static daylight LED (100 lx at the pillow and 4000 K, melEDI 69 lx) or with a dynamic daylight LED that changed CCT (2700-5000 K) and intensity (0-100 lx at the pillow, melEDI 0.4-76 lx) across the day (daylight here refers to the spectral characteristics of the Toshiba TRI-R LED). ...
Article
Full-text available
Nowadays lighting projects often include temporal variations of the light, both spectrally and in terms of intensity to consider non-visual effects of light on people. However, as of today there are no specific regulations. Compliance with common lighting standards that address visual aspects of light, often means that only little non-visually effective light reaches the eye. In this practice review we confront existing regulations and standards on visual lighting aspects with new recommendations on non-visual aspects and highlight conflicts among them. We conclude with lighting recommendations that address both aspects.
... Since the discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), light is shown to have an influence on human physiological and psychological functions as a result of the socalled non-image forming (NIF) functions of light Hattar et al., 2002), such as the effects of light on alertness (Cajochen, 2007;Figueiro et al., 2018;Pachito et al., 2018;Souman et al., 2018;Xu and Lang, 2018), mood Nelson, 2013, 2017), cognitive function (Vandewalle et al., 2009;Fisk et al., 2018;Ru et al., 2019Ru et al., , 2021, and the regulation of the circadian rhythm (LeGates et al., 2014;Prayag et al., 2019b;Tahkamo et al., 2019) and sleep (Figueiro et al., 2017;Boubekri et al., 2020;Peeters et al., 2021;Stefani et al., 2021). Alertness is a key topic of such research due to its importance to human life. ...
Article
Full-text available
Light can induce an alertness response in humans. The effects of exposure to bright light vs. dim light on the levels of alertness during the day, especially in the afternoon, as reported in the literature, are inconsistent. This study employed a multiple measurement strategy to explore the temporal variations in the effects of exposure to bright light vs. regular office light (1,200 lx vs. 200 lx at eye level, 6,500 K) on the alertness of participants for 5 h in the afternoon. In this study, 20 healthy adults (11 female; mean age 23.25 ± 2.3 years) underwent the Karolinska sleepiness scale (KSS), the auditory psychomotor vigilance test (PVT), and the waking electroencephalogram (EEG) test for two levels of light intervention. The results yielded a relatively lower relative delta power and a relatively higher beta power for the 1,200 lx condition in comparison with the 200 lx condition. However, the light conditions elicited no statistically significant differences in the KSS scores and performance with respect to the PVT. The results suggested that exposure to bright light for 5 h in the afternoon could enhance physiological arousal while exerting insignificant effects on subjective feelings and performance abilities relating to the alertness of the participants.
... This kind of technology is an essential tool in smart lighting systems, allowing occupants to manually adjust the correlated colour temperature (CCT) or other (visual) characteristics depending on the observers' preferences or task 19 . However, at particular times of day (for instance, during the 2-3 h before bedtime or during sleep), chromaticity choices at higher CCTs, which might also increase the light exposure in the short-wavelength range, are not recommended because of their enhanced effectivity to suppress melatonin and increase alertness [20][21][22] . Thus, there could be a conflict between the users' visual preferences of chromaticity and the degree of triggering circadian responses if other crucial metrics such as the time of light exposure and light intensity remain steady. ...
Article
Full-text available
Smart integrative lighting systems aim to support human health and wellbeing by capitalising on the light-induced effects on circadian rhythms, sleep, and cognitive functions, while optimising the light’s visual aspects like colour fidelity, visual comfort, visual preference, and visibility. Metameric spectral tuning could be an instrument to solve potential conflicts between the visual preferences of users with respect to illuminance and chromaticity and the circadian consequences of the light exposure, as metamers can selectively modulate melanopsin-based photoreception without affecting visual properties such as chromaticity or illuminance. This work uses a 6-, 8- and 11-channel LED luminaire with fixed illuminance of 250 lx to systematically investigate the metameric tuning range in melanopic equivalent daylight illuminance (EDI) and melanopic daylight efficacy ratio (melanopic DER) for 561 chromaticity coordinates as optimisation targets (2700 K to 7443 K ± Duv 0 to 0.048), while applying colour fidelity index Rf criteria from the TM-30-20 Annex E recommendations (i.e. Rf≥ 85, Rf,h1≥ 85). Our results reveal that the melanopic tuning range increases with rising CCT to a maximum tuning range in melanopic DER of 0.24 (CCT: 6702 K, Duv: 0.003), 0.29 (CCT: 7443 K, Duv: 0) and 0.30 (CCT: 6702, Duv: 0.006), depending on the luminaire’s channel number of 6, 8 or 11, respectively. This allows to vary the melanopic EDI from 212.5–227.5 lx up to 275–300 lx without changes in the photopic illuminance (250 lx) or chromaticity (Δu′v′≤ 0.0014). The highest metameric melanopic Michelson contrast for the 6-, 8- and 11-channel luminaire is 0.16, 0.18 and 0.18, which is accomplished at a CCT of 3017 K (Duv: − 0.018), 3456 K (Duv: 0.009) and 3456 K (Duv: 0.009), respectively. By optimising ~ 490,000 multi-channel LED spectra, we identified chromaticity regions in the CIExy colour space that are of particular interest to control the melanopic efficacy with metameric spectral tuning.
