ArticlePDF Available

Abstract and Figures

Caverne X in Waulsort (Namur province, Belgium), excavated in the 19 th century, revealed a burial site which was unexpectedly dated to the Final Upper Paleolithic (10,820 ± 80 BP, OxA-6856) in the 1990's. A re-examination of the collection and a new radiocarbon dating program was recently undertaken. The dates obtained on four left femurs (9285 ± 30 BP, ETH-74725; 9310 ± 30 BP, ETH-74726; 9340 ± 30 BP, ETH-74727; 9300 ± 30 BP, ETH-74728) revealed that the remains should in fact be attributed to the Early Mesolithic, ISSN 0259-3548 25 MM 28:2 (December 2020) consistent with 24 other 14 C dates obtained for eight cave sites in the Meuse Basin which range from ca. 9600 BP to 9000 BP. Caverne X contained 544 human remains belonging to at least nine individuals (one fetus, one perinatal/young child, one teenager, two adolescents/young adults and four adults), and 66 faunal remains consisting mainly of intrusive animals with the possible exception of a cervid antler, and one artefact (a small flint blade). Other than ochre deposits, all alterations (breakage, surface abrasion, impact scars and concretions) are post-depositional in origin. Carbon and nitrogen stable isotope analysis indicates a diet primarily based on terrestrial resources from an open landscape with proteins provided by large herbivores. Our study shows that Caverne X fits well with results already obtained for the Meuse Basin cave burials in terms of chronology, minimum number of individuals, funerary rituals and diet. Mesolithic Miscellany 28 (2) : 25-43.
Content may be subject to copyright.
VOLUME 28: NUMBER 2
December 2020
Editorial
2
Lost souls still whisper on the Mesolithic island of Les Birvideaux
Grégor Marchand
3-12
Human bones, burials and cemeteries: new sources - list 9
Christopher Meiklejohn
13-24
Waulsort Caverne X: A new cave site with Early Mesolithic human remains in Belgium
Caroline Polet, Dorothée G. Drucker, Clémence Glas, Charlotte Sabaux, Quentin Goffette, Mathilde
Samsel, Ivan Jadin, Eugène Warmenbol and Sébastien Villotte
25-43
Niverød Teglværk – a coastal site from the Ertebølle culture
Andreas Valentin Wadskjær and Adam Cordes
44-63
A note on an exceptionally preserved Early Mesolithic camp and other remains at Killerby,
UK
Clive Waddington, David G. Passmore, Philippa Hunter and Luke Parker
64-78
MM 28:2 (December 2020)
Waulsort Caverne X: A new cave site with Early Mesolithic human remains in Belgium
Caroline Polet
Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000
Brussels, Belgium
caroline.polet@naturalsciences.be
Dorothée G. Drucker
Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen,
Hölderlinstr. 12, D-72074 Tübingen, Germany
Clémence Glas
UMR 7041 ArScAn équipe Ethnologie préhistorique, Université Paris 1 Panthéon-Sorbonne, 3 rue Michelet,
75006, Paris, France
Charlotte Sabaux
Department of Archaeology, Universiteit Gent, St. Pietersnieuwstraat 35, Campus UFO, B-9000 Gent, Belgium
Department of Science, Laboratory of Anthropology and Human Genetics, CP 192, Université libre de
Bruxelles, avenue F. D. Roosevelt 50, Campus Solbosch, B-1050 Brussels, Belgium
Quentin Goffette
Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000
Brussels, Belgium
Mathilde Samsel
PACEA, UMR 5199, CNRS, Université de Bordeaux, 1 Avenue des Facultés, 33405 Talence Cedex, France
Ivan Jadin
Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000
Brussels, Belgium
Eugène Warmenbol
Faculté de Philosophie et Sciences sociales, CP 133/01, Université libre de Bruxelles, avenue F. D. Roosevelt
50, Campus Solbosch, B-1050 Brussels
Sébastien Villotte
PACEA, UMR 5199, CNRS, Université de Bordeaux, 1 Avenue des Facultés, 33405 Talence Cedex, France
Abstract
Caverne X in Waulsort (Namur province, Belgium), excavated in the 19th century, revealed a
burial site which was unexpectedly dated to the Final Upper Paleolithic (10,820 ± 80 BP,
OxA-6856) in the 1990’s. A re-examination of the collection and a new radiocarbon dating
program was recently undertaken. The dates obtained on four left femurs (9285 ± 30 BP,
ETH-74725; 9310 ± 30 BP, ETH-74726; 9340 ± 30 BP, ETH-74727; 9300 ± 30 BP,
ETH-74728) revealed that the remains should in fact be attributed to the Early Mesolithic,
ISSN 0259-3548 25
MM 28:2 (December 2020)
consistent with 24 other 14C dates obtained for eight cave sites in the Meuse Basin which
range from ca
. 9600 BP to 9000 BP. Caverne X contained 544 human remains belonging to
at least nine individuals (one fetus, one perinatal/young child, one teenager, two
adolescents/young adults and four adults), and 66 faunal remains consisting mainly of
intrusive animals with the possible exception of a cervid antler, and one artefact (a small flint
blade). Other than ochre deposits, all alterations (breakage, surface abrasion, impact scars and
concretions) are post-depositional in origin. Carbon and nitrogen stable isotope analysis
indicates a diet primarily based on terrestrial resources from an open landscape with proteins
provided by large herbivores. Our study shows that Caverne X fits well with results already
obtained for the Meuse Basin cave burials in terms of chronology, minimum number of
individuals, funerary rituals and diet.
Keywords
Early Mesolithic, Belgium, cave burial, anthropology, radiocarbon dating, stable isotope
analysis
Introduction
Human remains dated from the Early Holocene (ca
. 11,700-8200 BP; Walker et al
. 2018) are
relatively rare in Western Europe (Amkreutz et al
. 2018; Orschiedt 2018; Samsel 2018).
They represent key fossils for the understanding of human biological and behavioral
adaptations to rapid climate changes. In this context, we re-evaluated a skeletal assemblage
from Caverne X, Waulsort, Belgium. One human tibia from the cave was directly dated by
AMS in 1997 to 10,820 ± 80 BP (OxA-6856) (Cauwe et al
. 2002), which corresponds to ca
.
10,922-10,631 cal BC (95.4% probability)1. The date was considered problematic as it is
notably older than other Early Holocene human remains in Belgium, which all fall between
ca
. 9700 and 8600 BP (9300 and 7500 cal BC; Toussaint 2010). Considering the antiquity of
the excavation at Waulsort (19th century), and the fact that Belgian burial sites with Early
Holocene human remains often contain remains from later periods, we decided to analyse the
archeological material from Caverne X and attempt direct dating of several individuals. This
note presents the preliminary results of the anthropological study (number of skeletal
elements and minimum number of individuals) supplemented with results from other
analyses (artefacts, archaeozoology, taphonomy, dating and isotopes).
Material
The Waulsort caves are a series of limestone caverns on the left bank of the River Meuse in
the commune of Hastière (province of Namur) (Figure 1). Data on their precise location,
1 OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer et al.
2013).
ISSN 0259-3548 26
MM 28:2 (December 2020)
stratigraphy and association are unfortunately lost2(Blero 1997a; Boucquey 2010-2011,
2012). Their 19th century excavation was the first large program of exploration of natural
cave sites in Belgium, and was funded by the Belgian State (Dupont 1864; Stockmans 1965,
1971). This research began in 1864 in the Meuse basin around Dinant under the auspices of
the geologist and prehistorian Édouard Dupont, the second Director of the Royal Museum of
Natural Sciences of Belgium from 1868 until his retirement in 1909. Nine caves (A-B, O, Q,
R, T, V, V-W, X and Y) were excavated, largely in 1877 by a team of the Royal Museum of
Natural Sciences of Belgium under the direction of Louis De Pauw and the field work of
Auguste Collard (Stockmans 1983; Boucquey 2010-2011).
Figure 1. Location of the Waulsort site (L. Cammaert and A.-M. Wittek, ADIA).
2Field notes are now unfortunately lacking. Edmond Rahir, Curator at the Royal Museums of Art and History,
would have read (some of) these notes in the early 20th century, which have gone missing since then (Rahir
1925; Blero 1997b). For a few days in April 1951, François Twiesselmann (Orban 2010), head of the Section of
Anthropology and Prehistory of the Royal Belgian Museum of Natural Sciences, helped by two of his
technicians, travelled through the region of Hastière and the caves of Waulsort, to try to locate the caves
excavated in the 19th century, without success, except for cave O also known as Trou Paquot or Trou Pocaut
(already mentioned in Rahir 1925).
