Content uploaded by Mustafa Al-Chalabi
Author content
All content in this area was uploaded by Mustafa Al-Chalabi on Dec 17, 2020
Content may be subject to copyright.
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 1/8
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-.
Neuroanatomy, Posterior Column (Dorsal Column)
Authors
Mustafa Al-Chalabi ; Vamsi Reddy ; Ihsan Alsalman .
Affiliations
Campbell University School Of OM
Medical College of Georgia
Cape Coral Hospital
Last Update: July 31, 2020.
Introduction
The dorsal column, also known as the dorsal column medial lemniscus pathway, deals with the conscious appreciation
of fine touch, 2-point discrimination, conscious proprioception, and vibration sensations from the body; sparing the
head. In the spinal cord, this pathway travels in the dorsal column, and in the brainstem, it is transmitted through the
medial lemniscus hence the name dorsal column-medial lemniscus pathway. Phylogenetically, this is a relatively new
pathway and serves as a highly localizable and discriminative sensation.
There are three order neurons involved in this pathway that orchestrate signal transmission from the skin and joints to
the cerebral cortex. The cell body of the dorsal root ganglia, which is composed of pseudounipolar neurons,
characterizes the first-order neuron of the pathway. The pseudounipolar neurons contain peripheral (distal) and central
(proximal) axonal processes. The peripheral (distal) axons receive various signal input from the skin via the receptors
associated with the dorsal column medial lemniscus pathway. These receptors classify as two types: tactile
mechanoreceptors and conscious proprioception.
Tactile mechanoreceptors include Meissner's corpuscles, which are concerned with a fine touch and two-point
discrimination and free nerve endings on hair follicles, which is concerned with a fine touch, and lastly, Pacinian
corpuscles which deal with pressure sense and vibration sense. Whereas, conscious proprioception include muscle
spindles Golgi tendon organs which detect muscle length and contraction changes contributing to fine motor control
and axial position information to the nervous system.[1][2][3]
After receiving the sensory input from the periphery via the mechanoreceptor and conscious receptors, the central
(proximal) axons of the dorsal root ganglia enter the spinal cord through the medial dorsal root entry zone. Once in
the spinal cord, the central axonal process gives off small collateral branches that will terminate in the spinal gray
matter to facilitate spinal reflexes. The majority of the central axonal process, however, will leave the dorsal horn gray
matter without synapsing and enter the dorsal funiculus to help constitute either the fasciculus gracilis or the
fasciculus cuneatus. Fasciculus gracilis carries sensory information associated with the DCML pathway from the
lower extremities and terminates and synapses at the nucleus gracilis in the caudal medulla. It is located medial
relative to the fasciculus cuneatus and travels all along the spinal cord.
On the other hand, fasciculus cuneatus carries sensory information associated with the DCML pathway from the
upper extremities. Thus, it is located at T6 and above. Similarly to the fasciculus gracilis, fasciculus cuneatus
terminates and synapses at nucleus cuneatus, which is in the caudal medulla. Nucleus cuneatus, which receives axons
from the fasciculus cuneatus, is located medially to nucleus gracilis, which receives axons from fasciculus gracilis.
Both nucleus cuneatus and nucleus gracilis represent the second-order neuron of the DCML pathway. The internal
arcuate fibers are axons that emerge ventrally from the dorsal column nuclei and, of course, ventromedially through
the medullary tegmentum, ultimately crossing the midline. At this point is where the DCML pathway decussates. The
internal arcuate fibers on the contralateral side of medulla will come together to form the medial lemniscus. The
1 2 3
1
2
3
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 2/8
medial lemniscus travels through the brainstem with a preserved somatotopic arrangement where the ventral fibers
arising from the nucleus gracilis and dorsal fibers arising from the nucleus cuneatus.
The medial lemniscus terminates and synapses in the thalamus particularly, in the ventral posterolateral (VPL)
nucleus of the thalamus with the preservation of the somatotopy. VPL neurons are third-order neurons of the pathway,
and its axons will project laterally out of the thalamus and course somatotopically through the posterior limb of the
internal capsule and then terminating in the primary somatosensory cortex of the postcentral gyrus. The tracts of
DCML pathway starting from the fasciculus gracilis and fasciculus cuneatus all way to the primary somatosensory
cortex have a preserved somatotopic arrangement where the cervical axons are medial and sacral axons are lateral.
This somatotopic arrangement resembles that of the motor cortical spinal tract and differs from the spinothalamic
tract.