Article
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Article
Objectives Falls in care home residents have major health and economic implications. Given the impact of lighting on visual acuity, alertness, and sleep and their potential influence on falls, we aimed to assess the impact of upgraded lighting on the rate of falls in long-term care home residents. Design An observational study of 2 pairs of care homes (4 sites total). One site from each pair was selected for solid-state lighting upgrade, and the other site served as a control. Setting and Participants Two pairs of care homes with 758 residents (126,479 resident-days; mean age (±SD) 81.0 ± 11.7 years; 57% female; 31% with dementia). Methods One “experimental” site from each pair had solid-state lighting installed throughout the facility that changed in intensity and spectrum to increase short-wavelength (blue light) exposure during the day (6 am–6 pm) and decrease it overnight (6 pm–6 am). The control sites retained standard lighting with no change in intensity or spectrum throughout the day. The number of falls aggregated from medical records were assessed over an approximately 24-month interval. The primary comparison between the sites was the rate of falls per 1000 resident-days. Results Before the lighting upgrade, the rate of falls was similar between experimental and control sites (6.94 vs 6.62 falls per 1000 resident-days, respectively; rate ratio [RR] 1.05; 95% CI 0.70–1.58; P = .82). Following the upgrade, falls were reduced by 43% at experimental sites compared with control sites (4.82 vs 8.44 falls per 1000 resident-days, respectively; RR 0.57; 95% CI 0.39–0.84; P = .004). Conclusions and Implications Upgrading ambient lighting to incorporate higher intensity blue-enriched white light during the daytime and lower intensity overnight represents an effective, passive, low-cost, low-burden addition to current preventive strategies to reduce fall risk in long-term care settings.
Article
Full-text available
The occupants' interaction with building systems, and more generally the occupants’ behaviour, is strongly related to human perception of the surroundings. Progresses in human comfort theories rely upon data collection during tailored experiments, stressing the influence of single or specific combinations of environmental stimuli on diversified human responses. Laboratory experiments are typically conducted in test rooms, i.e., rooms that are equipped to provide continuously monitored and controlled environmental boundaries. The NEXT.ROOM is a novel test room built up for addressing the complexity of human perception, by controlling and monitoring environmental factors belonging to the four domains of comfort (thermal, visual, air quality, acoustics) through centralized and human-centred systems. The study presents rationales behind its design and the selection human-centred devices. Trials of the installed systems provide operational ranges for designing human comfort experiments to be performed within the NEXT.ROOM. Limits in fast-dynamics and range of internal temperature are also highlighted, since the adopted systems are mainly associated to common residential uses. The internal position of the test room also limits daylight access but the window designed in-line with the external laboratory window still guarantees the outdoor view from inside the NEXT.ROOM. A further innovation is the introduction of Virtual Reality tools for testing different internal layouts or even outdoors scenarios under highly controlled and carefully monitored environmental conditions.
Article
In this field study, we tested the effects of dynamic light scenarios and personal illuminance on visual experience, sleepiness, cognitive performance and sleep in an operational office. Two dynamic light scenarios, different in timing but with equal luminous exposure, were tested against a reference scenario in a counterbalanced crossover design. Frequent assessments of visual experience, alertness, performance and sleep showed that in both dynamic light scenarios visual comfort was slightly lower compared to the constant scenario. Additionally, sleepiness was lowest in the scenario with the brighter light timed around noon, whereas task performance and actual sleep were not significantly affected. The measured personal illuminances did not predict sleepiness and performance, yet variation and timing of these illuminances did positively relate to sleep onset and duration. When studying or implementing light scenarios aiming to deliver integrative lighting, the spatial and behavioral context should be considered as well.
Chapter
Bedtime procrastination refers to delaying bedtime without external reasons. It has become serious among the younger generation due to smartphone popularity, leading to several physical and mental disorders. Odor cue has the potential to reduce bedtime procrastination, as prior research has demonstrated its effectiveness in conveying information and triggering desired emotion and behaviors. However, limited research investigates the effect of odor on bedtime regulation outside of clinical settings. We designed and implemented SleepyCloud, a device aiming to deliver odor cue one hour before people’s scheduled bedtime. Our study examines the effectiveness of odor cue on reducing students’ bedtime procrastination using SleepyCloud. Our results suggested that the odor cue was helpful on reducing bedtime procrastination for those who procrastinated due to leisure activities, and that the odor cue also helped regulate sleep. We provide implications for future investigation on this topic.
Article
Artificial lighting is omnipresent in contemporary society with disruptive consequences for human sleep and circadian rhythms because of overexposure to light, particularly in the evening/night hours. Recent evidence shows large individual variations in circadian photosensitivity, e.g. melatonin suppression, due to artificial light exposure. Despite the emerging body of research indicating that the effects of light on sleep and circadian rhythms vary dramatically across individuals, recommendations for appropriate light exposure in real-life scenarios rarely consider such individual effects. This review addresses recently identified links between individual traits, e.g. age, sex, chronotype, genetic haplotypes, and the effects of evening/night light on sleep and circadian hallmarks, based on human laboratory and field studies. Target biological mechanisms for individual differences in light sensitivity include differences occurring within the retina and downstream, such as the central circadian clock. This review also highlights that there are wide gaps of uncertainty, despite the growing awareness that individual differences shape the effects of evening/night light on sleep and circadian physiology. These include i. why do certain individual traits differentially affect the influence of light on sleep and circadian rhythms; ii. What is the translational value of individual differences in light sensitivity in populations exposed to light at night, such as night shift workers; and iii. What is the magnitude of individual differences in light sensitivity in large population-based studies? Collectively, the current findings provide strong support for considering individual differences when defining optimal lighting specifications, thus allowing for personalized lighting solutions that promote quality of life and health.