ISSN 0259-3548 27
MM 28:2 (December 2020)
Since its recovery, the collection has been housed at the Royal Belgian Institute of Natural
Sciences (RBINS). The human and faunal remains, together with the artefacts, are stored by
site in 17 wooden boxes (80 x 57 x 20 cm). Material from Caverne X is in one box,
consisting of human and animal remains and a small flint blade (Rahir 1925; Boucquey
2012).
Radiocarbon dates on human bones from seven of the nine Waulsort caves were published by
the Oxford Radiocarbon Accelerator Unit (Table 1; Cauwe et al
. 2002). In agreement with
what is known of the archaeology of the Meuse Basin (Cauwe 2004; Toussaint 2013), these
dates revealed that two caves (A-B and Q) contain human remains from the Middle Neolithic
and four caves (O, R, V and Y) from the Late Neolithic. Two further results were
unexpected: the date of Caverne X (10,820 ± 80 BP) and one of two dates for cave Q (155 ±
45 BP). The second is clearly anomalous, coinciding with the 19th century excavation.
Table 1. Radiocarbon results obtained on human remains from the Waulsort burials. All
measurements were undertaken at the Oxford Radiocarbon Accelerator Unit (Cauwe et al
.
2002). *OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer et al
.
2013).
An inventory of the Waulsort archaeological material took place in the early 20th century
(Rahir 1925). First studies were achieved in the 1980’s mainly on the material from Caverne
Y and T (Warmenbol 1981, 1982a, 1982b, 1983a, 1983b, 1985, 1992, 1993, 1995) but the
exhaustive study of all the artefacts occurred only in 2012 (Boucquey 2012). It confirmed the
attribution to the Middle and Late Neolithic of most of the material. Referring to the small
blade from Caverne X, Audrey Boucquey (2012) stated that it is complete, but without trace
of use or retouching and can be assigned to the Epipaleolithic. She also mentioned that
Caverne R contained two shouldered points (pointes à cran
) that may also date to this period.
The first study of the human remains from the Waulsort caves was done in 1985 on the bones
from Caverne T by Michel A. De Spiegeleire (De Spiegeleire 1985). The anthropological
study of all the Waulsort caves was performed in 1997 by Pierre Blero for his master’s thesis
ISSN 0259-3548 28
Cave
Reference
14C yr BP
cal BC/AD (2σ)*
A-B
OxA-9023
5130 ± 45
4040-3798 BC
O
OxA-6855
4170 ± 45
2890-2622 BC
Q
OxA-5314
155 ± 45
1664-1952 AD
Q
OxA-5840
4620 ± 50
3627-3118 BC
R
OxA-9024
4362 ± 45
3322-2887 BC
V
OxA-6857
4250 ± 45
3008-2673 BC
X
OxA-6856
10,820 ± 80
10,922-10,631 BC
Y
OxA-5315
4355 ± 55
3312-2882 BC
MM 28:2 (December 2020)
(Blero 1997b). An anthropological analysis of Caverne O was published the same year (Blero
1997a). Pierre Blero estimated that Caverne X contained a minimum of eight individuals.
Methods
The skeletal remains from Caverne X have been reanalysed several times since 1997 at the
RBINS. The few faunal remains recovered were identified using the reference collection of
recent skeletons of the RBINS and the Royal Museum for Central Africa, Tervuren.
Identification of each human skeletal fragment was carried out, and with gross morphology
and pathological alterations recorded. In determination of the minimum number of
individuals (MNI) we looked at bone overlaps (bones from the same side) together with
apparent age differences and features such as bone size and robusticity. Osteometric data
were collected following the Martin system (Bräuer 1988). Age assessment of the non-adult
individuals, represented by isolated fragments, followed Schaeffer et al
. (2009).
Macroscopic analysis of long bone fragmentation was performed to understand if breakage
happened when the remains were fresh or dry, following the criteria suggested by Villa and
Mahieu (1991). The presence or absence of patina on the fracture surfaces has also been
recorded. This study was followed by analysis of osseous surface alterations of all the
remains, both human and faunal. At the present, most bones were examined by the naked eye
only, though a few have been examined under a binocular magnifier associated with a
camera. Diagnosis of the modifications identified follows the methods of
Domínguez-Rodrigo et al
. (2009), Boulestin (1999) and Shipman (1981).
Considering the sample size and commingled nature of the assemblage, the sampling strategy
to ensure radiocarbon dating of different individuals used overlapping bone; four left femurs
were selected (F2, F3, F4 and F5). The areas sampled were chosen to avoid, as much as
possible, the destruction of (1) meaningful skeletal features, and (2) breaks useful for the
refitting of fragments. For F2 and F3 the sample consisted of a circular fragment of ca
. 1 cm
in diameter that was removed from the shaft. In F4 a detached fragment was used, and for F5,
a piece was cut from a detached fragment.
Collagen extraction was performed at the Department of Geoscience, University of Tübingen
on the human remains following Longin (1971) as modified by Bocherens et al
. (1997).
Briefly, the extraction procedure includes initial demineralisation in HCl 1M, followed by
soaking in 0.125 M NaOH, and a final solubilisation in acidified water (pH = 2) before
freeze-drying. The AMS radiocarbon dating was done at PSI/ETH in Zurich.
For stable isotope analysis, the samples were analysed at the Laboratory of Chronology,
Finnish Museum of Natural History, University of Helsinki, using an NC 2500 elemental
analyser coupled to a DeltaPlusAdvantage or a DeltaVPlus isotope ratio mass spectrometer.
Measurement data for δ13C and δ15N were calibrated using the known values of international
reference materials USGS-40 (δ13C = -26.4‰, δ15N = -4.5‰) and USGS-41 (δ13C = +37.6‰,
δ15N = +47.6‰). Multiple measurements of matrix matched in-house reference materials
ISSN 0259-3548 29
MM 28:2 (December 2020)
(modern camel and elk bone) indicate an external reproducibility (1σ) of ± 0.2‰ for the δ13C
and δ15N values respectively. The error in the reproducibility for the amounts of C and N was
better than 4%. Reliability of the δ13C and δ15N values can be established by measuring the
chemical composition of collagen, with C/N atomic ratios (C:N) ranging from 2.9 to 3.6
(DeNiro 1985) and percentages of C and N above 8 and 3%, respectively (Ambrose 1990).
Results and discussion
The first radiocarbon date
The unexpected Final Upper Paleolithic date may have two causes: an error in the dating or
an uncommon burial event (or accidental death?) not otherwise reported in Belgium
(unfortunately, the lack of information on the stratigraphy and association between the finds
makes it impossible to archeologically confirm the second hypothesis).
This first dating was performed in 1997 when the Oxford Radiocarbon Accelerator Unit used
ion-exchanged gelatin to separate amino acids using ion exchange columns. This method was
abandoned due to “column bleed” in which small amounts of column packing carbon were
found to sometimes be present in the extracted amino acids (Higham pers. com.). This was
especially problematic for low collagen yielding bones as in the case of the tibia from
Caverne X (Table 2).
Table 2. Bone C and N percentages, amount of collagen extracted, collagen yields and
radiocarbon results for the five human remains sampled from Waulsort Caverne X, including
the first radiocarbon date. Coll. = collagen. *OxCal v4.3.2 Bronk Ramsey (2017); r:5;
IntCal13 atmospheric curve (Reimer et al
. 2013).
The new radiocarbon dates
The four samples provided enough collagen to permit dating. Moreover, all the collagen
considered for radiocarbon dating, as well as stable isotope measurements, fulfilled the
criteria expected for good biogeochemical preservation, with C content above 30% and C:N
ISSN 0259-3548 30
Sample
No.
Element
Find
No.
%Nbone
%Cbone
Amount
of coll.