Structure and Function
The primary function of the posterior column pathway is to convey sensory information regarding fine touch, two-
point discrimination, conscious proprioception, and vibration sensations from our skin and joints, excluding the head
to the postcentral gyrus in the cerebral cortex.[4][5][6][7][8]
Embryology
The dorsal horn is derived embryologically from the alar plate, which is a dorsal thickening of the neural tube,
whereas the motor horn derives from the basal plate, which is a ventral thickening of the neural tube. The dorsal horn
forms the sensory part of the spinal cord, including the posterior column pathway.
Blood Supply and Lymphatics
The aorta is an integral part of supplying blood to the spinal cord. The aorta does this by giving rise to the subclavian
arteries, which give rise posteriorly to the vertebral arteries. It is from these vertebral arteries that the medullary
arteries arise. The medullary arteries branch into ten segments and provide the majority of vascularization for the
spinal cord. If there is any compromise to the blood flow, the resulting neurological damage will depend on where the
compromise occurs. Any damage to the posterior flow of blood will likely result in some degree of sensory deficits,
while any damage to the anterior supply of blood will likely result in some degree of motor deficits. The posterior
spinal artery supplies the posterior column pathway. Thus, an infraction of the posterior spinal artery leads to
neurological sensory deficits related to the posterior column pathway. This condition occurs in the case of posterior
cord syndrome, also known as posterior spinal artery syndrome.
Surgical Considerations
A case report in the Journal of Neurosurgery highlights the significance of surgical interruption of a midline dorsal
column (posterior column pathway) to decrease visceral pain that persisted in the pelvis after the elimination of
uterine cancer. The case showed that punctate midline myelotomy is superior to analgesic medication in eliminating
persistent visceral pain. Midline myelotomy has been typically used to interrupt the pain transmitted via the
spinothalamic tract, but the punctate midline myelotomy used in the study was different in that the dorsal column
pathway was intentionally the target. The results shed light on the involvement of the posterior column pathway in
visceral pain transmission and on the future possibility of eliminating pain with surgical intervention in the posterior
column rather than by taking analgesic medications.[9]
Clinical Significance
The diseases that target the dorsal column pathway are degenerative in nature. The Romberg test is part of a
neurological exam used clinically to test for the integrity of the posterior column pathway. Tabes dorsalis is an
example of a degenerative disease that represents a late manifestation of tertiary syphilis. Although it has become rare
since the introduction of penicillin, tabes dorsalis can cause deleterious neurological deficits due to its involvement in
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 3/8
the posterior column pathway. The pathogenesis of tabes dorsalis is characterized by demyelinating the axons of the
posterior column pathway, generating an array of symptoms that are primarily related to compromising the sensory
information that is carried by the posterior column pathway. These symptoms include loss of peripheral reflexes,
impairment of vibration, position sense, and progressive ataxia. Sudden onset of severe pain of an unknown origin
that is often described as "lightning pain" also can be seen in tabes dorsalis. In addition to the posterior column
pathway-related symptoms, tabes dorsalis can cause degenerative joints, also known as "Charcot's joints." Moreover,
the loss of the pupils' ability to constrict with the preservation of its ability to accommodate (i.e., Argyll Robertson
pupils) is a common finding in patients with tabes dorsalis.
Another example of a degenerative disease affecting the posterior column pathway is subacute combined degeneration
of the spinal cord. Unlike tabes dorsalis, which is a late complication of an infectious process, subacute combined
degeneration of the spinal cord (SCD) results from B12 deficiency. SCD affects two pathways in the spinal cords:
lateral cortical motor pathway and posterior column pathway, causing symptoms related to the functions of these two
pathways. SCD is characterized by axonal myelin abnormalities in the mentioned pathways as a result of B12
deficiency, leading to a compromise in nerve transmission. Myelination of the axons speeds up the action potential via
the saltatory conduction. Thus, disruption in the myelination process slows down nerve conduction. Symptoms related
to the posterior column pathway include paresthesias, loss of vibratory sensation, and proprioception, while symptoms
associated with the lateral cortical motor pathway include spastic paresis and hyperreflexia. The role of vitamin B12
deficiency in the cause of SCD is related to the production of myelin in two pathways.
Adenosylcobalamin serves as a cofactor in the conversion of methylmalonyl-CoA to succinyl-CoA, which is an
essential step in lipid synthesis. Consequently, methylmalonyl-CoA accumulates in B12 deficiency, causing the
inclusion of abnormal fatty acids into the synthesis of neuronal lipids. Nevertheless, the build-up of methylmalonyl-
CoA makes it a useful lab marker tool to diagnose B12 deficiency.