Article
Full-text available
We examined whether ambient lighting conditions during extended wakefulness modulate the homeostatic response to sleep loss as indexed by. slow wave sleep (SWS) and electroencephalographic (EEG) slow-wave activity (SWA) in healthy young and older volunteers. Thirty-eight young and older participants underwent 40 hours of extended wakefulness [i.e., sleep deprivation (SD)] once under dim light (DL: 8 lux, 2800 K), and once under either white light (WL: 250 lux, 2800 K) or blue-enriched white light (BL: 250 lux, 9000 K) exposure. Subjective sleepiness was assessed hourly and polysomnography was quantified during the baseline night prior to the 40-h SD and during the subsequent recovery night. Both the young and older participants responded with a higher homeostatic sleep response to 40-h SD after WL and BL than after DL. This was indexed by a significantly faster intra-night accumulation of SWS and a significantly higher response in relative EEG SWA during the recovery night after WL and BL than after DL for both age groups. No significant differences were observed between the WL and BL condition for these two particular SWS and SWA measures. Subjective sleepiness ratings during the 40-h SD were significantly reduced under both WL and BL compared to DL, but were not significantly associated with markers of sleep homeostasis in both age groups. Our data indicate that not only the duration of prior wakefulness, but also the experienced illuminance during wakefulness affects homeostatic sleep regulation in humans. Thus, working extended hours under low illuminance may negatively impact subsequent sleep intensity in humans.
Article
Full-text available
To date, it is largely unknown which light settings define the optimum to steer alertness and cognitive control during regular daytime working hours. In the current article, we used a multimeasure approach combined with a relatively large sample size (N = 60) and a large range of intensity levels (20-2000 lux at eye level) to investigate the dose-dependent relationship between light and correlates of alertness and executive control during regular working hours in the morning and afternoon. Each participant was exposed to a single-intensity light level for 1 h after a 30-min baseline phase (100 lux at the eye) in the morning and afternoon (on separate days) during their daily routine. Results revealed no clear dose-dependent relationships between 1-h daytime light exposure and correlates of alertness or executive control. Subjective correlates showed only very modest linear relationships with the log-transformed illuminance, and we found no significant effects of light intensity on the behavioral and physiological indicators. Overall, these results suggest that daytime exposure to more intense light, at least for 1 h of exposure, may not systematically benefit alertness or executive functioning. However, future research is required to investigate effects of longer exposure durations and potential moderations by prior light exposure, personal characteristics, and spectrum.
Article
Full-text available
Light is known to elicit non–image-forming responses, such as effects on alertness. This has been reported especially during light exposure at night. Nighttime results might not be translatable to the day. This article aims to provide an overview of (1) neural mechanisms regulating alertness, (2) ways of measuring and quantifying alertness, and (3) the current literature specifically regarding effects of different intensities of white light on various measures and correlates of alertness during the daytime. In general, the present literature provides inconclusive results on alerting effects of the intensity of white light during daytime, particularly for objective measures and correlates of alertness. However, the various research paradigms employed in earlier studies differed substantially, and most studies tested only a limited set of lighting conditions. Therefore, the alerting potential of exposure to more intense white light should be investigated in a systematic, dose-dependent manner with multiple correlates of alertness and within one experimental paradigm over the course of day.
Article
Full-text available
Broad-spectrum light applied during the night has been shown to affect alertness in a dose-dependent manner. The goal of this experiment was to investigate whether a similar relationship could be established for light exposure during daytime. Fifty healthy participants were subjected to a paradigm (0730-1730 h) in which they were intermittently exposed to 1.5 h of dim light (<10 lux) and 1 h of experimental light (24-2000 lux). The same intensity of experimental light was used throughout the day, resulting in groups of 10 subjects per intensity. Alertness was assessed with subjective and multiple objective measures. A significant effect of time of day was found in all parameters of alertness (p < 0.05). Significant dose-response relationships between light intensity and alertness during the day could be determined in a few of the parameters of alertness at some times of the day; however, none survived correction for multiple testing. We conclude that artificial light applied during daytime at intensities up to 2000 lux does not elicit significant improvements in alertness in non-sleep-deprived subjects.
Article
Full-text available
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Article
Full-text available
This study investigated seasonal and time-of-day dependent moderations in the strength and direction of acute diurnal non-image forming (NIF) effects of illuminance level on performance, physiology, and subjective well-being. Even though there are indications for temporal variations in NIF-responsiveness to bright light, scientific insights into potential moderations by season are scarce. We employed a 2 (Light: 165 versus 1700 lx at the eye level, within) × 2 (Season: autumn/winter versus spring, between) × 2 (Time of day: morning versus afternoon, between) mixed-model design. During each of the two 90-min experimental sessions, participants (autumn/winter: N = 34; spring: N = 39) completed four measurement blocks (incl. one baseline block of 120 lx at the eye level) each consisting of a Psychomotor Vigilance Task (PVT) and a Backwards Digit-Span Task (BDST) including easy trials (4-6 digits) and difficult trials (7-8 digits). Heart rate (HR) and skin conductance level (SCL) were measured continuously. At the end of each lighting condition, subjective sleepiness, vitality, and mood were measured. The results revealed a clear indication for significant Light * Season interaction effects on both subjective sleepiness and vitality, which appeared only during the morning sessions. Participants felt significantly more vital and less sleepy in winter, but not in spring during bright light exposure in the morning. In line with these subjective parameters, participants also showed significantly better PVT performance in the morning in autumn/winter, but not in spring upon bright light exposure. Surprisingly, for difficult working memory performance, the opposite was found, namely worse performance during bright light exposure in winter, but better performance when exposed to bright light in spring. The effects of bright versus regular light exposure on physiology were quite subtle and largely nonsignificant. Overall, it can be concluded that acute illuminance-induced NIF effects on subjective alertness and vitality as well as objectively measured vigilance in the morning are significantly moderated by season. Possibly, these greater illuminance-induced benefits during the morning sessions in autumn/winter compared to spring occurred due to increased responsiveness to bright light exposure as a function of a relatively low prior light dose in autumn/winter.