(mg)
Coll. yield
(mg/g)
cal BC (2σ)*
Tibia
22/T4
6.1
<10.2
10,922-10,631
WLS-7
Left
femur
L16/F4
1.0
5.0
25.2
55.5
8627-8354
WLS-8
Left
femur
L15/F3
0.7
4.6
6.6
14.7
8638-8466
WLS-9
Left
femur
L14/F2
1.6
7.6
37.6
106.7
8709-8489
WLS-10
Left
femur
L17/F5
1.7
7.2
32.1
90.2
8634-8458
MM 28:2 (December 2020)
ratios ranging from 3.0 to 3.4 (Table 3). The results of the 14C dates are presented in Table 2
and Figure 2. All dates are virtually identical and fall around 9300 BP. This provides
calibrated dates ranging between 8700 and 8350 BC at 2σ.
Table 3. Stable isotope data for the four human remains sampled from Waulsort Caverne X.
Coll. = collagen.
Figure 2. Calibrated radiocarbon dates of the five humans from Caverne X, Waulsort site.
The four new dates for Caverne X lie within the range of the previously published 27 dates
on human bones from 11 Belgian Mesolithic cave sites (Toussaint 2010; Meiklejohn et al
.
2014). Almost all correspond to the Early Mesolithic during the 10th and 9th millennia BC
(Table 4). A single date (Trou Al'Wesse) corresponds to the Final Mesolithic (7th
millennium), but it does not come from a clearly established burial context (Toussaint 2002).
Table 4 does not include the Mesolithic radiometric (non-AMS) radiocarbon date from La
Martina (Lv-2001) (Dewez et al
. 1995), which is contradicted by five AMS OxA dates
placing the burial in the recent Neolithic, and evidence that the initial sample was
contaminated with carbonate (Toussaint and Ramon 1997).
The archeological material
Only one stone artefact, a small flint blade, was recovered from the cave. This low number is
not surprising as archaeological material associated with Mesolithic burials from the Meuse
Basin is always very scarce (Toussaint 2010). Boucquey (2012) concluded that this blade is
ISSN 0259-3548 31
Sample No.
Element
Find No.
Coll. yield (mg/g)
%C
δ13C (‰)
%N
δ15N (‰)
C:N
WLS-7
Left femur
L16/F4
55.5
37.0
-21.3
12.9
9.1
3.4
WLS-8
Left femur
L15/F3
14.7
39.9
-20.0
13.7
9.4
3.4
WLS-9
Left femur
L14/F2
106.7
40.2
-20.3
14.0
9.6
3.3
WLS-10
Left femur
L17/F5
90.2
39.0
-20.3
13.6
10.1
3.3
MM 28:2 (December 2020)
Epipaleolithic, but given the fact that it was not retouched, it could also be from other
periods.
ISSN 0259-3548 32
Site, location
Lab. ID
Method
14C yr BP
cal BC
(2σ)*
Element
MNI
Reference
Loverval D5,
Gerpinnes
Gif A 94536
AMS
9640 ± 100
9300-8700
Bone
fragments
2
Toussaint et al
.
1996
Lv-1506
non-AMS
9090 ± 100
8600-7950
Postcranial
(320 g)
Cauwe and
Toussaint 1993
Grotte Margaux,
Dinant
Gif A 92354
AMS
9590 ± 110
9250-8600
Humerus
fragment
7 to 10
Cauwe 1995;
Toussaint 2011
Gif A 92355
AMS
9530 ± 110
9250-8550
Humerus
fragment
OxA-3533
AMS
9530 ± 120
9250-8550
Humerus
fragment
OxA-3534
AMS
9350 ± 120
9150-8250
Ossicles
Gif A 92362
AMS
9260 ± 120
8800-8200
Humerus
fragment
Lv-1709
non-AMS
9190 ± 100
8690-8230
Ribs (263 g)
Cauwe and
Toussaint 1993
Claminforge,
Sambreville
OxA-10552
AMS
9525 ± 60
9200-8600
Cervical
vertebra
5
Toussaint 2002
OxA-5451
AMS
9320 ± 75
8750-8290
Third
metacarpal
Toussaint et al
.
1996
Faille du Burin,
Andenne
OxA-10585
AMS
9520 ± 55
9150-8600
Left navicular
6
Toussaint and
Lacroix 2002
OxA-8938
AMS
9345 ± 75
8800-8250
Left navicular
OxA-10595
AMS
9335 ± 65
8790-8330
Left navicular
OxA-10564
AMS
9315 ± 50
8740-8330
Left navicular
Bois Laiterie,
Profondeville
OxA-8910
AMS
9515 ± 65
9200-8600
Left humerus
4
Toussaint 2002
OxA-8878
AMS
9445 ± 60
9150-8550
Left humerus
OxA-8911
AMS
9420 ± 65
9150-8450
Left humerus
GX-21380
AMS
9235 ± 85
8690-8270
Ossicle
Toussaint et al
.
1998
Abri des Autours
3 (indiv. burial),
Dinant
OxA 4917
AMS
9500 ± 75
9200-8600
Rib
1
Cauwe 1995;
Polet and
Cauwe 2007
Abri des Autours
2 (collect. burial),
Dinant
OxA-5838
AMS
9090 ± 140
8750-7800
Bone
12
Lombeau (L1),
Charleroi
OxA-6441
AMS
9410 ± 70
9150-8450
Fifth
metatarsal
5
Toussaint 1999
Lombeau (L2),
Charleroi
OxA-6440
AMS
9360 ± 75
9100-8300
Fifth
metatarsal
MM 28:2 (December 2020)
Table 4. Radiocarbon dates and Minimum Number of Individuals (MNI) for 11 Mesolithic
burial sites in Belgium (Toussaint 2010).
The human remains
Each bone has been examined, sorted and curated. The assemblage is composed of 544
identifiable fragments (Table 5) and 344 not clearly assigned to a specific bone. In addition,
66 animal bones were mixed with the human remains.
The anthropological analysis indicates that at least nine individuals were placed in this
collective burial3(Table 5), very close to the estimate made by Blero in his master’s thesis
(Blero 1997b), and within the higher values observed for Belgian Mesolithic cave burials
(Table 4). Only the Abri des Autours and the Petit Ri contained more individuals. At Caverne
X the number of immature bones is very limited (Table 5), but at least two very young
individuals can be identified: a fetal individual represented by six bones, and a slightly older
juvenile represented by three bones. The first died at 28 to 32 weeks term, and was
presumably stillborn. The second is a slightly older juvenile based on the size of the
fragments, but poor preservation of the remains precludes precise assessment (perinatal
individual?). Among the seven older individuals (as determined from metacarpals and
metatarsals, Table 5), three died before reaching full skeletal maturity. One individual died
between ca
. 12 and 16 years of age (assessment based on the estimated maximum length of a
right clavicle with unfused medial epiphysis), one robust individual died between ca
. 16 and
24 years (right coxal bone) and one gracile individual died between ca
. 17 and 29 years
(based on the partial union of the medial epiphysis of a pair of clavicles). One or two of these
seven individuals might have died in childbirth and been the mother of the fetus or the
perinatal individual who had been buried with her child (as with burial 8 at the Mesolithic site
of Vedbæk, Denmark; Albrethsen and Brinch Petersen 1976).
3 A collective burial refers to the successive deposition of burials in the same feature over time (Knüsel 2014).
ISSN 0259-3548 33
Lombeau (L3),
Charleroi
OxA-6445
AMS
9015 ± 80
8450-7900
Fifth
metatarsal
Petit Ri, Malonne
OxA-5042
AMS
9270 ± 90
8740-8280
Right femur
fragment
11**
Jadin and
Carpentier
1994
Chaleux, Dinant
OxA-5679
AMS
8730 ± 80
8200-7550
Bone
2?
Cauwe et al
.
2002;
Twiesselmann
1971
Trou Magrite,
Dinant
OxA-5841
AMS
8645 ± 80
7960-7540
Bone
1?
Cauwe et al
.
2002
Trou Al'Wesse,
Modave
OxA-10561
AMS
6540 ± 45
5620-5370
Skull
fragment
3
Toussaint 2002
MM 28:2 (December 2020)
Table 5: Inventory of the human remains from Waulsort Caverne X. NF = Number of
Fragments; MNI = Minimum Number of Individuals.