In a different pathway, the lack of Vitamin B12 impedes oligodendrocytes growth, as vitamin B12 is involved in the
DNA synthesis is a cofactor in the generation of tetrahydrofolate. Other Vitamin B12 deficiency findings besides SCD
include psychiatric issues and macrocytic anemia. Vitamin B12 deficiency commonly causes pernicious anemia, but it
can also be secondary to folate deficiency, methotrexate therapy, and nitric oxide intake.[10]
The posterior column pathway can rarely be affected due to infarction of the posterior spinal artery, causing what is
known as posterior cord syndrome or posterior spinal cord syndrome. Posterior cord syndrome (PCS) is characterized
by loss of vibration, proprioception sensation, and the posterior spinal artery supplies reflexes below the level of the
lesion as the posterior column pathway. However, the pain and temperature along with motor strength are spared in
PCS, as the spinothalamic tract and cortical motor tract are not affected due to their blood supply by the anterior
spinal artery.
Lastly, Brown-Sequard syndrome, which is spinal cord hemisection involving either the left or right side of the spinal
cord, is a syndrome that usually happens at the cervical level and affects the posterior column pathway. Unlike the
previous causes of damage to the posterior column pathway, Brown-Sequard usually is caused by traumatic events
such as a fracture or stab wound to one side of the spinal cord, although tumors and abscesses also can cause it far less
commonly. Along with the posterior column pathway, the motor pathway and spinothalamic tract pathway are severed
in Brown-Sequard syndrome, giving a unique set of symptoms. The classic clinical features of Brown-Sequard
syndrome include contralateral loss of pain and temperature (spinothalamic tract), ipsilateral hemiparesis
(corticospinal tract), and ipsilateral loss of vibration and proprioception (posterior column pathway).[11]
Continuing Education / Review Questions
Access free multiple choice questions on this topic.
Earn continuing education credits (CME/CE) on this topic.
Comment on this article.
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 4/8
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
References
Carlson BA. Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol. 2002 Dec
23;454(4):440-55. [PubMed: 12455008]
Cochrane M, Hess M, Sajkowicz N. Posterior cord syndrome associated with postoperative seroma: The case to
perform a complete neurologic exam. J Spinal Cord Med. 2018 Dec 14;:1-3. [PubMed: 30547736]
Campero M, Hughes R, Orellana P, Bevilacqua JA, Guiloff RJ. Spinal cord infarction with ipsilateral segmental
neuropathic pain and flaccid paralysis. A functional role for human afferent ventral root small sensory fibres. J
Neurol Sci. 2018 Dec 15;395:84-87. [PubMed: 30300819]
MacDonald DB, Dong C, Quatrale R, Sala F, Skinner S, Soto F, Szelényi A. Recommendations of the
International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin
Neurophysiol. 2019 Jan;130(1):161-179. [PubMed: 30470625]
Gonschorek O, Hauck S, Weiß T, Bühren V. [Fractures of the thoracic and lumbar spine]. Chirurg. 2015
Sep;86(9):901-14; quiz 915-6. [PubMed: 26307631]
Freund HJ. Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol.
2003;93:179-93. [PubMed: 12894408]
Willis WD, Westlund KN. The role of the dorsal column pathway in visceral nociception. Curr Pain Headache
Rep. 2001 Feb;5(1):20-6. [PubMed: 11252134]
Westlund KN. Visceral nociception. Curr Rev Pain. 2000;4(6):478-87. [PubMed: 11060594]
Nauta HJ, Hewitt E, Westlund KN, Willis WD. Surgical interruption of a midline dorsal column visceral pain
pathway. Case report and review of the literature. J Neurosurg. 1997 Mar;86(3):538-42. [PubMed: 9046313]
Krishna KK, Arafat AS, Ichaporia NR, Jain MM. MRI findings in cobalamin deficiency. J Clin Neurosci. 2003
Jan;10(1):84-5. [PubMed: 12464529]
Shams S, Arain A. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Sep 14, 2020. Brown
Sequard Syndrome. [PubMed: 30844162]
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 5/8
Figures
This diagram illustrates the pathway of the dorsal column medial lemniscus (posterior column pathway) in a
schematic fashion. Contributed and Used with Permission from Campbell University School Of Osteopathic
Medicine
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 6/8
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 7/8
Posterior column. Image courtesy S Bhimji MD
12/17/2020 Neuroanatomy, Posterior Column (Dorsal Column) - StatPearls - NCBI Bookshelf
https://www.ncbi.nlm.nih.gov/books/NBK507888/?report=printable 8/8
The three order neuron system for the dorsal column. Contributes by Gerson C.R.
Copyright © 2020, StatPearls Publishing LLC.
This book is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license, and any changes made are indicated.
Bookshelf ID: NBK507888 PMID: 29939665