Article
Full-text available
Study Objectives The present study examined the effects of indoor exposure to natural bright light on afternoon sleepiness. Design Participants took part in 3 experimental conditions: (1) a natural bright light condition in which they carried out performance and arousal tests sitting near a window (3260.0 ± 1812.43 lux) from 12:40 PM to 1:10 PM, (2) a nap condition in which they were provided a nap opportunity for 20 minutes from 12:45 PM, and (3) a control condition in which they performed the tests in less than 100 lux surroundings from 12:40 PM to 1:10 PM. Before and after each treatment, the same series of tests were administered. Setting A temperature- and light-controlled sleep laboratory. Participants Sixteen healthy female paid volunteers aged 33 to 43 (38.1 ± 2.68) years. Interventions Indoor natural bright light and a short nap. Measurements and Results Arousal levels were measured by the Psychomotor Vigilance Task, Alpha Attenuation Test, Karolinska Drowsiness Test, and Karolinska Sleepiness Scale. The tests were repeated every 30 minutes from 11:00 AM to 4:10 PM. Ambient light intensity was maintained at less than 100 lux, except during natural bright light exposure. Short-term exposure to natural bright light significantly improved afternoon arousal levels, as measured by the Karolinska Drowsiness Test and Alpha Attenuation Test, the effects of which continued for at least 60 minutes (1:10–2:10 PM). However, no significant differences were observed between conditions for Psychomotor Vigilance Test performance. Conclusions Brief indoor exposure to natural bright light may decrease afternoon sleepiness. This technique of light could be used in work settings in which napping is not permitted. Citation Kaida K; Takahashi M; Haratani T et al. Indoor exposure to natural bright light prevents afternoon sleepiness.
Article
Full-text available
Circadian rhythms in physiology and behavior are modulated by external factors such as light or temperature. We studied whether self-selected office lighting during the habitual waking period had a different impact on alertness, cognitive performance and hormonal secretion in extreme morning and evening chronotypes (N = 32), whose preferred bed- and wake-up times differed by several hours. The self-selected lighting condition was compared with constant bright light and a control condition in dim light. Saliva samples for hormonal analyses, subjective ratings of alertness, wellbeing, visual comfort and cognitive performance were regularly collected. Between the self-selected and the bright, but not the dim lighting condition, the onset of melatonin secretion in the evening (as marker for circadian phase) was significantly different for both chronotypes. Morning chronotypes reported a faster increase in sleepiness during the day than evening chronotypes, which was associated with higher cortisol secretion. Wellbeing, mood and performance in more difficult cognitive tasks were better in bright and self-selected lighting than in dim light for both chronotypes, whereas visual comfort was best in the self-selected lighting. To conclude, self-selection of lighting at work might positively influence biological and cognitive functions, and allow for inter-individual differences.
Article
Full-text available
This study investigated diurnal non-image forming (NIF) effects of illuminance level on physiological arousal in parallel to NIF effects on vigilance and working memory performance. We employed a counterbalanced within-subjects design in which thirty-nine participants (mean age = 21.2; SD = 2.1; 11 male) completed three 90-min sessions (165 vs. 600 lx vs. 1700 lx at eye level) either in the morning (N = 18) or afternoon (N = 21). During each session, participants completed four measurement blocks (incl. one baseline block) each consisting of a 10-min Psychomotor Vigilance Task (PVT) and a Backwards Digit-Span Task (BDST) including easy trials (4–6 digits) and difficult trials (7–8 digits). Heart rate (HR), skin conductance level (SCL) and systolic blood pressure (SBP) were measured continuously.
Article
Full-text available
Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460–480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.
Article
Full-text available
In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.
Article
Full-text available
Alertness-enhancing effects of bright light are particularly strong at night or after sleep deprivation. Alerting effects during daytime also exist, yet these appear to be more modest. In this study, we investigate whether a higher illuminance level particularly benefits individuals who suffer from mental fatigue – not from sleep pressure, but from mental exertion. A 2x2 within-subjects design (N = 28; 106 sessions) was applied to investigate effects of 1000 vs. 200 lx at the eye on self-report measures, task performance and physiological arousal after a mental antecedent condition (fatigue vs. control). Results showed that participants felt less sleepy, more vital and happier when exposed to bright light. Effects on subjective sleepiness and self-control capacity were stronger under mental fatigue. Vigilance benefited from bright light exposure – although this effect emerged with a delay irrespective of the antecedent condition. Other tasks showed more mixed and sometimes even adverse effects of bright light.
Article
Full-text available
The onset of melatonin secretion in the evening is the most reliable and most widely used index of circadian timing in humans. Saliva (or plasma) is usually sampled every 0.5-1 hours under dim-light conditions in the evening 5-6 hours before usual bedtime to assess the dim-light melatonin onset (DLMO). For many years, attempts have been made to find a reliable objective determination of melatonin onset time either by fixed or dynamic threshold approaches. The here-developed hockey-stick algorithm, used as an interactive computer-based approach, fits the evening melatonin profile by a piecewise linear-parabolic function represented as a straight line switching to the branch of a parabola. The switch point is considered to reliably estimate melatonin rise time. We applied the hockey-stick method to 109 half-hourly melatonin profiles to assess the DLMOs and compared these estimates to visual ratings from three experts in the field. The DLMOs of 103 profiles were considered to be clearly quantifiable. The hockey-stick DLMO estimates were on average 4 minutes earlier than the experts' estimates, with a range of -27 to +13 minutes; in 47% of the cases the difference fell within ±5 minutes, in 98% within -20 to +13 minutes. The raters' and hockey-stick estimates showed poor accordance with DLMOs defined by threshold methods. Thus, the hockey-stick algorithm is a reliable objective method to estimate melatonin rise time, which does not depend on a threshold value and is free from errors arising from differences in subjective circadian phase estimates. The method is available as a computerized program that can be easily used in research settings and clinical practice either for salivary or plasma melatonin values.