Macroscopic analysis of long bone fragmentation suggests that breakage happened when the
remains were already dry. Some of them do not show any patina, demonstrating recent
fragmentation. The breakage may result from taphonomic processes like trampling,
ISSN 0259-3548 34
Bone
NF
MNI
Remarks concerning MNI
Total
Fetus
Perinatal /
young child
Skull
53
1
0
3
Mandible
3
0
0
3
At least one young adult present
Tooth
18
0
0
2
Cervical
vertebra
16
0
0
4
Thoracic
vertebra
30
0
0
2
Lumbar
vertebra
10
0
0
2
Rib
93
0
1
5
At least one teenager or young adult present
Clavicle
8
0
0
5
At least one teenager and one gracile young adult
present
Scapula
6
0
0
2
Humerus
5
1
1
4
Radius
7
1
0
3
Ulna
11
1
0
4
Carpal
3
0
0
2
Metacarpal
49
0
0
7
Hand
phalanx
55
0
0
5
Coxal
bone
20
0
0
2
At least one robust young adult present
Femur
28
1
0
6
Patella
3
0
0
3
Tibia
12
1
0
4
Fibula
22
0
1
4
Tarsal
20
0
0
6
Metatarsal
47
0
0
7
Foot
Phalanx
25
0
0
5
At least one fetus, one perinatal/young child, one
teenager, one gracile young adult, one robust
young adult present
Totals
544
6
3
90
MM 28:2 (December 2020)
movements in the sediment matrix, falling rocks from the wall of the cave or different recent
episodes of transport and manipulation. The osseous surface of the remains is rather well
preserved but shows many alterations, also mainly due to trampling. Animals identified
among the faunal remains, such as fox or badger (see below), may have created some of these
traces through burrowing activity. Moreover, some bones are partially covered by
concretions. Finally, one element is not the result of taphonomic processes, the presence of a
red colour mineral (ochre?) on a few bones (Figure 3). This demonstrates active processing or
burial. Use of ochre in burial ritual is attested throughout the European Mesolithic (Grünberg
2013a, 2015) and has been observed in several other Belgian Early Mesolithic cave burials,
including Abri des Autours (Polet and Cauwe 2007), Grotte Margaux (Toussaint 1998, 2011),
Bois Laiterie (Toussaint et al
. 1998) and Lombeau (Toussaint 1999).
Figure 3. Red colour mineral deposit (ochre?) on the femur, F2, from Caverne X, Waulsort
(→) (É. Dewamme, RBINS).
No human chewing marks, cut-marks or evidence of charring have been identified on the
Caverne X remains. Of these, only flint cut-marks have been recorded from another Belgian
Mesolithic cave burial, on a calvaria from Grotte Margaux (Toussaint 1997, 2011).
The faunal remains
All faunal remains belong to wild species with the exception of two bones of sheep or goat
(Table 6), which indicates recent intrusions with both taxa only introduced during the
ISSN 0259-3548 35
MM 28:2 (December 2020)
Neolithic (Zeuner 1963). Gnawing marks from a carnivore were recorded on one element, but
no cut marks or other human modifications were observed. The faunal remains are considered
as intrusive (sensu Gautier 1987); likely brought to the cave by scavengers such as badger or
fox, both identified among the material. Only a fragment of cervid antler could have been
introduced by humans but it is devoid of modification. Although association of faunal
remains with Mesolithic burials has been regularly reported in Europe (Grünberg 2013b), this
is not the case in Belgium. Of three Belgian Mesolithic burials with faunal remains reported,
namely Petit Ri in Malonne (Cordy 1994), Bois Laiterie in Profondeville (Gautier 1997), and
Abri des Autours in Dinant (Goffette et al. 2017), none were clearly associated with the
graves (see Table 3 for details). On the contrary, the faunal assemblages of these three sites
are chronologically heterogeneous, and traces from scavengers have been identified on
animal bones from Abri des Autours, all supporting accumulation by carnivores (Goffette et
al.
2017).
Table 6. Identified faunal remains from Waulsort Caverne X. NISP = Number of identified
specimens. *antler fragment.
The isotopic values
The δ13C and δ15N values of the human bone collagen samples from Caverne X varied from
-21.3 to -20.0‰ and +9.1 to +10.1‰, respectively (Figure 4, Table 7). These data clustered
with those already obtained on Early Mesolithic adults from the Meuse Basin (Bocherens et
ISSN 0259-3548 36
Taxa
NISP
Birds
Black grouse (Tetrao tetrix
)
1
Grey partridge (Perdix perdix
)
1
Mammals
Mole (Talpa europaea
)
1
Badger (Meles meles
)
2
Fox (Vulpes vulpes
)
3
Wild boar (Sus scrofa
)
1
Undetermined deer (Cervidae)*
1
Sheep or goat (Ovis ammon
f. aries/Capra aegagrus
f. hircus)
2
Mammal, size of hare
11
Mammal, size of sheep
17
Mammal, size of cattle/deer
8
Undetermined mammal
18
Total
66
MM 28:2 (December 2020)
al
. 2007). Published results ranged between -21.8 and -19.7‰ for δ13C and between +8.4 and
+10.5‰ for δ15N (Figure 4). We also considered the isotopic values obtained from Early
Holocene herbivores from the north of France (Leduc et al
. 2013; Drucker et al
. 2020) as
well as fish from Abri du Pape in Belgium (Drucker et al
. 2018) and Friesack 4 in northern
Germany (Meadows et al
. 2018). In the absence of data on local archaeological fauna, these
results allow us to reconstruct a baseline for the Preboreal in the Meuse Basin (Figure 4). The
isotopic shift between the collagen isotopic values of a consumer and its prey is ca
. +1‰ for
δ13C and between +3 and +5‰ for δ15N (Bocherens and Drucker 2003). Based on the mean
values calculated for the Meuse Basin humans, including from Caverne X, we expect δ13C
values centering around -21.5‰ and δ15N values ranging from ca
. +4.6 to +6.6‰. The δ13C
and δ15N values of the large herbivores from northern France cluster between -21.8 and
-21.4‰, and mainly between +3.4 and +6.5‰, which correspond to the expected ranges
described above. One exception is a wild boar with a very high δ15N value of +8.5‰, likely
linked to an omnivorous diet including a significant amount of meat protein (see Drucker et
al
. 2018). Hence, the diet of the Early Mesolithic humans from Caverne X, and other
individuals from the same region and period, is primarily based on terrestrial resources. The
dietary proteins were provided by large herbivores living in an open, likely sparsely wooded
landscape, before the extension of the temperate dense forest.
Figure 4. Plot of the δ13C and δ15N isotopic values of bone collagen from Mesolithic human
remains from Belgium (the four individuals from Waulsort Caverne X are in red) that are
plotted alongside Pre-Boreal faunal remains from Belgium, Germany and Northern France.
ISSN 0259-3548 37
MM 28:2 (December 2020)
ISSN 0259-3548 38
Site
Lab No.
Sex
Sample
Find No.
Yield
(mg/g)
%C
%N
C:N
δ13C
(‰)
δ15N
(‰)
Caverne X
WLS-7
Undet.
Left femur
L16/F4
55.5
37.0
12.9
3.4
-21.3
9.1
Caverne X
WLS-8
Undet.
Left femur
L15/F3
14.7
39.9
13.7
3.4
-20.0
9.4
Caverne X
WLS-9
Undet.
Left femur
L14/F2
106.7
40.2
14.0
3.3
-20.3
9.6
Caverne X
WLS-10
Undet.
Left femur
L17/F5
90.2
39.0
13.6
3.3
-20.3
10.1
Loverval
MT600
Undet.
Skull
LOV 2
(CR2)
97.6
40.5
14.5
3.2
-20.2
9.6
Loverval
MT700
Undet.
Skull
LOV 1
(CR1)
85.4
40.5
14.4
3.3
-20.7
9.0
Margaux
MT800
Female
Skull
MG CR1
147.6
42.5
15.7
3.2
-20.3
9.3
Margaux
MT900
Female
Skull
MG CR2
150.7
41.9
15.4
3.2
-20.4
9.2
Margaux
MT1000
Female
Skull
MG CR3
80.8
41.6
15.3
3.2
-20.3
9.4
Margaux
MT1100
Female
Skull
MG CR4
89.5
42.6
15.6
3.2
-20.0
9.7
Margaux
MT1200
Female
Skull
MG CR5
95.3
41.6
15.3
3.2
-20.5
9.6
Margaux
MT1300
Female
Skull
MG CR6
159.6
42.0
15.4
3.2
-20.4
9.7
Margaux
MT1400
Female
Skull
MG CR7
41.6
42.4
15.6
3.2
-19.8
10.3
Margaux
MT1500
Female
Skull
MG CR8
19.4
40.3
14.9
3.2
-20.3
10.1
Margaux
MT1600
Female
Skull
MG CR9
85.9
42.8
15.8
3.2
-20.4
9.5
Bois Laiterie
MT1700
Undet.
