With the rapid development of the mobile internet, the volume of data has grown exponentially, and the content of data become more complicated. It is hard for people to select useful information from such a large number of data. In this paper, we study the problem of approximate sub-graph matching over knowledge graph. We first propose two algorithms to reduce the scale of knowledge graph. Next, we use an efficient algorithm to find similarity sub-graphs. Thirdly, we use skyline technique to further select high quality sub-graphs from the matching results. Theoretical analysis and extensive experimental results demonstrate the effectiveness of the proposed algorithms.