Article
Full-text available
Light regulates multiple non-image-forming (or nonvisual) circadian, neuroendocrine, and neurobehavioral functions, via outputs from intrinsically photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so light is an important regulator of wakefulness and cognition. The roles of rods, cones, and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose nonrandomly about the presence of light despite their complete lack of sight. Furthermore, 2 sec of blue light modified EEG activity when administered simultaneously to auditory stimulations. fMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function.
Article
Full-text available
Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2 wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100 lux at 470 nm for 20 min) starting 2 h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30 min before and ending 20 min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250 lux), and a dim light (DL) condition for 2 h beginning upon scheduled wake time (<8 lux). Cognitive tasks were performed every 2 h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction.
Article
Full-text available
Dynamic lighting is designed to have positive effects on well-being and performance. In a field experiment we tested whether these effects are detectable and stable over time when employed in actual work settings. The study consists of two tranches, one following a monthly alternating experimental design, the other a yearly alternating one. This paper reports on the first tranche. In a dual balanced design, office workers experienced dynamic or static lighting according to an a-b-a /b-a-b scheme over three consecutive periods (N = 142, 90, 83). Questionnaire data suggest no significant differences for need for recovery, vitality, alertness, headache and eyestrain, mental health, sleep quality, or subjective performance, although employees were more satisfied with the dynamic lighting. Implications and limitations of the study are discussed.
Article
Full-text available
In addition to classical visual effects, light elicits nonvisual brain responses, which profoundly influence physiology and behavior. These effects are mediated in part by melanopsin-expressing light-sensitive ganglion cells that, in contrast to the classical photopic system that is maximally sensitive to green light (550 nm), is very sensitive to blue light (470-480 nm). At present, there is no evidence that blue light exposure is effective in modulating nonvisual brain activity related to complex cognitive tasks. Using functional magnetic resonance imaging, we show that, while participants perform an auditory working memory task, a short (18 min) daytime exposure to blue (470 nm) or green (550 nm) monochromatic light (3 x 10(13) photons/cm2/s) differentially modulates regional brain responses. Blue light typically enhanced brain responses or at least prevented the decline otherwise observed following green light exposure in frontal and parietal cortices implicated in working memory, and in the thalamus involved in the modulation of cognition by arousal. Our results imply that monochromatic light can affect cognitive functions almost instantaneously and suggest that these effects are mediated by a melanopsin-based photoreceptor system.
Article
Full-text available
Light exposure can cascade numerous effects on the human circadian process via the non-imaging forming system, whose spectral relevance is highest in the short-wavelength range. Here we investigated if commercially available compact fluorescent lamps with different colour temperatures can impact on alertness and cognitive performance. Sixteen healthy young men were studied in a balanced cross-over design with light exposure of 3 different light settings (compact fluorescent lamps with light of 40 lux at 6500K and at 2500K and incandescent lamps of 40 lux at 3000K) during 2 h in the evening. Exposure to light at 6500K induced greater melatonin suppression, together with enhanced subjective alertness, well-being and visual comfort. With respect to cognitive performance, light at 6500K led to significantly faster reaction times in tasks associated with sustained attention (Psychomotor Vigilance and GO/NOGO Task), but not in tasks associated with executive function (Paced Visual Serial Addition Task). This cognitive improvement was strongly related with attenuated salivary melatonin levels, particularly for the light condition at 6500K. Our findings suggest that the sensitivity of the human alerting and cognitive response to polychromatic light at levels as low as 40 lux, is blue-shifted relative to the three-cone visual photopic system. Thus, the selection of commercially available compact fluorescent lights with different colour temperatures significantly impacts on circadian physiology and cognitive performance at home and in the workplace.
Article
Full-text available
Specifications and standards for lighting installations in occupational settings are based on the spectral sensitivity of the classical visual system and do not take into account the recently discovered melanopsin-based, blue-light-sensitive photoreceptive system. The authors investigated the effects of exposure to blue-enriched white light during daytime workhours in an office setting. The experiment was conducted on 104 white-collar workers on two office floors. After baseline assessments under existing lighting conditions, every participant was exposed to two new lighting conditions, each lasting 4 weeks. One consisted of blue-enriched white light (17 000 K) and the other of white light (4000 K). The order was balanced between the floors. Questionnaire and rating scales were used to assess alertness, mood, sleep quality, performance, mental effort, headache and eye strain, and mood throughout the 8-week intervention. Altogether 94 participants [mean age 36.4 (SD 10.2) years] were included in the analysis. Compared with white light (4000 K), blue-enriched white light (17 000 K) improved the subjective measures of alertness (P<0.0001), positive mood (P=0.0001), performance (P<0.0001), evening fatigue (P=0.0001), irritability (P=0.004), concentration (P<0.0001), and eye discomfort (P=0.002). Daytime sleepiness was reduced (P=0.0001), and the quality of subjective nocturnal sleep (P=0.016) was improved under blue-enriched white light. When the participants' expectation about the effect of the light treatments was entered into the analysis as a covariate, significant effects persisted for performance, alertness, evening fatigue, irritability, difficulty focusing, concentrating, and blurred vision. Exposure to blue-enriched white light during daytime workhours improves subjective alertness, performance, and evening fatigue.
Article
Full-text available
The durations of successive sleep cycles, defined according to NREM (stage 2) or REM onsets, were objected to trend analysis in three groups of normal subjects and in a group of elderly patients with chronic brain syndrome (CBS). NREM sleep cycles showed consistent curvilinear trends for all groups except that the trend in children was distinguished by a lengthy first NREM cycle. REM steep cycles showed quite similar curvilinear trends for the three normal age groups with the middle two cycles being longer than the first and fourth. In the CBS patients, REM sleep cycles did not show a significant trend across the night. Real-time cycles (i.e., with time awake included) manifested trends quite similar to those excluding waking. The trends in sleep cycle durations are normative characteristics of sleep which may not be apparent on a single night. A more constant cycle was found in the CBS elderly and may indicate brain pathology. Sleep cycle trends, along with such other temporal characteristics as the decline in stage 4, may provide clues to the metabolic processes which underlie the sleep EEG. They also provide a more exact basis for investigation of hypothesized biorhythm correlates of NREM-REM cycles.