Left humerus
BL1
44.7
42.8
15.7
3.2
-20.3
9.4
Bois Laiterie
MT1800
Undet.
Left humerus
BL2
78.7
43.6
16.0
3.2
-20.6
9.1
Bois Laiterie
MT1900
Undet.
Left humerus
BL3
77.0
42.7
15.7
3.2
-20.6
8.9
Claminforge
MT2000
Undet.
Vertebra
CLAM1
46.6
40.7
14.9
3.2
-19.7
10.5
Grotte
Lombeau
MT2100
Undet.
Skull
LomB 1
32.9
38.4
14.0
3.2
-20.6
9.7
Grotte
Lombeau
MT2200
Undet.
Skull
LomB 2
36.5
38.0
14.1
3.1
-20.9
9.8
Grotte
Lombeau
MT2300
Undet.
Jawbone
LomB 3
100.8
42.6
15.6
3.2
-20.6
10.1
Abri des
Autours 3
BM-14
Female
Rib
169.1
43.6
15.8
3.2
-20.3
9.2
Abri des
Autours 2
BM-10
Female
Femur
25.2
40.7
14.8
3.2
-19.9
9.6
Abri des
Autours 2
BM-44
Undet.
Ulna
27.8
31.8
12.5
3.0
-20.9
8.4
Abri des
Autours 2
BM-45
Undet.
Ulna
167.1
38.2
13.7
3.3
-21.8
10.5
Abri des
Autours 2
BM-46
Undet.
Ulna
62.7
40.2
14.7
3.2
-21.0
10.2
Petit Ri
(Malonne)
BM-65
Undet.
Skull
151.3
41.7
15.0
3.2
-20.4
9.5
MM 28:2 (December 2020)
Table 7. Results of collagen extraction (yield), elemental (C, N, C:N), and isotopic (δ13C,
δ15N) analyses of adult individuals from Waulsort Caverne X and other Early Mesolithic sites
from the Meuse Basin, Belgium.
Conclusion
The 19th century excavation of Caverne X of Waulsort uncovered a collective burial now
dated to the Early Mesolithic, and not to the Final Upper Paleolithic as suggested by an initial
radiocarbon analysis in the 1990’s. These remains belong to a minimum of nine individuals,
with a diet primarily based on terrestrial resources from open, and likely slightly wooded,
landscape. Some of the deceased were sprinkled with ochre. The cave also contained
intrusive faunal remains, with the possible exception of a fragment of cervid antler, and a
single stone artefact. The burial of Caverne X thus fits well with previous results for Meuse
Basin cave burials in terms of chronology, MNI, funerary rituals and diet.
Further research on the Caverne X individuals will include a new dating of the supposed
Final Upper Paleolithic specimen, using newer AMS methods, to determine whether or not
the first date was correct and a never-before seen burial event in the prehistory of the Meuse
River Basin. We also plan a palaeopathological study including stress occupational markers
and their non-metric traits. The data will be incorporated in large scale studies dealing with
funerary rituals and lifestyle reconstruction and will allow us to document these overlooked
populations.
Acknowledgments
We are grateful to Patrick Semal, head of the Heritage Department of the Royal Belgian
Institute of Natural Sciences for providing us access to the Waulsort collection. We also
thank Laurence Cammaert and Anne-Marie Wittek (Association pour la Diffusion de
l'Information Archéologique) for drawing the map of Belgium and Éric Dewamme (RBINS)
for taking the picture of the femur with ochre. Thank you to Tom Higham (Oxford
Radiocarbon Accelerator Unit) for constructive discussion on the first dating of the Caverne
X human performed in 1997.
ISSN 0259-3548 39
Faille du
Burin
MT6800
Undet.
Right fifth
metatarsal
Burin1
40.3
41.8
15.3
3.2
-20.1
10.0
Faille du
Burin
MT6900
Undet.
Right fifth
metatarsal
Burin2
176.0
43.5
16.0
3.2
-21.0
9.4
Faille du
Burin
MT7000
Undet.
Right fifth
metatarsal
Burin3
111.1
42.7
15.6
3.2
-20.3
10.4
Mean
-20.5
9.6
SD
0.4
0.5
MM 28:2 (December 2020)
References
Albrethsen, S.-E. & Brinch Petersen, E. (1976) Excavation of a Mesolithic Cemetery at Vedbæk,
Denmark. Acta Archaeologica
47, 1-28.
Ambrose, S.H. (1990) Preparation and characterization of bone and tooth collagen for isotopic
analysis. Journal of Archaeological Science
17, 431-451,
https://doi.org/10.1016/0305-4403(90)90007-R
Amkreutz, L., Verpoorte, A., Waters-Rist, A., Niekus, M., van Heekeren, V., van der Merwe, A. &
Johansen, L. (2018) What lies beneath ... Late Glacial human occupation of the submerged North Sea
landscape. Antiquity
, 92(361), 22-37, https://doi.org/10.15184/aqy.2017.195
Blero, P. (1997a) Peut-on tirer parti des collections anciennes ? L'exemple de l'étude des ossements
humains de la Caverne O (Waulsort, Namur). Notae Praehistoricae
17, 169-176.
Blero, P. (1997b) Étude des neuf ensembles sépulcraux néolithiques de Waulsort (province de Namur,
Belgique)
. Mémoire de Licence en Histoire de l'Art et Archéologie, Université Libre de Bruxelles,
Bruxelles.
Bocherens, H. & Drucker, D. (2003) Trophic level isotopic enrichment of carbon and nitrogen in bone
collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of
Osteoarchaeology
13, 46-53, https://doi.org/10.1002/oa.662
Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M. & Mariotti, A. (1997)
Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina
Cave (Sclayn, Belgium). Quaternary Research
48, 370-380, https://doi.org/10.1006/qres.1997.1927
Bocherens, H., Polet, C. & Toussaint, M. (2007) Palaeodiet of Mesolithic and Neolithic populations of
Meuse Basin (Belgium): Evidence from stable isotopes. Journal of Archaeological Science
34, 10-27,
https://doi.org/10.1016/j.jas.2006.03.009
Boucquey, A. (2010-2011) L’ensemble des neuf cavernes ‘sépulcrales’ de Waulsort (Namur). Étude du
matériel et des occupations
. Mémoire de Master en Histoire de l’Art et Archéologie, Université Libre
de Bruxelles, Bruxelles.
Boucquey, A. (2012) L’ensemble des neuf cavernes de Waulsort (comm. d’Hastière, Prov. de Namur,
B). Étude du matériel et des occupations. Notae Praehistoricae
32, 295-319.
Boulestin, B. (1999) Approche taphonomique des restes humains. Le cas des Mésolithiques de la grotte
des Perrats et le problème du cannibalisme en préhistoire récente européenne. British Archaeological
Reports International Series 776, Oxford, Archaeopress.
Braüer, G. (1988) Osteometrie in anthropologie. In R. Knussmann (ed) Anthropologie
, 160-231.
Gustav Fisher Verlag, Stuttgart.
Bronk Ramsey, C. (2017) OxCal 4.3 manual. https://c14.arch.ox.ac.uk/OxCal.html
Cauwe, N. (1995) Chronologie des sépultures de l’abri des Autours, à Anseremme-Dinant. Notae
Praehistoricae
15, 51-60.
Cauwe, N. (2004) Les sépultures collectives néolithiques en grotte du Bassin mosan. Bilan
documentaire. Anthropologica et Praehistorica
115, 217-224.
Cauwe, N., Orban, R. & Polet, C. (2002) Belgium. Prehistoric cave burials. In C. Bronk Ramsey,
T.F.G. Higham, D.C. Owen, A.W.G. Pike & R.E.M. Hedges (eds) Radiocarbon dates from the Oxford
AMS System: Archaeometry Datelist 31, Archaeometry
44(3), supplement 1, 8-10.
Cauwe, N. & Toussaint, M. (1993) La sépulture collective de la Grotte Margaux
. L’archéologie en
Région wallonne, Dossier de la Commission royale des Monuments, Sites et Fouilles 1, 17-20.
