Conference PaperPDF Available

Minerals will be mined on the Moon

Authors:

Abstract

On the Moon, large amounts of various resources have already been discovered, starting with gases, water, minerals, and ending with metals and helium-3 were found there. It is potentially interesting in use as a fuel in nuclear fusion. The amount of helium-3 available can be measured in hundreds of millions of tons. And its development can be done in an open way. Water is another type of potentially important resource. Thorough studies show the presence of billions of tons of water ice on the Moon, both in near-polar craters, and on the rest of surface at a certain depth. A mining of existing minerals on our satellite will become a reality only after the creation of a permanent special base on the surface, or under it, permanently.
Minerals will be mined on the Moon.
1,2Vidmachenko A.P., 2,3Steklov A.F.
1National University of Life and Environmental Sciences of Ukraine.
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine.
3International Academy of Personnel Management. vida@mao.kiev.ua, stec36@i.ua.
On the Moon, large amounts of various resources have already been discovered, starting with
gases, water, minerals, and ending with metals and helium-3 were found there. It is potentially
interesting in use as a fuel in nuclear fusion. The amount of helium-3 available can be measured in
hundreds of millions of tons. And its development can be done in an open way. Water is another type
of potentially important resource. Thorough studies show the presence of billions of tons of water ice
on the Moon, both in near-polar craters, and on the rest of surface at a certain depth. A mining of
existing minerals on our satellite will become a reality only after the creation of a permanent special
base on the surface, or under it, permanently.
On the Moon, large amounts of various resources have already been discovered, starting with
gases, water, minerals, and ending with metals [1, 3, 9]. For example, huge amounts of such an isotope
as helium-3 were found there. It is potentially interesting in use as a fuel in nuclear fusion. Modern
atomic reactors use atomic decay energy, whereas in nuclear synthesis, hydrogen atoms combine to
form helium. At the same time, a huge amount of energy is released. Since the atmosphere on the
Moon is absent, it means that its surface was bombarded by charged particles for billions of years,
and a significant part of them could penetrate into such a surface. These particles could also be
helium-3, which can now be extracted by heating the lunar rock and then collecting the produced gas.
The amount of helium-3 thus available can be measured in hundreds of millions of tons. And its
development can be done in an open way. Nuclear fusion of this type is a much more environmentally
friendly process for the reason that it does not release additional neutrons. Moreover, of the energy
itself is produced much more than during the passage of the fission reaction. And, moreover, during
nuclear fusion, there are no such unpleasant consequences as the presence of a significant amount of
radioactive waste.
Helium-3 on Earth is available in very small quantities. Therefore, now, while nuclear fusion is
not developed enough, a kilogram of this substance is worth millions of US dollars. If you have to
extract this substance at outside of the Earth, then it would be most logical to start searching on the
surface of the Moon. According to some data, the delivery of a kilogram of substance to the moon by
spacecraft is now $ 25,000 US. Thus, all resources extracted in space should have a high demand for
a quick payback of expenses at each launch. This is especially important for the prospects of
developing appropriate resources beyond the orbit of the Moon. Water is another type of potentially
important resource. After all, it is necessary to provide by water each of the subsequent missions to
deep space. Thorough studies show the presence of billions of tons of water ice on the Moon, both in
the near-polar craters, where temperatures can drop to 50 K, and on the rest of the surface at a certain
depth.
It is there that the water ice is supposed to be melted and then the resulting water must be cleaned.
Further, water can be converted to O2 and to hydrogen peroxide; after that, these gases should be
condensed into liquid oxygen, hydrogen, hydrogen peroxide. These chemicals are a potential type of
rocket fuel. That is, the extracted water can be used to turn into rocket fuel while providing
communication on the lower part of the near-Earth orbit, conducting space tourism, removing space
debris, ensuring human activity on the Moon and in more remote areas of space [8]. Also, unmanned
all-terrain vehicles can be delivered to the moon in order to explore possible water deposits. A full
mining of existing minerals on our satellite will become a reality only after the creation of a permanent
special base on the surface, or under it, permanently [2, 4-7].
Полезные ископаемые будем добывать на Луне.
1,2Видьмаченко А. П., 2,3Стеклов А. Ф.
1Национальный университет биоресурсов и природопользования Украины.
2 Главная астрономическая обсерватория НАН Украины.
3Международная академия управления персоналом. vida@mao.kiev.ua, stec36@i.ua.
На Луне уже обнаружены большие объемы разных ресурсов, начиная с газов, воды,
минералов, заканчивая металлами [1, 3, 9]. Например, там найдены огромные количества
такого изотопа как гелий-3. Он потенциально интересный в качестве использования как
топливо при ядерном синтезе. В современных атомных реакторах используют энергию
атомного распада, тогда как при ядерном синтезе водородные атомы соединяются, образуя
гелий. При этом, выделяется огромное количества энергии. Поскольку атмосфера на Луне
отсутствует, то это значит, что ее поверхность на протяжении миллиардов лет
бомбардировалась заряженными частичками, и значительная часть из них могла внедриться в
такую поверхность. Этими частицами мог быть и гелий-3, который сейчас можно будет
извлекать при нагревании лунной породы и затем собирать получаемый газ. Объем
доступного таким образом гелия-3 может измеряться сотнями миллионов тонн. А его
выработку можно проводить открытым способом. Ядерный синтез такого типа процесс
значительно более экологичный по той причине, что он не выделяет дополнительных
нейтронов. Причем, самой энергии при этом производится намного больше, чем при
прохождении реакции деления. И, кроме того, при ядерном синтезе отсутствуют такие
неприятные последствия, как наличие значительного количества радиоактивных отходов.