Article
Full-text available
The authors' previous experiments have shown that dawn simulation at low light intensities can phase advance the circadian rhythm of melatonin in humans. The aim of this study was to compare the effect of repeated dawn signals on the phase position of circadian rhythms in healthy participants kept under controlled light conditions. Nine men participated in two 9-day laboratory sessions under an LD cycle 17.5:6.5 h, < 30:0 lux, receiving 6 consecutive daily dawn (average illuminance 155 lux) or control light (0.1 lux) signals from 0600 to 0730 h (crossover, random-order design). Two modified constant routine protocols before and after the light stimuli measured salivary melatonin (dim light melatonin onset DLMOn and offset DLMOff) and rectal temperature rhythms (midrange crossing time [MRCT]). Compared with initial values, participants significantly phase delayed after 6 days under control light conditions (at least -42 min DLMOn, -54 min DLMOff, -41 min MRCT) in spite of constant bedtimes. This delay was not observed with dawn signals (+10 min DLMOn, +2 min DLMOff, 0 min MRCT). Given that the endogenous circadian period of the human circadian pacemaker is slightly longer than 24 h, the findings suggest that a naturalistic dawn signal is sufficient to forestall this natural delay drift. Zeitgeber transduction and circadian system response are hypothesized to be tuned to the time-rate-of-change of naturalistic twilight signals.
Article
LED *Shared senior authors. light sources have a discontinuous light spectrum with a prominent ‘blue’ peak between 450 and 470 nm that influences non-image forming responses in humans. We tested an LED lighting solution mimicking a daylight spectrum on visual comfort, circadian physiology, daytime alertness, mood, cognitive performance and sleep. Fifteen young males twice spent 49 hours in the laboratory under a conventional-LED and under a daylight-LED condition in a balanced cross over design flanked by a baseline and a post-light exposure night. Despite different light spectra, the photopic lux and the correlated colour temperature of the lighting were the same for both LEDs. The colour rendering index and the melanopic strength were 25.3% and 21%, respectively, higher for the daylight LED than the conventional LED. The volunteers had better visual comfort, felt more alert and happier in the morning and evening under daylight LED than conventional LED, while the diurnal melatonin profile, psychomotor vigilance and working memory performance were not significantly different. Delta EEG activity (0.75–4.5 Hz) was significantly higher after daylight-LED than conventional-LED exposure during the post-light exposure night. We have evidence that a daylight-LED solution has beneficial effects on visual comfort, daytime alertness, mood and sleep intensity in healthy volunteers.
Article
light sources have a discontinuous light spectrum with a prominent ‘blue’ peak between 450 and 470 nm that influences non-image forming responses in humans. We tested an LED lighting solution mimicking a daylight spectrum on visual comfort, circadian physiology, daytime alertness, mood, cognitive performance and sleep. Fifteen young males twice spent 49 hours in the laboratory under a conventional-LED and under a daylight-LED condition in a balanced cross over design flanked by a baseline and a post-light exposure night. Despite different light spectra, the photopic lux and the correlated colour temperature of the lighting were the same for both LEDs. The colour rendering index and the melanopic strength were 25.3% and 21%, respectively, higher for the daylight LED than the conventional LED. The volunteers had better visual comfort, felt more alert and happier in the morning and evening under daylight LED than conventional LED, while the diurnal melatonin profile, psychomotor vigilance and working memory performance were not significantly different. Delta EEG activity (0.75–4.5 Hz) was significantly higher after daylight-LED than conventional-LED exposure during the post-light exposure night. We have evidence that a daylight-LED solution has beneficial effects on visual comfort, daytime alertness, mood and sleep intensity in healthy volunteers.
Article
Despite the omnipresence of artificial and natural light exposure, there exists little guidance in the United States and elsewhere on light exposure in terms of timing, intensity, spectrum, and other light characteristics known to affect human health, performance, and well-being; in parallel, there is little information regarding the quantity and characteristics of light exposure that people receive. To address this, the National Center on Sleep Disorders Research, in the Division of Lung Diseases, National Heart, Lung, and Blood Institute, held a workshop in August 2016 on circadian health and light. Workshop participants discussed scientific research advances on the effects of light on human physiology, identified remaining knowledge gaps in these research areas, and articulated opportunities to use appropriate lighting to protect and improve circadian-dependent health. Based on this workshop, participants put forth the following strategic intent, objectives, and strategies to guide discovery, measurement, education, and implementation of the appropriate use of light to achieve, promote, and maintain circadian health in modern society.
Article
Though several studies have reported human alertness to be affected by the intensity and spectral composition of ambient light, the mechanism behind this effect is still largely unclear, especially for daytime exposure. Alerting effects of nocturnal light exposure are correlated with melatonin suppression, but melatonin levels are generally low during the day. The aim of this study was to explore the alerting effect of light in the morning for different correlated colour temperature (CCT) values, as well as its interaction with ambient temperature. Body temperature and perceived comfort were included in the study as possible mediating factors. In a randomized crossover design, 16 healthy females participated in two sessions, once under 2700K and once under 6500K light (both 55lx). Each session consisted of a baseline, a cool, a neutral and a warm thermal environment. Alertness as measured in a reaction time task was lower for the 6500K exposure, while subjective sleepiness was not affected by CCT. Also, core body temperature was higher under 6500K. Skin temperature parameters and perceived comfort were positively correlated with subjective sleepiness. Reaction time correlated with heat loss, but this association did not explain why the reaction time was improved for 2700K.