Cordy, J.-M. (1994) Étude de la faune de la Grotte du Petit Ri à Malonne. Anthropologica et
Praehistorica
105, 87-91.
DeNiro, M.J. (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in
relation to palaeodietary reconstruction. Nature
317, 806, https://doi.org/10.1038/317806a0
De Spiegeleire, M.A. (1985) Caverne T de Waulsort : étude ostéologique. Revue du Nord LXVII(264),
162-164.
Dewez, M., Cordy, J.-M. & Groessens-Van Dyck, M.-C. (1995) La Grotte de La Martina (Dinant,
Belgique) et sa sépulture mésolithique. C.R. Acad. Sc. Paris
, 321, série IIA, 639-641.
ISSN 0259-3548 40
MM 28:2 (December 2020)
Domínguez-Rodrigo, M., de Juana, S., Galán A.B. & Rodríguez, M. (2009) A new protocol to
differentiate trampling marks from butchery cut marks. Journal of Archaeological Science 36(12),
2643-2654, https://doi.org/10.1016/j.jas.2009.07.017
Drucker, D.G., Valentin, F., Thevenet, C., Mordant, D., Cottiaux, R., Delsate, D. & Van Neer, W.
(2018) Aquatic resources in human diet in the Late Mesolithic in Northern France and Luxembourg:
Insights from carbon, nitrogen and sulphur isotope ratios. Archaeological and Anthropological
Sciences
10(2), 351-368, https://doi.org/10.1007/s12520-016-0356-6
Drucker, D.G., Bridault, A., Ducrocq, T., Baumann, C. & Valentin, F. (2020) Environment and human
subsistence in Northern France at the Late-Glacial to early Holocene transition. Archaeological and
Anthropological Sciences
18(8), 1-16, https://doi.org/10.1007/s12520-020-01149-4
Dupont, E. (1864) Projet de recherches paléontologiques dans les grottes de la Belgique. Lettre
adressée à la classe des sciences. Bulletin de l'Académie Royale des Sciences Naturelles
, 2ème Série, 17,
25-27.
Fiedel, S.J., Southon, J.R., Taylor, R.E., Kuzmin, Y.V., Street, M., Higham, T.F.G., van der Plicht, J.,
Nadeau, M.-J. & Nalawade-Chavan, S., 2013. Assessment of interlaboratory pretreatment protocols by
radiocarbon dating an elk bone found below Laacher See tephra at Miesenheim IV (Rhineland,
Germany). Radiocarbon
55(2-3), 1443-1453, https://doi.org/10.1017/S0033822200048372
Gautier, A. (1987) Taphonomic groups, how and why? Archaeozoologica
12, 47-52.
Gautier, A. (1997) The macromammal remains of la Grotte du Bois Laiterie. In M. Otte & L.G. Straus
(eds) La grotte du Bois Laiterie (Études et Recherches archéologiques de l’Université de Liège 80),
177-196, Presses Universitaires de Liège, Liège.
Goffette, Q., Rots, V., Polet, C., Cauwe, N., Smith, R., Smith, T. (2017) The worked bone industry and
intrusive fauna associated with the prehistoric cave burials of Abri des Autours (Belgium).
Anthropozoologica
52, 185-201.
Grünberg, J.M. (2013a) Rot in paläolithischen und mesolithischen Bestattungen. In H. Meller, C.-H.
Wunderlich & F. Knoll (eds) Rot - Die Archäologie bekennt Farbe. 5. Mitteldeutscher Archäologentag
vom 4.-6. Oktober 2012 in Halle. Tagungen des Landesmuseums für Vorgeschichte Halle 10, 121-134.
Grünberg, J.M. (2013b) Animals in Mesolithic burials in Europe. Anthropozoologica
48, 231-253.
Grünberg, J.M. (2015) Red colour in Mesolithic burial rites. In N. Bicho, C. Detry, T.D. Price & E.
Cunha (eds) Muge 150th: The 150th Anniversary of the Discovery of Mesolithic Shellmiddens 2,
253-265, Cambridge Scholars Publishing, Cambridge.
Jadin, I. & Carpentier, M. (1994) La sépulture mésolithique du Petit Ri à Malonne (Namur, Belgique).
Contexte archéologique et position chronologique. Anthropologie et Préhistoire
105, 65-82.
Knüsel C.J. (2014). Crouching in fear: Terms of engagement for funerary remains. Journal of Social
Archaeology
14(1), 26-58, https://doi.org/10.1177/1469605313518869
Leduc, C., Bridault, A., Souffi, B., David, É. & Drucker, D.G. (2013) Apports et limites de l'étude des
vestiges fauniques à la caractérisation d'un site mésolithique de plein air à Paris : «62 rue
Henry-Farman» (15e arrondissement). Bulletin de la Société préhistorique française
110, 257-280.
Longin, R. (1971) New method of collagen extraction for radiocarbon dating. Nature
230, 241-242,
https://doi.org/10.1038/230241a0
Meadows, J., Robson, H.K., Groß, D., Hegge, C., Lübke, H., Schmölcke, U., Terberger, T. & Gramsch,
B. (2018) How fishy was the inland Mesolithic? New data from Friesack, Brandenburg,
Germany. Radiocarbon
60, 1621-1636, https://doi.org/10.1017/RDC.2018.69
Meiklejohn, C., Miller R. & Toussaint M. (2014) Radiocarbon dating of Mesolithic human remains in
Belgium and Luxembourg. Mesolithic Miscellany
22 (2), 10-39.
Orban, R. (2010) François Twiesselmann, Lila Defrise et André Leguebe : acteurs de l’émergence et du
développement de l’anthropobiologie à l’Institut royal des Sciences naturelles de Belgique (IRSNB)
entre 1936 et 1989. Bulletins et Mémoires de la Société d'Anthropologie de Paris
22, 108-116.
Polet, C. & Cauwe, N. (2007) Étude anthropologique des sépultures préhistoriques de l'abri des
Autours (Province de Namur, Belgique). Anthropologica et Praehistorica
118, 89-128.
ISSN 0259-3548 41
MM 28:2 (December 2020)
Orschiedt, J. (2018) The Late Upper Palaeolithic and earliest Mesolithic evidence of burials in Europe.
Philosophical Transactions of The Royal Society, B Biological Sciences 373(1754), 20170264,
https://doi.org/10.1098/rstb.2017.0264
Rahir, E. (1925) Les habitats et sépultures préhistoriques de la Belgique. Bulletin de la Société
d'Anthropologie de Bruxelles
40, 3-89.
Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Bronk Ramsey, C., Buck C.E., Cheng, H.,
Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason H., Hajdas I., Hatté, C.,
Heaton, T., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu
M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon J.R., Staff, R.A., Turney C.S.M. & Van der
Plicht, J. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP.
Radiocarbon
55(4), 1869-1887, https://doi.org/10.2458/azu_js_rc.55.16947
Samsel, M. (2018) Microévolution et bioarchéologie des groupes humains de la fin du Pléistocène et
du début de l'Holocène en Europe occidentale : apports de l'anthropologie biologique aux
connaissances sur le Paléolithique final et le Mésolithique
. Thèse de doctorat, Université de Bordeaux.
Schaefer, M., Black, S., & Scheuer, L. (2009) Juvenile osteology: A laboratory and field manual
.
Academic Press, London.
Shipman, P. (1981) Life history of a fossil: An introduction to taphonomy and paleoecology
. Harvard
University Press, Cambridge.
Stockmans, F. (1965) Notice sur Édouard, François Dupont, membre de l’Académie royale de
Belgique. Annuaire de l’Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique 131,
28-57.
Stockmans, F. (1971) Dupont, (Édouard-François). Biographie nationale
37, 255-261.
Stockmans, F. (1983) De Pauw, Louis. Biographie Nationale
43 (Supplément, t. XV, fasc. 1), 563-571.
Toussaint, M. (1997) Dinant, Anseremme. Stries intentionnelles sur un crâne humain du Mésolithique
ancien de la «Grotte Margaux». In M.-H. Corbiau (ed) Le Patrimoine archéologique de Wallonie
,
154-155, Division du Patrimoine, DGATLP, Namur.