Гелий-3 на Земле доступен в очень незначительных объемах. Поэтому сейчас, пока ядерный
синтез разработан недостаточно, килограмм этого вещества стоит миллионы долларов
США. Если добывать это вещество придется вне Земли, то логичнее всего следует начать
поиски на поверхности Луны. Согласно некоторым данным, доставка килограмма вещества на
Луну космическими аппаратами сейчас составляет 25000 $US. Таким образом, все
добываемые в космосе ресурсы, должны иметь высокий спрос для быстрой окупаемости
расходов при каждом запуске. Это особенно важно для перспектив разработки
соответствующих ресурсов дальше орбиты Луны.
Вода является еще одним видом потенциально важным ресурсов. Ведь именно ею
необходимо обеспечить каждую из последующих миссий в дальний космос. Тщательные
исследования показывают наличие миллиардов тонн водяного льда на Луне, как в
приполярных кратерах, где температура может опускаться до 50 К, так и на остальной части
поверхности на некоторой глубине. Именно там водяной лед предполагается плавить и затем
очищать полученную воду. Далее воду можно превращать в О2 и в перекись водорода; после
этого эти газы следует конденсировать в жидкие кислород, водород, перекись водорода. Эти
химические вещества являются потенциальным видом ракетного топлива. То есть,
добываемая вода может использоваться для превращения в ракетное топливо при обеспечении
связи на нижней части околоземной орбиты, проведении космического туризма, удалении
космического мусора, для обеспечения деятельности человека на Луне и в более удаленных
областях космического пространства [8]. Также на Луну можно доставлять беспилотные
вездеходы с целью проведения разведки возможных водных месторождений. А полноправная
добыча имеющихся полезных ископаемых на нашем спутнике станет реальностью только по
окончании создания на поверхности, или под ней постоянно действующей специальной базы
[2, 4-7].
References.
1. Bandfield J. L., Poston M. J., Klima R.l L., Edwards Ch. S. (2018) Widespread distribution of
OH/H2O on the lunar surface inferred from spectral data // Nature Geoscience, vol. 11, Issue 3, p.
173-177.
2. Burlak Ol., Zaetz I., Soldatkin Ol., Rogutskyy I., Danilchenko B., Mikheev Ol., de Vera J.-P.,
Vidmachenko A., Foing B., Kozyrovska N. The inducible CAM plants in putative lunar lander
experiments // 38th COSPAR Scientific Assembly. Held 18-25 July 2010, in Bremen, Germany, p.11.
3. Jedicke R., Sercel J., Gillis-Davis J., Morenz K. J., Gertsch L. (2018) Availability and delta-v
requirements for delivering water extracted from near-Earth objects to cis-lunar space // Planetary
and Space Science, 159, p. 28-42.
4. Morozhenko A. V. and Vidmachenko A. P. (2004) Moon Base and Problems of Global Changes
on the Earth // Journal of Automation and Information Sciences. vol. 36, Issue 11, p. 27-31.
5. Shkuratov Yu. G., Lytvynenko L.M., Shulga V.M., Yatskiv Ya.S., Vidmachenko A.P., Kyslyuk
V.S. Objectives of a prospective Ukrainian orbiter mission to the Moon // Advances in Space
Research. 2003, vol. 31, no. 11, p. 2341-2345.
6. Vid’Machenko A. P., Morozhenko A. V. (2004) Mapping of physical characteristics of the
Moon's superficial layer and ultra-violet polarimetry from a lunar orbital station // Kosmichna Nauka
i Tekhnologiya, vol. 10, no. 5/6, p. 21 - 27.
7. Vid’machenko A. P., Morozhenko A.V. (2005) Mapping of the physical characteristics and
mineral composition of a superficial layer of the Moon or Mars and ultra-violet polarimetry from the
orbital station // 36th Lunar and Planetary Science Conference, March 14-18, 2005, League City,
Texas, #1015.
8. Vidmachenko A. P. and Morozhenko O. V. (2014) The physical characteristics of surface
Earth-like planets, dwarf and small (asteroids) planets, and their companions, according to distance
studies // Main Astronomical Observatory NAS of Ukraine, National University of Life and
Environmental Sciences of Ukraine. Kyiv, Publishing House "Profi". -388 p.