Article
The present study validated the nine-point Karolinska Sleepiness Scale (KSS) and the new Accumulated Time with Sleepiness (ATS) scale against performance of laboratory tasks. The ATS scale was designed as a method for integrating subjective sleepiness over longer time periods. The subjects were asked if certain symptoms of sleepiness had occurred and, if so, for how long. Six subjects participated twice. Each time they were kept awake during the night (except for a short nap occurring during one of the nights in a counterbalanced order) and were tested at 2200, 0200, 0400 and 0600 hours. The tests included a 10-minute rest period, a 28-minute visual vigilance task and an 11 -minute single reaction time task. KSS and visual analogue scale (VAS) ratings were given before each test, and ATS ratings were given after. Performance deteriorated clearly, and all three rating scales reflected increased sleepiness with time of night. Scores on the KSS and VAS showed high correlations with performance tasks (mean intraindividual correlations were between 0.49 and 0.71). Performance correlated even higher with the ATS ratings (r = 0.73–0.79). Intercorrelations between rating scales were also high (r = 0.65–0.86). It was concluded that there were strong relations between ratings of sleepiness and performance, that the ATS rating scale was at least as good as the other scales and that the ratings were affected by type of task.
Article
Objectives: To provide evidence-based recommendations and guidance to the public regarding indicators of good sleep quality across the life-span. Methods: The National Sleep Foundation assembled a panel of experts from the sleep community and representatives appointed by stakeholder organizations (Sleep Quality Consensus Panel). A systematic literature review identified 277 studies meeting inclusion criteria. Abstracts and full-text articles were provided to the panelists for review and discussion. A modified Delphi RAND/UCLA Appropriateness Method with 3 rounds of voting was used to determine agreement. Results: Foremost of the sleep continuity variables (sleep latency, number of awakenings N5 minutes, wake after sleep onset, and sleep efficiency), the panel members agreed that these measures were appropriate indicators of good sleep quality across the life-span. However, overall, there was less or no consensus regarding sleep architecture or nap-related variables as elements of good sleep quality. Conclusions: There is consensus among experts regarding some indicators of sleep quality among otherwise healthy individuals. Education and public health initiatives regarding good sleep quality will require sustained and collaborative efforts from multiple stakeholders. Future research should explore how sleep architecture and naps relate to sleep quality. Implications and limitations of the consensus recommendations are discussed.
Article
Study objectives: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Methods: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Results: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). Conclusions: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL.
Article
Cognitive performance and alertness are two determinants for work efficiency, varying throughout the day and depending on bright light. We conducted a prospective crossover study evaluating the impacts of exposure to an intense, early morning illumination on sustained attention, alertness, mood, and serum melatonin levels in 33 healthy individuals. Compared with a dim illumination, the intense illumination negatively impacted performance requiring sustained attention; however, it positively impacted subjective alertness and mood and had no impact on serum melatonin levels. These results suggest that brief exposure to bright light in the morning hours can improve subjective measures of mood and alertness, but can also have detrimental effects on mental performance as a result of visual distraction. Therefore, it is important that adequate lighting should correspond to both non-visual and visual demands.
Article
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Article
Occupant surveys remain the most accurate and cost effective way to assess the lighting of office spaces. Presently, there are only two lighting surveys that have been developed with extensive normative data: Vischer's (1989) Lighting Comfort Scale (LCS) and Gillette and Brown's (1986) Occupant Questionnaire (OQ). The LCS is the lighting portion of Vischer's Building-in-use Assessment, a questionnaire developed for the assessment of overall office quality. The LCS has limited diagnostic ability and is difficult to score. The OQ was developed as an attempt to quantify 'good office lighting.' The OQ has somewhat more diagnostic use than the LCS, but is even more labor intensive to score. The Office Lighting Survey (OLS) has been designed to be simple and rapid to administer and score, and to provide considerable diagnostic information when problems are found. The OLS has normative data derived from responses from over 1250 office occupants in 13 different buildings. Using these data, results from the OLS have been shown to be reliable and valid, and to agree closely with the LCS and OQ.
Article
Previous studies have demonstrated short-wavelength sensitivity for the acute alerting response to nocturnal light exposure. We assessed daytime spectral sensitivity in alertness, performance, and waking electroencephalogram (EEG). Between-subjects (n = 8 per group). Inpatient intensive physiologic monitoring unit. Sixteen healthy young adults (mean age ± standard deviation = 23.8 ± 2.7 y). Equal photon density exposure (2.8 × 10(13) photons/cm(2)/s) to monochromatic 460 nm (blue) or 555 nm (green) light for 6.5 h centered in the middle of the 16-h episode of wakefulness during the biological day. Results were compared retrospectively to 16 individuals who were administered the same light exposure during the night. Daytime and nighttime 460-nm light exposure significantly improved auditory reaction time (P < 0.01 and P < 0.05, respectively) and reduced attentional lapses (P < 0.05), and improved EEG correlates of alertness compared to 555-nm exposure. Whereas subjective sleepiness ratings did not differ between the two spectral conditions during the daytime (P > 0.05), 460-nm light exposure at night significantly reduced subjective sleepiness compared to 555-nm light exposure at night (P < 0.05). Moreover, nighttime 460-nm exposure improved alertness to near-daytime levels. The alerting effects of short-wavelength 460-nm light are mediated by counteracting both the circadian drive for sleepiness and homeostatic sleep pressure at night, but only via reducing the effects of homeostatic sleep pressure during the day. Rahman SA; Flynn-Evans EE; Aeschbach D; Brainard GC; Czeisler CA; Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. SLEEP 2014;37(2):271-281.
Article
Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement - rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.