Toussaint, M. (1998) Approche anthropologique des ossements humains mésolithiques anciens de la
grotte Margaux, à Dinant. In N. Cauwe (ed) La grotte Margaux à Anseremme-Dinant. Étude d’une
sépulture collective du Mésolithique ancien (Études et Recherches archéologiques de l’Université de
Liège 59), 39-44, Presses Universitaires de Liège, Liège.
Toussaint, M. (1999) Charleroi/Mont-sur-Marchienne : contexte des datations radiocarbones des
sépultures collectives de la grotte Lombeau. Chronique de l’Archéologie wallonne
7, 25-27.
Toussaint, M. (2002) Problématique chronologique des sépultures du Mésolithique mosan en milieu
karstique. Notae Praehistoricae
22, 141-166.
Toussaint, M. (2010) Les sépultures mésolithiques du bassin mosan wallon : où en est la recherche en
2010 ? Bulletin des Chercheurs de la Wallonie
, hors-série n°2, 69-86.
Toussaint, M. (2011) Intentional cutmarks on an Early Mesolithic human calvaria from Margaux Cave
(Dinant, Belgium). American Journal of Physical Anthropology 144(1), 100-107,
https://doi.org/10.1002/ajpa.21375
Toussaint, M. (2013) Transitions, ruptures et continuité dans les pratiques sépulcrales préhistoriques du
karst mosan belge et de ses abords. In J. Jaubert, N. Fourment & P. Depaepe (eds) Transitions, ruptures
et continuité en Préhistoire
, Proceedings of the XXVIIth Congrès préhistorique de France,
Bordeaux/Les Eyzies (31.05- 05.06.2010), 183-200. Société préhistorique française, Avignon.
Toussaint, M. & Lacroix, P. (2002) Andenne/Thon : la Faille du Burin à Samson, une nouvelle
sépulture collective du Mésolithique ancien. Chronique de l’Archéologie wallonne
10, 228-230.
Toussaint, M., Lopez-Bayon, I., Lambermont, S. & Lacroix, P. (1998) Profondeville : fouille en
laboratoire de la sépulture du «Bois Laiterie». Chronique de l’Archéologie wallonne
6, 159-160.
Toussaint, M., Orban, R., Polet, C., Semal, P., Bocherens, H., Masy, P. & Garcia Martin, C. (2001)
Apports récents sur l'anthropologie des Mésolithiques et des Néolithiques mosans. Anthropologica et
Praehistorica
112, 91-105.
Toussaint, M. & Ramon, F. (1997) Les ossements humains présumés mésolithiques de la grotte de La
Martina, à Dinant, ne seraient-ils pas plutôt néolithiques ? Notae Praehistoricae
17, 157-167.
ISSN 0259-3548 42
MM 28:2 (December 2020)
Toussaint, M., Ramon, F. & Dewez, M. (1996) L’ossuaire mésolithique ancien de la grotte de
Claminforge à Sambreville (prov. de Namur). In Actes de la Quatrième Journée d’Archéologie
namuroise
, 19-32.
Twiesselmann, F. (1971) Belgium. In K.P. Oakley, B.G. Campbell & T.I. Molleson (eds) Catalogue of
Fossil Hominids
, Part II: Europe, 5-13. British Museum (Natural History), London.
Villa, P. & Mahieu, E. (1991) Breakage patterns of human long bones. Journal of Human Evolution 21
(1), 27-48.
Walker, M., Head, M. J., Berkelhammer, M., Bjorck, S., Cheng, H., Cwynar, L., Fisher, D., Gkinis, V.,
Long, A., Lowe, J., Newnhamil, R., Rasmussen, S.O. & Weiss, H. (2018) Formal ratification of the
subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary
Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes
41(4), 213-223.
Warmenbol, E. (1981) Céramiques des champs d'urnes à Waulsort. Bulletin du Club Archéologique
Amphora
23, 2-7.
Warmenbol, E. (1982a) Waulsort, du Néolithique à l'Époque romaine. In A. Wayens (ed) Notes
waulsortoises
. Tome II, Waulsort, Éditions du Pairy, 255-341.
Warmenbol, E. (1982b) Le Vi Chestia de Waulsort (Hastière, Namur), Bulletin du Club Archéologique
Amphora
27, 20-27.
Warmenbol, E. (1983a) Urnenfelderzeitliche Keramik von Waulsort bei Namur. Archäologisches
Korrespondenzblatt
13(1), 59-63.
Warmenbol, E. (1983b) Un ossuaire à céramique des Champs d'Urnes à Waulsort (Hastière, Namur).
Helinium
23(1), 46-56.
Warmenbol, E. (1985) Une grotte fréquentée au Néolithique Moyen à Waulsort, en province de Namur
(Belgique). Revue du Nord
, 67(264), 151-161.
Warmenbol, E. (1992) L'âge du Bronze en Haute Belgique. État de la question. Annales de la Societé
archéologique de Namur
67, 149-183.
Warmenbol, E. (1993) L'occupation préhistorique et protohistorique de la calestienne orientale. De la
Meuse à l'Ardenne
16, 199-211.
Warmenbol, E. (1995) L'âge du Bronze final en Haute Belgique : bilan et perspectives. In Beiträge zur
Urnenfelderzeit nördlich und südlich der Alpen. Ergebnisse eines Kolloquiums
,
Römisch-Germanisches Zentralmuseum. Monographien 35, Bonn, 65-90.
Zeuner, F.E. (1963) A History of domesticated animals
. Hutchinson, London.
ISSN 0259-3548 43
... Cave sites have been frequently used by Early Holocene huntergatherers throughout Europe. Mesolithic settlement traces have been recognised in multiple cave sites, e.g., in Bohemia, Spain, Greece and the Alpine Chain (Arias et al., 2009;Galanidou, 2011;Orschiedt et al., 2012;Mlekuž, 2012;Pignat and Plisson, 2000;Polet et al., 2020;Svoboda et al., 1983Svoboda et al., , 2007Svoboda et al., , 2013Svoboda et al., , 2018Svoboda et al., , 2007Svoboda et al., , 2018 but also in Northern Europe, in Norway (Bergsvik and Storvik, 2012). Moreover, cave sites were often used for funeral practices during the Mesolithic (Arias et al., 2009;Meiklejohn et al., 2010Meiklejohn et al., , 2011Meiklejohn et al., , 2011Schulting, 2016;Grünberg et al., 2016). ...
Article
Although multiple Mesolithic cave sites have been recognised in Europe, the use of such sites by Early Holocene hunter gatherers was extremely scarce north of the Carpathians. Single Mesolithic artefacts have been found thus far only in six cave sites in Poland. The rich Early Mesolithic assemblage found in Bramka Rockshelter in southern Poland seems to be quite extraordinary in such a context. The site was excavated over 50 years ago, but the results have never been published or analysed beyond a short mention of child burial found in the Mesolithic context. The paper presents new radiocarbon dates obtained for the Mesolithic occupation and the child burial, showing the Early Holocene chronology of the Komornician assemblage and the Late Bronze Age/Early Iron Age chronology of the burial. The assemblage's techno-typological analysis allowed us to identify six human occupation phases at the site, with the most intensive phase connected to the Mesolithic. Comparative analyses of other Mesolithic assemblages from the region, together with an extremely high percentage of debitage found in the Bramka Rockshelter assemblage, allow us to discuss the possibility of identifying the site as a knapping workshop located in the vicinity of Jurassic flint outcrops.
Article
Full-text available
The Late Glacial and early Holocene (ca. 15,000–6,000 cal BP) witnessed major changes in the environmental conditions which led to the establishment of temperate vegetation and animal species, thereby offering new subsistence opportunities to the population of hunter-gatherers. Measurements of the relative abundances in 13C and 15N were applied to large herbivores from northern France to document the change in their habitat. During the early Holocene, red deer show a decrease in δ13C values most likely reflecting the effect of a dense canopy and an increase in δ15N values probably linked to the increased soil activity of soils in foraged territories. Aurochs and roe deer δ13C values also revealed a more densely forested habitat at the end of the Preboreal, while the δ13C values of the wild boar indicate dependence on fruits and underground tubers that were not affected by the canopy effect. Three human individuals from Val-de-Reuil and La Chaussée-Tirancourt dated to the Preboreal period provided relatively high δ15N values when compared with the local fauna and other early Mesolithic humans, which might have resulted from the consumption of freshwater resources especially at Val-de-Reuil. The δ34S values appear to depend more on the geographical location of the individual, as demonstrated by the difference among wild boar δ34S values between sites, rather than related to the protein source of the diet, namely, terrestrial versus aquatic. Our results confirm the influence of the forest ecosystem on the environment and diet of the considered early Mesolithic human of northern France, while the possible contribution of the aquatic ecosystem still needs to be documented.