9. Vidmachenko A.P. (2018) Water in Solar system // 20 International scientific conference
Astronomical School of Young Scientists. May 2324 2018. The program and abstracts. Uman,
Ukraine, p. 91-93.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Remote-sensing data from lunar orbiters have revealed spectral features consistent with the presence of OH or H2O on the lunar surface. Analyses of data from the Moon Mineralogy Mapper spectrometer onboard the Chandrayaan-1 spacecraft have suggested that OH/H2O is recycled on diurnal timescales and persists only at high latitudes. However, the spatial distribution and temporal variability of the OH/H2O, as well as its source, remain uncertain. Here we incorporate a physics-based thermal correction into analysis of reflectance spectra from the Moon Mineralogy Mapper and find that prominent absorption features consistent with OH/H2O can be present at all latitudes, local times and surface types examined. This suggests the widespread presence of OH/H2O on the lunar surface without significant diurnal migration. We suggest that the spectra are consistent with the production of OH in space-weathered materials by the solar wind implantation of H⁺ and formation of OH at crystal defect sites, as opposed to H2O sourced from the lunar interior. Regardless of the specific composition or formation mechanism, we conclude that OH/H2O can be present on the Moon under thermal conditions more wide-ranging than previously recognized.
Article
Full-text available
The expediency of use of a stationary observation base on the Moon’s surface for ecological monitoring of the Earth is proved in the paper. Such monitoring is necessary for choosing the most authentic mechanism of global changes of capacity of the ozone layer and global warming. First of all it is necessary for obtaining observation data for verification of mechanisms of change of stratospheric ozone under the influence of aerosol component in upper atmosphere layers and for determination of changes of the Earth effective temperature at the expense of increasing absorbing properties of world ocean water due to their pollution.
Article
Full-text available
Ground and space researches of the Moon allowed one to carry out large-scale mapping of its superficial layer. Morphological details of the Moon have various spectral reflective properties. Their characteristic features are decrease of its reflectivity from visual spectral region to ultra-violet one and absorption bands in near infra-red spectral region. This points to mineralogy of the Moon's surface. Morphological features with different optical and physical properties have different polarization. In the long-wave spectral region, the degree of polarization is practically identical for many details on the Moon's surface, but its values differ strongly in ultra-violet region. The phase curve in ultra-vilet region allows one to determine the value of phase angle alphamax at which the maximal value of degree of polarization Pmax takes place, with error less than 1°. These optical parameters of the Moon's surface enable us to determine refraction indexes of its mineral particles, i.e., to make mapping of the Moon's minerals.
Conference Paper
Full-text available
We suggest using observational data on measurements of UV light's degree of linear polarization at phase angles in limits from 80 up to 120 degrees, that is, in those limits in which values of Brewster's angles are practical for all ground materials.
Conference Paper
Full-text available
Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Crassulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3- to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009).
Article
We have calculated the number of water-bearing near-Earth objects as a function of return-trip delta-v (ΔvRT). First, we combined a model of the near-Earth object's (NEO) orbit and size-frequency distribution with other measurements of their provenance, and the taxonomic distribution of asteroids in the NEO's main belt sources, to calculate the taxonomic distribution of NEOs as a function of their orbital elements and size. Our calculations are in agreement with recent measurements of the ratio of C- and S-complex bodies within the population of small NEOs. Then we developed a simplified mission model to calculate an upper limit on ΔvRT for a mission from an NEO to distant retrograde lunar orbit (DRLO) in cis-lunar space. Combining the first two steps allowed us to develop a synthetic population of low ΔvRT NEOs that includes their taxonomic distribution. Finally, we used measurements of the water-bearing content of the taxonomic classes based on their assumed meteorite associations to calculate the number of water-bearing NEOs as a function of ΔvRT. We find that there are likely thousands of H2O-rich NEOs larger than about 5 m diameter with ΔvRT≲3kms−1 and the number of objects increases as ΔvRT3. The rapid increase in the number of objects with ΔvRT suggests that in-situ resource utilization (ISRU) of asteroid-derived water can expand quickly throughout the solar system. NEOs with ΔvRT≲3kms−1 tend to be on Earth-like orbits with semi-major axes a∼1au, eccentricities e≳0, and inclinations i≳0∘. The small, dark, low ΔvRT are difficult or impossible to detect with Earth-based telescopes because many orbit the Sun interior to Earth's orbit and others have such long synodic periods that they are rarely visible.
Book
The history of exploration and cosmogony of Solar System bodies, the current state of the planetary cosmogony, the process of formation planets and their satellites; the features of the internal structure of terrestrial planets and of the Moon, magnetic fields of the terrestrial planets, satellites and asteroids; the general question of forming of diffusely reflected radiation of rough surfaces, lighting conditions, the parameters of reflected radiation fields (photometric, polarization and thermal properties), radar observations was considered. Given the main results of the study of the Moon, Earth-like planets (Mars, Mercury, Venus) dwarf and small (asteroids) planets Publication is targeted for teachers of higher educational institutions, students and graduate students and specialists who specialize in the study of physical methods, experimental physics and solar system bodies
Water in Solar system // 20 International scientific conference Astronomical School of Young Scientists
  • A P Vidmachenko
Vidmachenko A.P. (2018) Water in Solar system // 20 International scientific conference Astronomical School of Young Scientists. May 23-24 2018. The program and abstracts. Uman, Ukraine, p. 91-93.