Article
This study examined the effects of bright light exposure, as compared to dim light, on daytime subjective sleepiness, incidences of slow eye movements (SEMs), and psychomotor vigilance task (PVT) performance following 2 nights of sleep restriction. The study had a mixed factorial design with 2 independent variables: light condition (bright light, 1,000 lux; dim light, < 5 lux) and time of day. The dependent variables were subjective sleepiness, PVT performance, incidences of SEMs, and salivary melatonin levels. Sleep research laboratory at Monash University. Sixteen healthy adults (10 women and 6 men) aged 18 to 35 years (mean age 25 years, 3 months). Following 2 nights of sleep restriction (5 hours each night), participants were exposed to modified constant routine conditions. Eight participants were exposed to bright light from noon until 5:00 pm. Outside the bright light exposure period (9:00 am to noon, 5:00 pm to 9:00 pm) light levels were maintained at less than 5 lux. A second group of 8 participants served as controls for the bright light exposure and were exposed to dim light throughout the entire protocol. Bright light exposure reduced subjective sleepiness, decreased SEMs, and improved PVT performance compared to dim light. Bright lights had no effect on salivary melatonin. A significant positive correlation between PVT reaction times and subjective sleepiness was observed for both groups. Changes in SEMs did not correlate significantly with either subjective sleepiness or PVT performance. Daytime bright light exposure can reduce the impact of sleep loss on sleepiness levels and performance, as compared to dim light. These effects appear to be mediated by mechanisms that are separate from melatonin suppression. The results may assist in the development of treatments for daytime sleepiness.
Article
Objective: We evaluated the possible effects of reduced illumination in the workplace on insomnia among office workers. Methods: Seventy-two office workers answered the Athens Insomnia Scale (AIS) in July 2009 (under ordinary illumination, 01 conditions) and July 2010 (under reduced illumination, Rl conditions). The workers were divided into three groups, indoor workers (IWs), semi-outdoor workers (SWs) and outdoor workers (OWs), according to the frequency of working outside of the office because a worker with a high frequency of working outside of the office might rarely be exposed to the lighting condition within an office. The first five items of the AIS (AIS-5) were used to assess sleep difficulties, and the last three items (AIS-3) assessed next-day consequences of sleep or daytime symptoms, which often result from insomnia and/or sleep disorders. Results: Illuminance levels at a height of 1,100 mm from the floor under the Rl conditions (550-490 lux) were significantly lower than under the Ol conditions (750-700 lux). The AIS-5 score of the IWs was significantly increased under the Rl conditions compared with the Ol conditions. There was no difference in AIS-3 scores between conditions for any group. Conclusion: Indoor workers hardly went outside of the office and were exposed only to office light during the daytime. Thus, the underexposure to light could have had an impact on insomnia in those individuals. A novel lighting environment is required to optimize work-related levels of light exposure.
Article
Circadian and sleep/wake dependent processes underlying variations in subjective alertness and cognitive performance were assessed in a constant routine protocol and in a protocol in which the sleep/wake cycle was uncoupled from the output of the endogenous circadian pacemaker. In the latter protocol, the contribution of a sleep/wake dependent process and a circadian process to alertness and performance were separated by folding the data at either the period of the sleep/wake cycle or at the period of the endogenous circadian body temperature rhythm. This analysis revealed that prior wakefulness within a range of 0-18 h significantly reduced alertness and performance and that the circadian rhythm of core body temperature paralleled the circadian rhythm of alertness and performance. During the first 16 h of the constant routine protocol, which coincided with the subjects' habitual period of wakefulness, alertness and performance remained at a stable level. The latter finding was explained by assuming that during our usual waking day the circadian system counteracts the detrimental effects of increasing duration of prior wakefulness.
Article
The immediate psychophysiological and behavioral effects of photic stimulation on humans [bright light (BL) of 5K lux or dim light (DL) of 50 lux] were assessed in male subjects (N = 43) under four different conditions. For one condition the same subjects (N = 16) received alternating 90-min blocks of BL and DL during the nighttime h (2300-0800 h) under sustained wakefulness conditions. A second condition was similar to the first except that subjects (N = 8) received photic stimulation during the daytime hours. For the third and fourth conditions different subjects received either continuous BL (N = 10) or continuous DL (N = 9) during the nighttime hours. For the nighttime alternating condition body temperature decreased under DL but either increased or maintained under BL. For the continuous light condition, body temperature dropped sharply across the night under DL but dropped only slightly under BL. Sleepiness was considerably greater under DL than under BL, and the difference became larger as the night progressed. Similarly, alertness, measured by EEG beta activity, was greater under BL, and nighttime performance on behavioral tasks was also generally better. There were no differential effects between BL and DL on any measure during the daytime. These data indicate that light exerts a powerful, immediate effect on physiology and behavior in addition to its powerful influence on circadian organization.
Article
Despite the prevalence of sleep complaints among psychiatric patients, few questionnaires have been specifically designed to measure sleep quality in clinical populations. The Pittsburgh Sleep Quality Index (PSQI) is a self-rated questionnaire which assesses sleep quality and disturbances over a 1-month time interval. Nineteen individual items generate seven "component" scores: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction. The sum of scores for these seven components yields one global score. Clinical and clinimetric properties of the PSQI were assessed over an 18-month period with "good" sleepers (healthy subjects, n = 52) and "poor" sleepers (depressed patients, n = 54; sleep-disorder patients, n = 62). Acceptable measures of internal homogeneity, consistency (test-retest reliability), and validity were obtained. A global PSQI score greater than 5 yielded a diagnostic sensitivity of 89.6% and specificity of 86.5% (kappa = 0.75, p less than 0.001) in distinguishing good and poor sleepers. The clinimetric and clinical properties of the PSQI suggest its utility both in psychiatric clinical practice and research activities.