Article
Full-text available
Recent studies have shown that faunal assemblages from Mesolithic sites in inland Northern Europe contain more fish remains than previously thought, but the archaeological and archaeozoological record does not reveal the dietary importance of aquatic species to hunter-gatherer-fishers, even at a societal level. For example, the function of bone points, as hunting weapons or fishing equipment, has long been debated. Moreover, traditional methods provide no indication of variable subsistence practices within a population. For these reasons, paleodietary studies using stable isotope analyses of human remains have become routine. We present radiocarbon (14 C) and stable isotope data from nine prehistoric human bones from the Early Mesolithic-Early Neolithic site of Friesack 4, and isotopic data for local terrestrial mammals (elk, red deer, roe deer, wild boar, aurochs, beaver) and freshwater fish (European eel, European perch). The reference data allow individual paleodiets to be reconstructed. Using paleo-diet estimates of fish consumption, and modern values for local freshwater reservoir effects, we also calibrate human 14 C ages taking into account dietary reservoir effects. Although the number of individuals is small, it is possible to infer a decline in the dietary importance of fish from the Preboreal to the Boreal Mesolithic, and an increase in aquatic resource consumption in the Early Neolithic.
Thesis
Full-text available
La fin du Pléistocène et le début de l’Holocène sont marqués par des bouleversements environnementaux d’une ampleur et d’une intensité exceptionnelles en Europe de l’Ouest. Ces quelque huit millénaires ont été scindés en périodes chronoculturelles principalement à partir de critères typotechnologiques de l’industrie lithique, correspondant au Paléolithique final, et au premier et au second Mésolithique. L’identité biologique des groupes humains de cette période n’avait jusqu’alors jamais été étudiée de façon spécifique et la réalité anthropologique de ces partitions pose question. À partir d’un corpus réactualisé de 70 sites couvrant les territoires actuels de la France, de l’Allemagne, de la Belgique, du Luxembourg, de la Suisse, de l’Italie, de l’Espagne et du Portugal, ce sont 617 spécimens pour les restes osseux et 251 pour les restes dentaires qui ont été analysés. Des caractéristiques squelettiques ont été enregistrées et analysées selon un protocole unique : proportions squelettiques comme la stature, l’indice brachial et l’indice crural, morphométrie crânienne et mandibulaire, analyse par morphométrie géométrique de la conformation du neurocrâne et variations anatomiques non métriques crâniennes et dentaires. L’ensemble des données recueillies a fait l’objet de traitements statistiques adaptés, descriptifs, multivariés et exploratoires. Parmi les résultats obtenus, l’analyse métrique et morphologique de la mandibule révèle des changements microévolutifs de la morphologie mandibulaire en lien avec l’intensification de l’élargissement du spectre des ressources consommées au cours du Mésolithique. Un fonctionnement différent des groupes est proposé entre ceux établis sur les zones côtières et les continentaux. Les groupes côtiers seraient organisés selon un système plutôt fermé, traduit par la structuration régionale des données anthropobiologiques, alors que les groupes continentaux, bien qu’ayant un ancrage local, possèderaient des réseaux d’échanges plus larges et/ou plus réguliers. Enfin, la permanence des groupes humains du Paléolithique final au Mésolithique est avancée, ainsi qu’au sein des zones côtières durant tout le Mésolithique, alors qu’une discontinuité populationnelle entre premier et second Mésolithique est mise en évidence dans l’aire continentale. L’hypothèse d’une arrivée de nouveaux groupes depuis les régions situées plus à l’est, poussés par la progression néolithique en Europe centrale à partir du VIIème millénaire cal BC est avancée, rejoignant un des scenarii proposés à partir de l’analyse de l’ADN ancien.
Article
Full-text available
Archaeological evidence from the submerged North Sea landscape has established the rich diversity of Pleistocene and Early Holocene ecosystems and their importance to hunter-gatherer subsistence strategies. Comparatively little of this evidence, however, dates to the Late Glacial, the period when Northern Europe was repopulated by colonising foragers. A human parietal bone and a decorated bovid metatarsus recently recovered from the floor of the North Sea have been dated to this crucial transitional period. They are set against the background of significant climatic and environmental changes and a major technological and sociocultural transformation. These discoveries also reaffirm the importance of continental shelves as archaeological archives.
Article
Full-text available
We investigated the contribution of freshwater resources to the diet of seven Late Mesolithic hunter-gatherers (ca. 5300–7000 BC) from Northern France and Luxembourg using stable isotope ratios. In addition to the carbon and nitrogen stable isotope ratios (δ13C, δ15N), we explored the potential of the sulphur isotopic ratios (δ34S) to detect and quantify the proportion of protein derived from aquatic foodstuff. In only two sites, animal remains from an associated settlement were available and subsequently examined to decipher the isotopic differential between terrestrial and freshwater resources. The quantification of their relative contribution was simulated using a Bayesian mixing model. The measurements revealed a significant overlap in δ13C values between freshwater and terrestrial resources and a large range of δ15N values for each food category. The δ34S values of the aquatic and terrestrial animals were clearly distinct at the settlement in the Seine valley, while the results on fish from Belgium demonstrated a possible overlap in δ34S values between freshwater and terrestrial resources. Local freshwater ecosystem likely contributed to ca. 30–40 % of the protein in the diet of the individuals found in the Seine settlement. Out of this context, the isotopic signature and thus contribution of the available aquatic foods was difficult to assess. Another potential source of dietary protein is wild boar. Depending on the local context, collagen δ34S values may contribute to better assessment of the relative contribution of freshwater and terrestrial resources.
Article
The Holocene is probably the most intensively studied series/epoch within the geological record, and embodies a wide array of geomorphological, climatic, biotic and archaeological evidence; yet little attention has hitherto been paid to a formal subdivision of this series/epoch. Here we report a tripartite division of the Holocene into the Greenlandian, Northgrippian and Meghalayan stages/ages and their corresponding Lower/Early, Middle, Upper/Late subseries/subepochs, each supported by a Global Boundary Stratotype Section and Point (GSSP). The GSSP for the lowermost stage, the Greenlandian, is that of the Holocene as previously defined in the NGRIP2 Greenland ice core, and dated at 11,700 yr b2k (before 2000 CE). The GSSP for the Northgrippian is in the NGRIP1 Greenland ice core, and dated at 8236 yr b2k, whereas that for the Meghalayan is located in a speleothem from Mawmluh Cave, Meghalaya, northeast India with a date of 4250 yr b2k. The proposal on which this subdivision is based was submitted by the Subcommission on Quaternary Stratigraphy, approved by the International Commission on Stratigraphy, and formally ratified by the Executive Committee of the International Union of Geological Sciences on 14 th June 2018. © 2018 International Union of Geological Sciences. All Rights Reserved.
Article
Burials of the Late Palaeolithic (14 000–11 600 cal years before present, henceforth BP) are a rare phenomenon in Europe. Several sites possess burials of single and double individuals. As with the preceding Magdalenian, the burial of more than two individuals in the same grave cutting seems to be unusual, but does occur occasionally. The deposition of isolated and disarticulated human remains with or without cut marks seems additionally to belong to the Magdalenian context. In the final Palaeolithic phase (13 000–11 600 cal years BP) there is evidence for cemetery-like clusters of burials, which contrast to the Magdalenian evidence, instead showing some similarities with the succeeding Mesolithic. The earliest Mesolithic burials 11 600–10 500 cal BP) are a very rare phenomenon, covering a short time span between the beginning of the Preboreal and the beginning of the Boreal phase of the early Holocene. Here the evidence includes single inhumations, cemetery-like structures and a number of isolated human remains. Caves and rock shelters were the most common places for inhumations in both the final Palaeolithic and the early Mesolithic. Although the number of sites with a chronological continuity from the LUP to the Early Mesolithic burial is low, several aspects indicate a general continuity in burial patterns over this period. Apart from this continuity, the Mesolithic burials in general seem to represent a new level of diversity in burial practices. This article is part of the theme issue ‘Evolutionary thanatology: impacts of the dead on the living in humans and other animals’.